The formation of multicellular microbial communities, called biofilms, starts from the adhesion of a few planktonic cells to the surface. The transition from a free-living planktonic lifestyle to a sessile, attached state is a multifactorial process that is determined by biological, chemical and physical properties of the environment, the surface and the bacterial cell. The initial weak, reversible interactions between a bacterium and a surface strengthen to yield irreversible adhesion. In this Review, we summarize our understanding of the mechanisms governing bacterial adhesion at the single-cell level, including the physical forces experienced by a cell before reaching the surface, the first contact with a surface and the transition from reversible to permanent adhesion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

  2. 2.

    Petrova, O. E. & Sauer, K. Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr. Opin. Microbiol. 30, 67–78 (2016).

  3. 3.

    Tolker-Nielsen, T. Biofilm development. Microbiol. Spectr. 3, MB-0001-2014 (2015). This review provides a general overview of biofilm formation and maturation at the multicellular level.

  4. 4.

    Petrova, O. E. & Sauer, K. Sticky situations: key components that control bacterial surface attachment. J. Bacteriol. 194, 2413–2425 (2012).

  5. 5.

    Heindl, J. E. et al. Discrete responses to limitation for iron and manganese in Agrobacterium tumefaciens: influence on attachment and biofilm formation. J. Bacteriol. 198, 816–829 (2016).

  6. 6.

    Danhorn, T., Hentzer, M., Givskov, M., Parsek, M. R. & Fuqua, C. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J. Bacteriol. 186, 4492–4501 (2004).

  7. 7.

    Berne, C., Ducret, A., Hardy, G. G. & Brun, Y. V. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbiol. Spectr. 3, MB-0018-2015 (2015).

  8. 8.

    Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890 (2002).

  9. 9.

    Boks, N. P., Norde, W., van der Mei, H. C. & Busscher, H. J. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 154, 3122–3133 (2008).

  10. 10.

    Pratt, L. A. & Kolter, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293 (1998).

  11. 11.

    Vatanyoopaisarn, S., Nazli, A., Dodd, C. E., Rees, C. E. & Waites, W. M. Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl. Environ. Microbiol. 66, 860–863 (2000).

  12. 12.

    Bodenmiller, D., Toh, E. & Brun, Y. V. Development of surface adhesion in Caulobacter crescentus. J. Bacteriol. 186, 1438–1447 (2004).

  13. 13.

    Schweinitzer, T. & Josenhans, C. Bacterial energy taxis: a global strategy? Arch. Microbiol. 192, 507–520 (2010).

  14. 14.

    Mandel, M. J. et al. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78, 4620–4626 (2012).

  15. 15.

    Humphries, J. et al. Species-independent attraction to biofilms through electrical signaling. Cell 168, 200–209.e12 (2017). This article reports that single swimming bacteria can respond to electrical signalling to join a surface-attached bacterial community.

  16. 16.

    Tuson, H. H. & Weibel, D. B. Bacteria–surface interactions. Soft Matter 9, 4368–4380 (2013).

  17. 17.

    Kaya, T. & Koser, H. Direct upstream motility in Escherichia coli. Biophys. J. 102, 1514–1523 (2012).

  18. 18.

    Berg, H. C. Random Walks in Biology (Princeton Univ. Press, 1993).

  19. 19.

    Vaccari, L. et al. Films of bacteria at interfaces. Adv. Colloid Interface Sci. 247, 561–572 (2017).

  20. 20.

    Lauga, E. Bacterial hydrodynamics. Ann. Rev. Fluid Mech. 48, 105–130 (2016).

  21. 21.

    Frymier, P. D., Ford, R. M., Berg, H. C. & Cummings, P. T. Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl Acad. Sci. USA 92, 6195–6199 (1995). This is one of the first studies showing that trajectories of bacteria swimming near a surface tend to be more circular.

  22. 22.

    Li, G., Tam, L.-K. & Tang, J. X. Amplified effect of Brownian motion in bacterial near-surface swimming. Proc. Natl Acad. Sci. USA 105, 18355–18359 (2008).

  23. 23.

    Utada, A. S. et al. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun. 5, 4913 (2014).

  24. 24.

    Ren, Y. et al. Emergent heterogeneous micro-environments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiol. Rev. 42, 259–272 (2018).

  25. 25.

    Camesano, T. A. & Logan, B. E. Probing bacterial electrosteric interactions using atomic force microscopy. Environ. Sci. Technol. 34, 3354–3362 (2000).

  26. 26.

    Abu-Lail, N. I. & Beyenal, H. in Characterization of Biomaterials (eds Bandyopadhyay, A. & Bose, S.) 207–253 (Elsevier, 2013).

  27. 27.

    Dunne, W. M. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 15, 155–166 (2002).

  28. 28.

    Palmer, J., Flint, S. & Brooks, J. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 34, 577–588 (2007).

  29. 29.

    Renner, L. D. & Weibel, D. B. Physicochemical regulation of biofilm formation. MRS Bull. 36, 347–355 (2011).

  30. 30.

    Hochbaum, A. I. & Aizenberg, J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett. 10, 3717–3721 (2010).

  31. 31.

    Jeong, H. E., Kim, I., Karam, P., Choi, H. J. & Yang, P. Bacterial recognition of silicon nanowire arrays. Nano Lett. 13, 2864–2869 (2013).

  32. 32.

    Helbig, R. et al. The impact of structure dimensions on initial bacterial adhesion. Biomater. Sci. 4, 1074–1078 (2016).

  33. 33.

    James, S. A., Hilal, N. & Wright, C. J. Atomic force microscopy studies of bioprocess engineering surfaces–imaging, interactions and mechanical properties mediating bacterial adhesion. Biotechnol. J. https://doi.org/10.1002/biot.201600698 (2017).

  34. 34.

    Hizal, F. et al. Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity. ACS Appl. Mat. Interfaces 9, 12118–12129 (2017).

  35. 35.

    Lu, N. et al. Fabrication of PDMS surfaces with micro patterns and the effect of pattern sizes on bacteria adhesion. Food Control 68, 344–351 (2016).

  36. 36.

    Bagherifard, S. et al. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials 73, 185–197 (2015).

  37. 37.

    Ivanova, E. P. et al. Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Sci. Rep. 1, 165 (2011).

  38. 38.

    An, Y. H. & Friedman, R. J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43, 338–348 (1998).

  39. 39.

    Jaggessar, A., Shahali, H., Mathew, A. & Yarlagadda, P. K. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15, 64 (2017).

  40. 40.

    Bruzaud, J. et al. The design of superhydrophobic stainless steel surfaces by controlling nanostructures: a key parameter to reduce the implantation of pathogenic bacteria. Mat. Sci. Eng. C Mater. Biol. Appl. 73, 40–47 (2017).

  41. 41.

    Geng, J. & Henry, N. in Bacterial Adhesion (eds Linke, D. & Goldman, A.) 315–331 (Springer, 2011).

  42. 42.

    Friedlander, R. S. et al. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc. Natl Acad. Sci. USA 110, 5624–5629 (2013).

  43. 43.

    Lorite, G. S. et al. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J. Colloid Interface Sci. 359, 289–295 (2011).

  44. 44.

    Zhao, K. et al. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497, 388–391 (2013).

  45. 45.

    Valle, J. et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc. Natl Acad. Sci. USA 103, 12558–12563 (2006).

  46. 46.

    Nickzad, A. & Déziel, E. The involvement of rhamnolipids in microbial cell adhesion and biofilm development — an approach for control? Lett. Appl. Microbiol. 58, 447–453 (2014).

  47. 47.

    Dufrêne, Y. F., Martínez-Martín, D., Medalsy, I., Alsteens, D. & Müller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 10, 847–854 (2013).

  48. 48.

    Martins, B. M. & Locke, J. C. Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr. Opin. Microbiol. 24, 104–112 (2015).

  49. 49.

    Wang, Y., Haitjema, C. H. & Fuqua, C. The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment. J. Bacteriol. 196, 2979–2988 (2014).

  50. 50.

    Ellison, C. K. et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358, 535–538 (2017). This article shows that pili retraction is involved in a mechanosensing mechanism to produce holdfast and attach to surfaces.

  51. 51.

    Burrows, L. L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).

  52. 52.

    Jones, C. J. et al. C-Di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLoS Pathog. 11, e1005068 (2015).

  53. 53.

    Hasman, H., Chakraborty, T. & Klemm, P. Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J. Bacteriol. 181, 4834–4841 (1999).

  54. 54.

    Schembri, M. A., Dalsgaard, D. & Klemm, P. Capsule shields the function of short bacterial adhesins. J. Bacteriol. 186, 1249–1257 (2004).

  55. 55.

    Beloin, C. et al. The transcriptional antiterminator RfaH represses biofilm formation in Escherichia coli. J. Bacteriol. 188, 1316–1331 (2006).

  56. 56.

    Berne, C. et al. Physiochemical properties of Caulobacter crescentus holdfast: a localized bacterial adhesive. J. Phys. Chem. B 117, 10492–10503 (2013).

  57. 57.

    DeBenedictis, E. P., Liu, J. & Keten, S. Adhesion mechanisms of curli subunit CsgA to abiotic surfaces. Sci. Adv. 2, e1600998 (2016).

  58. 58.

    Gibiansky, M. L. et al. Bacteria use type IV pili to walk upright and detach from surfaces. Science 330, 197–197 (2010). This article illustrates how single bacteria transition from reversible polar attachment to irreversible longitudinal attachment.

  59. 59.

    Cooley, B. J. et al. The extracellular polysaccharide Pel makes the attachment of P. aeruginosa to surfaces symmetric and short-ranged. Soft Matter 9, 3871–3876 (2013).

  60. 60.

    Hinsa, S. M., Espinosa-Urgel, M., Ramos, J. L. & O’Toole, G. A. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol. Microbiol. 49, 905–918 (2003).

  61. 61.

    El-Kirat-Chatel, S., Beaussart, A., Boyd, C. D., O’Toole, G. A. & Dufrêne, Y. F. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. ACS Chem. Biol. 9, 485–494 (2014).

  62. 62.

    Boyd, C. D. et al. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. J. Bacteriol. 196, 2775–2788 (2014).

  63. 63.

    Ivanov, I. E. et al. Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens. Res. Microbiol. 163, 685–691 (2012).

  64. 64.

    Newell, P. D., Boyd, C. D., Sondermann, H. & O’Toole, G. A. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9, e1000587 (2011).

  65. 65.

    Xiao, Y. et al. C-di-GMP regulates the expression of lapA and bcs operons via FleQ in Pseudomonas putida KT2440. Environ. Microbiol. Rep. 8, 659–666 (2016).

  66. 66.

    Poindexter, J. S. Biological properties and classification of the Caulobacter group. Bacteriol. Rev. 28, 231–295 (1964).

  67. 67.

    Tomlinson, A. D. & Fuqua, C. Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Curr. Opin. Microbiol. 12, 708–714 (2009).

  68. 68.

    Fritts, R. K., LaSarre, B., Stoner, A. M., Posto, A. L. & McKinlay, J. B. A. Rhizobiales-specific unipolar polysaccharide adhesin contributes to Rhodopseudomonas palustris biofilm formation across diverse photoheterotrophic conditions. Appl. Environ. Microbiol. 83, e03035–16 (2017).

  69. 69.

    Williams, M. et al. Short-stalked Prosthecomicrobium hirschii cells have a Caulobacter-like cell cycle. J. Bacteriol. 198, 1149–1159 (2016).

  70. 70.

    Jones, C. H. et al. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl Acad. Sci. USA 92, 2081–2085 (1995).

  71. 71.

    Hahn, E. et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323, 845–857 (2002).

  72. 72.

    Thomas, W. E., Nilsson, L. M., Forero, M., Sokurenko, E. V. & Vogel, V. Shear-dependent ‘stick-and-roll’adhesion of type 1 fimbriated. Escherichia coli. Mol. Microbiol. 53, 1545–1557 (2004).

  73. 73.

    Thomas, W. Catch bonds in adhesion. Annu. Rev. Biomed. Eng. 10, 39–57 (2008).

  74. 74.

    Ellison, C. & Brun, Y. V. Mechanosensing: a regulation sensation. Curr. Biol. 25, R113–R115 (2015).

  75. 75.

    Persat, A. Bacterial mechanotransduction. Curr. Opin. Microbiol. 36, 1–6 (2017). This review presents the main principle of bacterial surface-sensing mechanisms.

  76. 76.

    Otto, K. & Silhavy, T. J. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc. Natl Acad. Sci. USA 99, 2287–2292 (2002).

  77. 77.

    Jubelin, G. et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 187, 2038–2049 (2005).

  78. 78.

    Vogt, S. L. & Raivio, T. L. Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol. Lett. 326, 2–11 (2011).

  79. 79.

    Li, J. et al. Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence. Soft Matter 10, 7638–7646 (2014).

  80. 80.

    Harapanahalli, A. K., Younes, J. A., Allan, E., van der Mei, H. C. & Busscher, H. J. Chemical signals and mechanosensing in bacterial responses to their environment. PLoS Pathog. 11, e1005057 (2015).

  81. 81.

    Li, G. et al. Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol. Microbiol. 83, 41–51 (2012).

  82. 82.

    Hoffman, M. D. et al. Timescales and frequencies of reversible and irreversible adhesion events of single bacterial cells. Anal. Chem. 87, 12032–12039 (2015).

  83. 83.

    Hug, I., Deshpande, S., Sprecher, K. S., Pfohl, T. & Jenal, U. Second messenger–mediated tactile response by a bacterial rotary motor. Science 358, 531–534 (2017). This article shows that the flagellar motor is involved in a mechanosensing mechanism to produce holdfast and attach to surfaces.

  84. 84.

    Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 112, 7563–7568 (2015).

  85. 85.

    Siryaporn, A., Kuchma, S. L., O’Toole, G. A. & Gitai, Z. Surface attachment induces Pseudomonas aeruginosa virulence. Proc. Natl Acad. Sci. USA 111, 16860–16865 (2014).

  86. 86.

    Ong, C. J., Wong, M. L. & Smit, J. Attachment of the adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus. J. Bacteriol. 172, 1448–1456 (1990).

  87. 87.

    Li, G., Smith, C. S., Brun, Y. V. & Tang, J. X. The elastic properties of the Caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine. J. Bacteriol. 187, 257–265 (2005).

  88. 88.

    Merker, R. I. & Smit, J. Characterization of the adhesive holdfast of marine and freshwater Caulobacters. Appl. Environ. Microbiol. 54, 2078–2085 (1988).

  89. 89.

    Hernando-Pérez, M. et al. Layered structure and complex mechanochemistry underlie strength and versatility in a bacterial adhesive. mBio 9, e02359–17 (2018).

  90. 90.

    Tsang, P. H., Li, G., Brun, Y. V., Freund, L. B. & Tang, J. X. Adhesion of single bacterial cells in the micronewton range. Proc. Natl Acad. Sci. USA 103, 5764–5768 (2006).

  91. 91.

    Li, G., Brun, Y. V. & Tang, J. X. Holdfast spreading and thickening during Caulobacter crescentus attachment to surfaces. BMC Microbiol. 13, 139 (2013).

  92. 92.

    Levi, A. & Jenal, U. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. J. Bacteriol. 188, 5315–5318 (2006).

  93. 93.

    Fiebig, A. et al. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion. PLoS Genet. 10, e1004101 (2014).

  94. 94.

    Eaton, D. S., Crosson, S. D. & Fiebig, A. Proper control of Caulobacter crescentus cell-surface adhesion requires the general protein chaperone, DnaK. J. Bacteriol. 198, 2631–2642 (2016).

  95. 95.

    Purcell, E. B., Siegal-Gaskins, D., Rawling, D. C., Fiebig, A. & Crosson, S. A photosensory two-component system regulates bacterial cell attachment. Proc. Natl Acad. Sci. USA 104, 18241–18246 (2007).

  96. 96.

    Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

  97. 97.

    Chao, Y. & Zhang, T. Probing roles of lipopolysaccharide, type 1 fimbria, and colanic acid in the attachment of Escherichia coli strains on inert surfaces. Langmuir 27, 11545–11553 (2011).

  98. 98.

    Formosa-Dague, C. et al. Sticky matrix: adhesion mechanism of the staphylococcal polysaccharide intercellular adhesin. ACS Nano 10, 3443–3452 (2016).

  99. 99.

    Yawata, Y., Nguyen, J., Stocker, R. & Rusconi, R. Microfluidic studies of biofilm formation in dynamic environments. J. Bacteriol. 198, 2589–2595 (2016).

  100. 100.

    Dufrene, Y. F. Microbial nanoscopy: breakthroughs, challenges, and opportunities. ACS Nano 11, 19–22 (2017). This article reviews the use of AFM to study bacteria at the single-cell level.

  101. 101.

    Berne, C., Kysela, D. T. & Brun, Y. V. A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol. Microbiol. 77, 815–829 (2010).

  102. 102.

    Lee, C. K. et al. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc. Natl Acad. Sci. USA 115, 4471–4476 (2018).

  103. 103.

    Eland, L., Wipat, A., Lee, S., Park, S. & Wu, L. Microfluidics for bacterial imaging. Meth. Microbiol. 43, 69–111 (2016).

  104. 104.

    Son, K., Brumley, D. R. & Stocker, R. Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nat. Rev. Microbiol. 13, 761–775 (2015). This Review presents the latest advances in using microfluidic devices to study bacteria at the single-cell level.

  105. 105.

    Jacobson, S. C., Baker, J. D., Kysela, D. T. & Brun, Y. V. Integrated microfluidic devices for studying aging and adhesion of individual bacteria. Biophys. J. 108, 371a (2015).

  106. 106.

    Hol, F. J. & Dekker, C. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 346, 1251821 (2014).

  107. 107.

    Paintdakhi, A. et al. Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol. Microbiol. 99, 767–777 (2016).

  108. 108.

    Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

  109. 109.

    Beaussart, A. et al. Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nat. Protoc. 9, 1049–1055 (2014).

  110. 110.

    Formosa-Dague, C., Speziale, P., Foster, T. J., Geoghegan, J. A. & Dufrene, Y. F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc. Natl Acad. Sci. USA 113, 410–415 (2016).

  111. 111.

    Herman-Bausier, P., El-Kirat-Chatel, S., Foster, T. J., Geoghegan, J. A. & Dufrêne, Y. F. Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. mBio 6, e00413–15 (2015).

  112. 112.

    Herman-Bausier, P. et al. Mechanical strength and inhibition of the Staphylococcus aureus collagen-binding protein Cna. mBio 7, e01529–16 (2016).

  113. 113.

    Vanzieleghem, T., Herman-Bausier, P., Dufrene, Y. F. & Mahillon, J. Staphylococcus epidermidis affinity for fibrinogen-coated surfaces correlates with the abundance of the SdrG adhesin on the cell surface. Langmuir 31, 4713–4721 (2015).

  114. 114.

    Hinterdorfer, P. & Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

  115. 115.

    Meister, A. et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9, 2501–2507 (2009).

  116. 116.

    Potthoff, E., Ossola, D., Zambelli, T. & Vorholt, J. A. Bacterial adhesion force quantification by fluidic force microscopy. Nanoscale 7, 4070–4079 (2015).

  117. 117.

    Sprecher, K. S. et al. Cohesive properties of the Caulobacter crescentus holdfast adhesin are regulated by a novel c-di-GMP effector protein. mBio 8, e00294–17 (2017).

  118. 118.

    Jenal, U., Reinders, A. & Lori, C. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15, 271–284 (2017). This is a comprehensive Review of the role of c-di-GMP in bacterial processes.

  119. 119.

    Valentini, M. & Filloux, A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291, 12547–12555 (2016).

  120. 120.

    Merritt, J. H. et al. Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio 1, e00183-10 (2010).

  121. 121.

    Petrova, O. E., Cherny, K. E. & Sauer, K. The Pseudomonas aeruginosa diguanylate cyclase GcbA, a homolog of P. fluorescens GcbA, promotes initial attachment to surfaces, but not biofilm formation, via regulation of motility. J. Bacteriol. 196, 2827–2841 (2014).

  122. 122.

    Xu, J. et al. Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol. Microbiol. 89, 929–948 (2013).

  123. 123.

    Ono, K. et al. cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes Environ. 29, 104–106 (2014).

  124. 124.

    Luo, Y. et al. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 6, e02456–14 (2015).

  125. 125.

    Fong, J. C. & Yildiz, F. H. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J. Bacteriol. 190, 6646–6659 (2008).

  126. 126.

    Müller, C. M. et al. Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog. 5, e1000303 (2009).

  127. 127.

    Kalivoda, E. J., Brothers, K. M., Stella, N. A., Schmitt, M. J. & Shanks, R. M. Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation. PLoS ONE 8, e71267 (2013).

  128. 128.

    Cheng, X. et al. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ. Microbiol. 18, 904–922 (2016).

  129. 129.

    Peng, X., Zhang, Y., Bai, G., Zhou, X. & Wu, H. Cyclic di-AMP mediates biofilm formation. Mol. Microbiol. 99, 945–959 (2016).

  130. 130.

    Gundlach, J., Rath, H., Herzberg, C., Mäder, U. & Stülke, J. Second messenger signaling in Bacillus subtilis: accumulation of cyclic di-AMP inhibits biofilm formation. Front. Microbiol. 7, 804 (2016).

  131. 131.

    Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309 (2015).

  132. 132.

    Åberg, A., Shingler, V. & Balsalobre, C. (p)ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB. Mol. Microbiol. 60, 1520–1533 (2006).

  133. 133.

    Honsa, E. S. et al. RelA mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host. mBio 8, e02124–16 (2017).

  134. 134.

    He, H., Cooper, J. N., Mishra, A. & Raskin, D. M. Stringent response regulation of biofilm formation in Vibrio cholerae. J. Bacteriol. 194, 2962–2972 (2012).

  135. 135.

    Lemos, J. A., Brown, T. A. & Burne, R. A. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect. Immun. 72, 1431–1440 (2004).

  136. 136.

    Sugisaki, K. et al. Role of (p) ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis. Microbiology 159, 1379–1389 (2013).

  137. 137.

    Li, G. et al. Role of (p) ppGpp in viability and biofilm formation of Actinobacillus pleuropneumoniae S8. PLoS ONE 10, e0141501 (2015).

  138. 138.

    Liu, H., Xiao, Y., Nie, H., Huang, Q. & Chen, W. Influence of (p) ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiol. Res. 204, 1–8 (2017).

  139. 139.

    Wolska, K. I., Grudniak, A. M., Rudnicka, Z. & Markowska, K. Genetic control of bacterial biofilms. J. Appl. Genet. 57, 225–238 (2016).

  140. 140.

    Weilbacher, T. et al. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol. 48, 657–670 (2003).

  141. 141.

    Romeo, T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 29, 1321–1330 (1998).

  142. 142.

    Vakulskas, C. A., Potts, A. H., Babitzke, P., Ahmer, B. M. & Romeo, T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. 79, 193–224 (2015).

  143. 143.

    Ogasawara, H., Yamamoto, K. & Ishihama, A. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J. Bacteriol. 193, 2587–2597 (2011).

  144. 144.

    Parker, A., Cureoglu, S., De Lay, N., Majdalani, N. & Gottesman, S. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol. Microbiol. 105, 309–325 (2017).

  145. 145.

    Bellows, L. E., Koestler, B. J., Karaba, S. M., Waters, C. M. & Lathem, W. W. Hfq-dependent, co-ordinate control of cyclic diguanylate synthesis and catabolism in the plague pathogen Yersinia pestis. Mol. Microbiol. 86, 661–674 (2012).

  146. 146.

    Díaz, C., Schilardi, P. L., Salvarezza, R. C. & de Mele, M. F. Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23, 11206–11210 (2007).

Download references


The authors thank the members of the Brun laboratory for critical reading of the manuscript. Work in the authors’ laboratory is supported by grants R01GM102841 and R35GM122556 from the National Institutes of Health (to Y.V.B.) and by National Science Foundation fellowship 1342962 (to C.K.E.).

Reviewer information

Nature Reviews Microbiology thanks Y. Dufrene, M. Parsek and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. Department of Biology, Indiana University, Bloomington, IN, USA

    • Cecile Berne
    • , Courtney K. Ellison
    •  & Yves V. Brun
  2. Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Lyon, France

    • Adrien Ducret


  1. Search for Cecile Berne in:

  2. Search for Courtney K. Ellison in:

  3. Search for Adrien Ducret in:

  4. Search for Yves V. Brun in:


C.B., C.K.E. and A.D. researched data for the article. Y.V.B., C.B. and C.K.E. made substantial contributions to discussions of the content. C.B. and C.K.E. wrote the article. Y.V.B., C.B. and C.K.E. reviewed and/or edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Yves V. Brun.



The fluctuation developed by particles in movement relative to each other in a liquid environment, reflecting the motion between two adjacent layers of a liquid with flow.

Extracellular appendages

Filamentous structures that are present on the surface of bacteria, including flagella, pili and curli.


Filamentous extracellular appendages that are responsible for the active movement of cells in a liquid environment. The bacterial flagellum is composed of three main substructures: the motor that uses proton motive force to generate the torque, the basal body and hook that anchor the flagellum filament to the cell membrane and transmit the motor torque and the flagellar filament, which is composed of flagellin proteins that are arranged in a long, thin filament and functions as a propeller.


Thin, extracellular protein fibres that are involved in various bacterial behaviours, including attachment, twitching motility, horizontal gene transfer and virulence.

Brownian motion

The continuous movement of micrometre-scale particles that are suspended in liquid as a result of random collisions with each other.


A sensing mechanism that enables bacteria to modify their swimming behaviour in the presence of a chemical gradient. Bacteria can sense and swim towards attractants or away from repellents.

Hydrodynamic effects

Different forces that are caused by a liquid in motion.

Psl exopolysaccharide

(Named after the polysaccharide locus). A polysaccharide that is composed of mannose, glucose, rhamnose and possibly galactose residues and is found on the surface of Pseudomonas aeruginosa cells. It is involved in cell–cell and cell–surface interactions, and it is a scaffolding molecule in the biofilm matrix.

cyclic di-GMP

(ci-di-GMP). A second messenger signalling molecule involved in the regulation of various bacterial behaviours, including motility, adhesion, cell cycle progression and virulence.

Stringent response

A stress response in bacteria, whereby starvation induces the production of the small molecule guanosine tetraphosphate and pentaphosphate ((p)ppGpp), which leads to the rapid transcriptional changes and growth arrest.

About this article

Publication history