Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An evolving view of methane metabolism in the Archaea

Abstract

Methane is a key compound in the global carbon cycle that influences both nutrient cycling and the Earth’s climate. A limited number of microorganisms control the flux of biologically generated methane, including methane-metabolizing archaea that either produce or consume methane. Methanogenic and methanotrophic archaea belonging to the phylum Euryarchaeota share a genetically similar, interrelated pathway for methane metabolism. The key enzyme in this pathway, the methyl-coenzyme M reductase (Mcr) complex, catalyses the last step in methanogenesis and the first step in methanotrophy. The discovery of mcr and divergent mcr-like genes in new euryarchaeotal lineages and novel archaeal phyla challenges long-held views of the evolutionary origin of this metabolism within the Euryarchaeota. Divergent mcr-like genes have recently been shown to oxidize short-chain alkanes, indicating that these complexes have evolved to metabolize substrates other than methane. In this Review, we examine the diversity, metabolism and evolutionary history of mcr-containing archaea in light of these recent discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methanogenesis in the context of the global carbon cycle.
Fig. 2: Archaeal genome tree highlighting lineages containing mcr and mcr- like genes.
Fig. 3: Methanogenic and methanotrophic pathways.
Fig. 4: Phylogenetic tree based on McrA and McrA-like sequences.
Fig. 5: Genes encoded in genomes of mcr and mcr- like containing lineages and their metabolism type.
Fig. 6: Incongruences between genome and concatenated Mcr proteins.

Similar content being viewed by others

References

  1. Reeburgh, W. Biogeochemistry, oceanic methane. Chem. Rev. 107, 486–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    Article  CAS  Google Scholar 

  3. Thauer, R., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008). This paper presents a comprehensive review of the biochemical mechanisms that methanogens use for methanogenesis.

    Article  CAS  PubMed  Google Scholar 

  4. McGlynn, S. E. Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ. 32, 5–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Timmers, P. et al. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017, 1654237 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cord-Ruwisch, R., Seitz, H. & Conrad, R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149, 350–357 (1988).

    Article  CAS  Google Scholar 

  7. Sieber, J. R., McInerney, M. J. & Gunsalus, R. P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu. Rev. Microbiol. 66, 429–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Jackson, B. E. & McInerney, M. J. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415, 454–456 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hinrichs, K. & Boetius, A. in Ocean Margin System (eds Wefer, G., Billet, D., Hebbeln, D., Jørgensen, B. B. & Schlüter, M.) 457–477 (Springer, 2002).

  10. Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewert, P. G. & DeLong, E. F. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holler, T. et al. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proc. Natl Acad. Sci. USA 108, E1484–E1490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murrell, J. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K.) 1953–1966 (Springer, 2010).

  15. Adam, P., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407–2425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Nobu, M., Narihiro, T., Kuroda, K., Mei, R. & Liu, W. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bapteste, E., Brochier, C. & Boucher, Y. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1, 353–363 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Enzmann, F., Mayer, F., Rother, M. & Holtmann, D. Methanogens: biochemical background and biotechnological applications. AMB Express 8, 1 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sorokin, D. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 1–11 (2017).

    Article  CAS  Google Scholar 

  22. Borrel, G. et al. Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int. J. Syst. Evol. Microbiol. 62, 1625–1629 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Brauer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B. & Zinder, S. H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192–194 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Boone, D. R. et al. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Syst. Bacteriol. 43, 430–437 (1993).

    Article  Google Scholar 

  25. Sprenger, W. W., van Belzen, M. C., Rosenberg, J., Hackstein, J. H. & Keltjens, J. T. Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int. J. Syst. Evol. Microbiol. 50, 1989–1999 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Dridi, B., Fardeau, M.-L., Ollivier, B., Raoult, D. & Drancourt, M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62, 1902–1907 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ma, K., Liu, X. & Dong, X. Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int. J. Syst. Evol. Microbiol. 56, 127–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Mayumi, D. et al. Methane production from coal by a single methanogen. Science 354, 222–225 (2016). This paper demonstrates methanogenesis by a methanogen directly from coal rather than by reliance on bacterial fermentation end products.

    Article  CAS  PubMed  Google Scholar 

  29. Sakai, S. et al. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl. Environ. Microbiol. 73, 4326–4331 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jabłonski, S., Rodowicz, P. & Łukaszewicz, M. Methanogenic archaea database containing physiological and biochemical characteristics. Int. J. Syst. Evol. Microbiol. 65, 1360–1368 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144, 2377–2406 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Thauer, R. K. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr. Opin. Microbiol. 14, 292–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Ermler, U., Grabarse, W., Shima, S., Goubeaud, M. & Thauer, R. K. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278, 1457–1462 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Zheng, K., Ngo, P. D., Owens, V. L., Yang, X. P. & Mansoorabadi, S. O. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354, 339–342 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Moore, S. J. et al. Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 543, 78–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wongnate, T. & Ragsdale, S. W. The reaction mechanism of methyl-coenzyme M reductase. J. Biol. Chem. 290, 9322–9334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wongnate, T. et al. The radical mechanism of biological methane synthesis by methylcoenzyme M reductase. Science 352, 953–958 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Springer, E., Sachs, M. S., Woese, C. R. & Boone, D. R. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Evol. Microbiol. 45, 554–559 (1995).

    CAS  Google Scholar 

  39. Luton, P. E., Wayne, J. M., Sharp, R. J. & Riley, P. W. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148, 3521–3530 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Girguis, P. R., Orphan, V. J., Hallam, S. J. & DeLong, E. F. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl. Environ. Microbiol. 69, 5472–5482 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Friedrich, M. W. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzym. 397, 428–442 (2005).

    Article  CAS  Google Scholar 

  42. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Evans, P. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015). This is the first study to show that mcr is present in archaea other than the Euryarchaeota.

    Article  CAS  PubMed  Google Scholar 

  44. Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Laso-Pérez, R. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016). This paper describes the first cultivation of mcr-containing an archaeon that oxidizes alkanes rather than forming or oxidizing methane.

    Article  PubMed  CAS  Google Scholar 

  46. Garcia, J. L., Patel, B. K. C. & Ollivier, B. Taxanomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6, 205–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Y. C. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci. 1125, 171–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Hoedt, E. et al. Differences downunder: alcohol-fueled methanogenesis in the foregut of the Australian Macropdids. ISME J. 10, 2376–2388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ragsdale, S. W. Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann. NY Acad. Sci. 1125, 129–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Hippler, B. & Thauer, R. K. The energy conserving methyltetrahydromethanopterin:coenzyme M methyltransferase complex from methanogenic archaea: function of the subunit MtrH. FEBS Lett. 449, 165–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Gottschalk, G. & Thauer, R. K. The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim. Biophys. Acta 1505, 28–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Welander, P. V. & Metcalf, W. W. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway. Proc. Natl Acad. Sci. USA 102, 10664–10669 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaster, A.-K., Moll, J., Parey, K. & Thauer, R. K. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl Acad. Sci. USA 108, 2981–2986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lie, T. J. et al. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc. Natl Acad. Sci. USA 109, 15473–15478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schlegel, K., Leone, V., Faraldo-Gómez, J. D. & Müller, V. Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc. Natl Acad. Sci. USA 109, 947–952 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grüber, G., Manimekalai, M. S. S., Mayer, F. & Müller, V. ATP synthases from archaea: the beauty of a molecular motor. Biochim. Biophys. Acta 1837, 940–952 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Wagner, T., Wegner, C.-E., Kahnt, J., Ermler, U. & Shima, S. Phylogenetic and structural comparisons of the three types of methyl-coenzyme M reductase from Methanococcales and Methanobacteriales. J. Bacteriol. 199, e00197-17 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Fricke, W. F. et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J. Bacteriol. 188, 642–658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fournier, G. Horizontal gene transfer and the evolution of methanogenic pathways. Methods Mol. Biol. 532, 163–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Welte, C. & Deppenmeier, U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim. Biophys. Acta 1837, 1130–1147 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Ferry, J. G. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr. Opin. Biotechnol. 22, 351–357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Welte, C. & Deppenmeier, U. Membrane-bound electron transport in Methanosaeta thermophila. J. Bacteriol. 193, 2868–2870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schlegel, K. & Müller, V. Evolution of Na+ and H+ bioenergetics in methanogenic archaea. Biochem. Soc. Trans. 41, 421–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of ‘Candidatus Methanoplasma termitum’. Appl. Environ. Microbiol. 81, 1338–1352 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Borrel, G. et al. Unique characteristics of the pyrrolysine system in the 7th order of methanogens: Implications for the evolution of a genetic code expansion cassette. Archaea 2014, 374146 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kröninger, L., Berger, S., Welte, C. & Deppenmeier, U. Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis. FEBS J. 283, 472–483 (2016).

    Article  PubMed  CAS  Google Scholar 

  68. Welander, P. V. & Metcalf, W. W. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway. J. Bacteriol. 190, 1928–1936 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013). This is a metagenomic study of ANME methanotrophs that reduce nitrate. The results imply that the global carbon and nitrogen cycles are linked.

    Article  CAS  PubMed  Google Scholar 

  72. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015). This paper shows interspecies electron transfer between ANME and sulfate-reducing bacterial partners using a combination of nanoscale secondary ion mass spectrometry and fluorescence in situ hybridization techniques.

    Article  CAS  PubMed  Google Scholar 

  74. Meyerdierks, A. et al. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12, 422–439 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, F.-P. et al. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J. 8, 1069–1078 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front. Microbiol. 6, 1423 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Deppenmeier, U., Lienard, T. & Gottschalk, G. Novel Reactions involved in energy conservation by methanogeneic archaea. FEBS Lett. 457, 291–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Ferry, J. G. Methane from acetate. J. Bacteriol. 174, 5489–5495 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M. & DeLong, E. F. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 69, 5483–5491 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grobkopf, R., Janssen, P. H. & Liesack, W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol. 64, 960–969 (1998).

    Google Scholar 

  82. Kemnitz, D., Kolb, S. & Conrad, R. Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Environ. Microbiol. 7, 553–565 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Fry, J. C. et al. Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 km) above ~150 Ma basement rock. Geomicrobiol. J. 26, 163–178 (2009).

    Article  CAS  Google Scholar 

  84. Steinberg, L. M. & Regan, J. M. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiol. 74, 6663–6671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Narihiro, T. et al. The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Biosci. Biotechnol. Biochem. 75, 1727–1734 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Li, W. et al. Microbial community characteristics of petroleum reservoir production water amended with n-alkanes and incubated under nitrate-, sulfate-reducing and methanogenic conditions. Int. Biodeterior. Biodegrad. 69, 87–96 (2012).

    Article  CAS  Google Scholar 

  87. Biddle, J. et al. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J. 6, 1018–1031 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. McKay, L. J., Hatzenpichler, R., Inskeep, W. P. & Fields, M. W. Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci. Rep. 7, 7252 (2017). This paper finds that there are many previously divergent mcr genes present in the environment, likely in archaeal lineages that are currently unrecognized.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Erkel, C., Kube, M., Reinhardt, R. & Liesack, W. Genome of Rice Cluster I archaea — the key methane producers in the rice rhizosphere. Science 313, (370–372 (2006).

    Google Scholar 

  90. Mondav, R. et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nat. Commun. 5, 3212 (2014).

    Article  PubMed  CAS  Google Scholar 

  91. He, Y. et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat. Microbiol. 1, 16035 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gagen, E. J., Huber, H., Meador, T., Hinrichs, K.-U. & Thomm, M. Novel cultivation-based approach to understanding the Miscellaneous Crenarchaeotic Group (MCG) archaea from sedimentary ecosystems. Appl. Environ. Microbiol. 79, 6400–6406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lazar, C. et al. Environmental controls on intragroup diversity of the uncultured benthic archaea of the Miscellaneous Crenarchaeotal Group lineage naturally enriched in anoxic sediments of the White Oak River Estuary (North Carolina, USA). Environ. Microbiol. 17, 2228–2238 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Lazar, C. S. et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18, 1200–1211 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Colman, D. R., Poudel, S., Stamps, B. W., Boyd, E. S. & Spear, J. R. The deep, hot biosphere: Twenty-five years of retrospection. Proc. Natl Acad. Sci. USA 114, 6895–6903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Spang, A., Caceres, E. F. & Ettema, T. J. G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883 (2017).

    Article  PubMed  CAS  Google Scholar 

  98. Mendes, S. D. et al. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep. J. Geophys. Res. Oceans 120, 1937–1953 (2015).

    Article  CAS  Google Scholar 

  99. Boyd, J., Woodcroft, B. & Tyson, G. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Nunoura, T. et al. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilin. Microbes Environ. 28, 228–235 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gribaldo, S. & Brochier-Armanet, C. The origin and evolution of Archaea: a state of the art. Phil. Trans. R. Soc. 361, 1007–1022 (2006).

    Article  CAS  Google Scholar 

  102. Ferry, J. G. & House, C. H. The stepwise evolution of early life driven by energy conservation. Mol. Biol. Evol. 23, 1286–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Makarova, K. S., Sorokin, A. V., Novichkov, P. S., Wolf, Y. I. & Koonin, E. V. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol. Direct 2, 33 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. 362, 1887–1925 (2007).

    Article  CAS  Google Scholar 

  105. Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. Biol. Sci. 278, 1009–1018 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, Y., Beer, L. L. & Whitman, W. B. Methanogens: a window into ancient sulfur metabolism. Trends Microbiol. 20, 251–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Davín, A. A. et al. Gene transfers can date the tree of life. Nat. Ecol. Evol. 2, 904–909 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wolfe, J. M. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).

    Article  PubMed  Google Scholar 

  109. Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017). This paper demonstrates the usefulness of phylogenomic studies, specifically to understand the ancestral metabolic capabilities in archaea.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Petitjean, C., Deschamps, P., López-Garciá, P. & Moreira, D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol. Evol. 7, 191–204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. B 364, 2197–2207 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Borrel, G., Adam, P. & Gribaldo, S. Methanogenesis and the Wood-Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol. Evol. 8, 1706–1711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Klenk, H. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M. & Loy, A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J. 9, 1152–1165 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Borrel, G. et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5, 1769–1780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mwirichia, R. et al. Metabolic traits of an uncultured archaeal lineage-MSBL1-from brine pools of the Red Sea. Sci. Rep. 6, 19181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Adam, P. S., Borrel, G. & Gribaldo, S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc. Natl Acad. Sci. USA 115, E1166–E1173 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Rastogi, S. & Liberles, D. A. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Petitjean, C., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Extreme deviations from expected evolutionary rates in archaeal protein families. Genome Biol. Evol. 9, 2791–2811 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Groussin, M. et al. Gene acquisitions from bacteria at the origins of major archaeal clades are vastly overestimated. Mol. Biol. Evol. 33, 305–310 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Becker, E. A. et al. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLOS Genet. 10, e1004784 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Dombrowski, N., Seitz, K. W., Teske, A. P. & Baker, B. J. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5, 106 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sousa, F. et al. Early bioenergetic evolution. Phil. Trans. R. Soc. 368, 20130088 (2013).

    Article  CAS  Google Scholar 

  128. Nayak, D. D. & Metcalf, W. W. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc. Natl Acad. Sci. USA 114, 2976–2981 (2017). In this study, targeted transformation of genes into a methanogen using CRISPR–Cas9 establishes this technique for genetic manipulation in methanogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Inagaki, F. et al. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl. Environ. Microbiol. 70, 7445–7455 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Losekann, T. et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl. Environ. Microbiol. 73, 3348–3362 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Genomic Science Program of the US Department of Energy Office of Biological and Environmental Research, grants DE-FOA-0001458 and DE-SC0016440. P.N.E. is supported by Australian Research Council (ARC) Discovery Early Career Researcher Award 170100428. B.J.W. is supported by ARC Discovery Early Career Researcher Award 160100248. A.O.L. and J.A.B. are supported through ARC Postgraduate awards. P.H. is supported through an ARC Laureate Fellowship Award. G.W.T. is supported through a University of Queensland Vice Chancellor Research Focused Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.A.B, P.N.E., A.O.L., D.H.P., G.W.T. and B.J.W. researched data for the article. All authors contributed to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Gene W. Tyson.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Methanogens

Archaea that gain energy by forming methane from 1-carbon and 2-carbon compounds such as CO2, acetate and methanol produced during microbial fermentation.

Syntrophic partners

Organisms that have a mutually beneficial relationship. In the case of methanogens, these organisms consume hydrogen produced by bacterial partners to form methane, which increases the energetic efficiency of biomass breakdown.

Anaerobic methanotrophy

The means by which archaea gain energy by the oxidation of methane to CO2 in anaerobic environments, with the electrons generated disposed of either by the reduction of inorganic electron acceptors or by transfer to a bacterial partner.

Hydrogenotrophic

Refers to methanogens that use H2, and sometimes formate, as a source of electrons to reduce CO2 to methane in a stepwise reduction using cofactors such as methanofuran, tetrahydromethanopterin and coenzyme M.

Aceticlastic

Refers to methanogenesis that occurs by the dismutation of acetate to CO2 and transfer of a methyl group to the 1-carbon carrier tetrahydrosarcinapterin (H4SPT). The methyl-group–H4SPT complex is then reduced to methane.

Methylotrophic

Refers to methanogens with disproportionate methylated compounds such as methyl amine, methyl sulfide and methanol to form CO2 and methane. The oxidation of one molecule of these methylated compounds to CO2 via the 1-carbon carrier tetrahydrosarcinapterin provides electrons required to reduce further a three-methyl group to methane.

H2-dependent methylotrophic

A type of methanogenesis that occurs by the oxidation of methylated compounds to methane with electrons generated from H2 oxidation instead of by disproportionation of methyl groups to CO2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, P.N., Boyd, J.A., Leu, A.O. et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 17, 219–232 (2019). https://doi.org/10.1038/s41579-018-0136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0136-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology