Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrical doping in halide perovskites

Abstract

Electrical doping (that is, intentional engineering of carrier density) underlies most energy-related and optoelectronic semiconductor technologies. However, for the intensely studied halide perovskite family of semiconductors, reliable doping remains challenging, owing to, for example, compensation from and facile migration of intrinsic defects. In this Review, we first discuss the underlying fundamentals of semiconductor doping and then investigate different doping strategies in halide perovskites, including intrinsic defect, extrinsic defect and charge transfer doping, from an experimental as well as a theoretical perspective. We outline the advantages and pitfalls of different characterization techniques to assess doping and examine the impact of doping on optoelectronic properties. Finally, we highlight challenges that need to be overcome to gain control over the electronic properties of this important material class.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: n-Doping and p-doping in silicon and impact on interfaces.
Fig. 2: Halide perovskite doping through precursor ratio variations.
Fig. 3: Halide perovskite doping with substitutional and interstitial impurities.
Fig. 4: Charge transfer doping in halide perovskites.
Fig. 5: Characterization of doping.

Similar content being viewed by others

References

  1. Gao, P., Bin Mohd Yusoff, A. R. & Nazeeruddin, M. K. Dimensionality engineering of hybrid halide perovskite light absorbers. Nat. Commun. 9, 5028 (2018).

    Article  Google Scholar 

  2. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    Article  CAS  Google Scholar 

  3. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  CAS  Google Scholar 

  4. Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018).

    Article  CAS  Google Scholar 

  5. Nasti, G. & Abate, A. Tin halide perovskite (ASnX3) solar cells: A comprehensive guide toward the highest power conversion efficiency. Adv. Energy Mater. 10, 1902467 (2020).

    Article  CAS  Google Scholar 

  6. Xie, C., Liu, C., Loi, H. & Yan, F. Perovskite-based phototransistors and hybrid photodetectors. Adv. Funct. Mater. 30, 1903907 (2020).

    Article  CAS  Google Scholar 

  7. Wangyang, P. et al. Recent advances in halide perovskite photodetectors based on different dimensional materials. Adv. Opt. Mater. 6, 1701302 (2018).

    Article  Google Scholar 

  8. Yang, T. et al. Understanding, optimizing, and utilizing nonideal transistors based on organic or organic hybrid semiconductors. Adv. Funct. Mater. 30, 1903889 (2020).

    Article  CAS  Google Scholar 

  9. Liu, X., Yu, D., Song, X. & Zeng, H. Metal halide perovskites: Synthesis, ion migration, and application in field-effect transistors. Small 14, 1801460 (2018).

    Article  Google Scholar 

  10. Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    Article  CAS  Google Scholar 

  11. Lu, M. et al. Metal halide perovskite light-emitting devices: Promising technology for next-generation displays. Adv. Funct. Mater. 29, 1902008 (2019).

    Article  Google Scholar 

  12. Stylianakis, M. M., Maksudov, T., Panagiotopoulos, A., Kakavelakis, G. & Petridis, K. Inorganic and hybrid perovskite based laser devices: a review. Materials 12, 859 (2019).

    Article  CAS  Google Scholar 

  13. Mi, Y., Zhong, Y., Zhang, Q. & Liu, X. Continuous-wave pumped perovskite lasers. Adv. Opt. Mater. 7, 1900544 (2019).

    Article  Google Scholar 

  14. Haque, M. A., Kee, S., Villalva, D. R., Ong, W. L. & Baran, D. Halide perovskites: Thermal transport and prospects for thermoelectricity. Adv. Sci. 7, 1903389 (2020).

    Article  CAS  Google Scholar 

  15. National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiency Chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2020).

  16. Shi, B., Duan, L., Zhao, Y., Luo, J. & Zhang, X. Semitransparent perovskite solar cells: from materials and devices to applications. Adv. Mater. 32, 1806474 (2020).

    Article  CAS  Google Scholar 

  17. Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    Article  CAS  Google Scholar 

  18. Park, N. G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020).

    Article  CAS  Google Scholar 

  19. Egger, D. A. et al. What remains unexplained about the properties of halide perovskites? Adv. Mater. 30, 1800691 (2018).

    Article  Google Scholar 

  20. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–norganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    Article  CAS  Google Scholar 

  21. Queisser, H. J. & Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 281, 945–950 (1998).

    Article  CAS  Google Scholar 

  22. Zhang, X., Li, L., Sun, Z. & Luo, J. Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 48, 517–539 (2019).

    Article  CAS  Google Scholar 

  23. Zhou, Y., Chen, J., Bakr, O. M. & Sun, H.-T. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater. 30, 6589–6613 (2018).

    Article  CAS  Google Scholar 

  24. Goyal, A. et al. On the dopability of semiconductors and governing materials properties. Chem. Mater. 32, 4467–4480 (2020).

    Article  CAS  Google Scholar 

  25. Mitzi, D. B., Feild, C. A., Schlesinger, Z. & Laibowitz, R. B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995).

    Article  CAS  Google Scholar 

  26. Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

    Article  CAS  Google Scholar 

  27. Takahashi, Y. et al. Tunable charge transport in soluble organic–inorganic hybrid semiconductors. Chem. Mater. 19, 6312–6316 (2007).

    Article  CAS  Google Scholar 

  28. Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011).

    Article  CAS  Google Scholar 

  29. Takahashi, Y., Hasegawa, H., Takahashi, Y. & Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor. J. Solid State Chem. 205, 39–43 (2013).

    Article  CAS  Google Scholar 

  30. Haque, M. A. Tuning the thermoelectric performance of hybrid tin perovskites by air treatment. Adv. Energy Sustain. Res. 1, 2000033 (2020).

    Article  Google Scholar 

  31. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  32. McCluskey, M. D. & Haller, E. E. Dopants and Defects in Semiconductors (CRC, 2018).

  33. Streetman, B. G. & Banerjee, S. Solid State Electronic Devices 5th edn (2000).

  34. Kasap, S. & Capper, P. Springer Handbook of Electronic and Photonic Materials (Springer, 2017).

  35. Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016).

    Article  CAS  Google Scholar 

  36. Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).

    Article  CAS  Google Scholar 

  37. Yin, W. J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  38. Xu, P., Chen, S., Xiang, H. J., Gong, X. G. & Wei, S. H. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26, 6068–6072 (2014).

    Article  CAS  Google Scholar 

  39. Shi, T., Yin, W. J., Hong, F., Zhu, K. & Yan, Y. Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 106, 103902 (2015).

    Article  Google Scholar 

  40. Shi, T. et al. Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A 5, 15124–15129 (2017).

    Article  CAS  Google Scholar 

  41. Meggiolaro, D., Ricciarelli, D., Alasmari, A. A., Alasmary, F. A. S. & De Angelis, F. Tin versus lead redox chemistry modulates charge trapping and self doping in tin/lead-iodide perovskites. J. Phys. Chem. Lett. 11, 3546–3556 (2020).

    Article  CAS  Google Scholar 

  42. Kim, J., Lee, S. H., Lee, J. H. & Hong, K. H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

    Article  CAS  Google Scholar 

  43. Liu, N. & Yam, C. Y. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018).

    Article  CAS  Google Scholar 

  44. Yang, J. H., Yin, W. J., Park, J. S. & Wei, S. H. Self-regulation of charged defect compensation and formation energy pinning in semiconductors. Sci. Rep. 5, 16977 (2015).

    Article  CAS  Google Scholar 

  45. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  46. Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014).

    Article  Google Scholar 

  47. Paul, G., Chatterjee, S., Bhunia, H. & Pal, A. J. Self-doping in hybrid halide perovskites via precursor stoichiometry: to probe type of conductivity through scanning tunneling spectroscopy. J. Phys. Chem. C 122, 20194–20199 (2018).

    Article  CAS  Google Scholar 

  48. Euvrard, J., Gunawan, O. & Mitzi, D. B. Impact of PbI2 passivation and grain size engineering in CH3NH3PbI3 solar absorbers as revealed by carrier-resolved photo-Hall technique. Adv. Energy Mater. 9, 1902706 (2019).

    Article  CAS  Google Scholar 

  49. Dänekamp, B. et al. Perovskite–perovskite homojunctions via compositional doping. J. Phys. Chem. Lett. 9, 2770–2775 (2018).

    Article  Google Scholar 

  50. Bi, C. et al. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2, 18508–18514 (2014).

    Article  CAS  Google Scholar 

  51. Song, D. et al. Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells. J. Phys. Chem. C 119, 22812–22819 (2015).

    Article  CAS  Google Scholar 

  52. Zohar, A. et al. What Is the mechanism of MAPbI3 p-doping by I2? Insights from optoelectronic properties. ACS Energy Lett. 2, 2408–2414 (2017).

    Article  CAS  Google Scholar 

  53. Cui, P. et al. Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4, 150–159 (2019).

    Article  CAS  Google Scholar 

  54. Yan, K. et al. Near-infrared photoresponse of one-sided abrupt MAPbI3/TiO2 heterojunction through a tunneling process. Adv. Funct. Mater. 26, 8545–8554 (2016).

    Article  CAS  Google Scholar 

  55. Levine, I. et al. Mobility-lifetime products in MAPbI3 films. J. Phys. Chem. Lett. 7, 5219–5226 (2016).

    Article  CAS  Google Scholar 

  56. Su, Z., Chen, Y., Li, X., Wang, S. & Xiao, Y. The modulation of opto-electronic properties of CH3NH3PbBr3 crystal. J. Mater. Sci. Mater. Electron. 28, 11053–11058 (2017).

    Article  CAS  Google Scholar 

  57. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–197 (2015).

    Article  CAS  Google Scholar 

  58. Frolova, L. A., Dremova, N. N. & Troshin, P. A. The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium–lead iodide (MAPbI3) perovskite solar cells. Chem. Commun. 51, 14917–14920 (2015).

    Article  CAS  Google Scholar 

  59. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    Article  CAS  Google Scholar 

  60. Konstantakou, M. & Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5, 11518–11549 (2017).

    Article  CAS  Google Scholar 

  61. Chung, I. et al. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012).

    Article  CAS  Google Scholar 

  62. Mitzi, D. B. & Liang, K. Synthesis, resistivity, and thermal properties of the cubic perovskite NH2CH=NH2SnI3 and related systems. J. Solid State Chem. 134, 376–381 (1997).

    Article  CAS  Google Scholar 

  63. Milot, R. L. et al. The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films. Adv. Mater. 30, 1804506 (2018).

    Article  Google Scholar 

  64. Gupta, S., Bendikov, T., Hodes, G. & Cahen, D. CsSnBr3, a lead-free halide perovskite for long-term solar cell application: Insights on SnF2 addition. ACS Energy Lett. 1, 1028–1033 (2016).

    Article  CAS  Google Scholar 

  65. Gupta, S., Cahen, D. & Hodes, G. How SnF2 impacts the material properties of lead-free tin perovskites. J. Phys. Chem. C 122, 13926–13936 (2018).

    Article  CAS  Google Scholar 

  66. Kumar, M. H. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014).

    Article  CAS  Google Scholar 

  67. Liao, W. et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016).

    Article  CAS  Google Scholar 

  68. Xing, G. et al. Solution-processed tin-based perovskite for near-infrared lasing. Adv. Mater. 28, 8191–8196 (2016).

    Article  CAS  Google Scholar 

  69. Savill, K. J. et al. Impact of tin fluoride additive on the properties of mixed tin-lead iodide perovskite semiconductors. Adv. Funct. Mater. 30, 2005594 (2020).

    Article  CAS  Google Scholar 

  70. Shi, T., Yin, W.-J. & Yan, Y. Predictions for p-type CH3NH3PbI3 perovskites. J. Phys. Chem. C 118, 25350–25354 (2014).

    Article  CAS  Google Scholar 

  71. Chen, Y. et al. Tuning the electronic structures of all-inorganic lead halide perovskite CsPbI3 via heterovalent doping: A first-principles investigation. Chem. Phys. Lett. 722, 90–95 (2019).

    Article  CAS  Google Scholar 

  72. Zohar, A. et al. Impedance spectroscopic indication for solid state electrochemical reaction in (CH3NH3)PbI3 films. J. Phys. Chem. Lett. 7, 191–197 (2016).

    Article  CAS  Google Scholar 

  73. Senocrate, A. et al. Interaction of oxygen with halide perovskites. J. Mater. Chem. A 6, 10847–10855 (2018).

    Article  CAS  Google Scholar 

  74. Yang, Y. et al. Effect of doping of NaI monovalent cation halide on the structural, morphological, optical and optoelectronic properties of MAPbI3 perovskite. J. Mater. Sci. Mater. Electron. 29, 205–210 (2018).

    Article  CAS  Google Scholar 

  75. Bai, X. et al. Effect of Rb doping on modulating grain shape and semiconductor properties of MAPbI3 perovskite layer. Mater. Lett. 211, 328–330 (2018).

    Article  CAS  Google Scholar 

  76. Abdi-Jalebi, M. et al. Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 6, 1502472 (2016).

    Article  Google Scholar 

  77. Liu, Z. et al. A Cu-doping strategy to enhance photoelectric performance of self-powered hole-conductor-free perovskite photodetector for optical communication applications. Adv. Mater. Technol. 5, 2000260 (2020).

    Article  CAS  Google Scholar 

  78. Mosconi, E., Merabet, B., Meggiolaro, D., Zaoui, A. & De Angelis, F. First-principles modeling of bismuth doping in the MAPbI3 perovskite. J. Phys. Chem. C 122, 14107–14112 (2018).

    Article  CAS  Google Scholar 

  79. Huang, L. et al. Schottky/p-n cascade heterojunction constructed by intentional n-type doping perovskite toward efficient electron layer-free perovskite solar cells. Sol. RRL 3, 1800274 (2019).

    Article  Google Scholar 

  80. Chatterjee, S., Dasgupta, U. & Pal, A. J. Sequentially deposited antimony-doped CH3NH3PbI3 films in inverted planar heterojunction solar cells with a high open-circuit voltage. J. Phys. Chem. C 121, 20177–20187 (2017).

    Article  CAS  Google Scholar 

  81. Abdelhady, A. L. et al. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. J. Phys. Chem. Lett. 7, 295–301 (2016).

    Article  CAS  Google Scholar 

  82. Wang, R. et al. Bi3+-doped CH3NH3PbI3: Red-shifting absorption edge and longer charge carrier lifetime. J. Alloys Compd. 695, 555–560 (2017).

    Article  CAS  Google Scholar 

  83. Zhang, Z. et al. Bandgap narrowing in Bi-doped CH3NH3PbCl3 perovskite single crystals and thin films. J. Phys. Chem. C 121, 17436–17441 (2017).

    Article  CAS  Google Scholar 

  84. Miao, X. et al. Air-stable CsPb1-xBixBr3(0 ≤ x 1) perovskite crystals: Optoelectronic and photostriction properties. J. Mater. Chem. C 5, 4931–4939 (2017).

    Article  CAS  Google Scholar 

  85. Yamada, Y., Hoyano, M., Akashi, R., Oto, K. & Kanemitsu, Y. Impact of chemical doping on optical responses in bismuth-doped CH3NH3PbBr3 single crystals: Carrier lifetime and photon recycling. J. Phys. Chem. Lett. 8, 5798–5803 (2017).

    Article  CAS  Google Scholar 

  86. Nayak, P. et al. The impact of Bi3+ heterovalent doping in organic–inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140, 574–577 (2018).

    Article  CAS  Google Scholar 

  87. Ulatowski, A. M. et al. Charge-carrier trapping dynamics in bismuth-doped thin films of MAPbBr3 perovskite. J. Phys. Chem. Lett. 11, 3681–3688 (2020).

    Article  CAS  Google Scholar 

  88. Lozhkina, O. A. et al. Invalidity of band-gap engineering concept for Bi3+ heterovalent doping in CsPbBr3 halide perovskite. J. Phys. Chem. Lett. 9, 5408–5411 (2018).

    Article  CAS  Google Scholar 

  89. Meng, R. et al. Understanding the impact of bismuth heterovalent doping on the structural and photophysical properties of CH3NH3PbBr3 halide perovskite crystals with near-IR photoluminescence. Chem. Eur. J. 25, 5480–5488 (2019).

    Article  CAS  Google Scholar 

  90. Chen, Q. et al. Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells. Nano Lett. 17, 3231–3237 (2017).

    Article  CAS  Google Scholar 

  91. Zhou, S. et al. Ag-doped halide perovskite nanocrystals for tunable band structure and efficient charge transport. ACS Energy Lett. 4, 534–541 (2019).

    Article  CAS  Google Scholar 

  92. Zhou, S. et al. Understanding charge transport in all-inorganic halide perovskite nanocrystal thin-film field effect transistors. ACS Energy Lett. 5, 2614–2623 (2020).

    Article  CAS  Google Scholar 

  93. Begum, R. et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 139, 731–737 (2017).

    Article  CAS  Google Scholar 

  94. Fang, Z., He, H., Gan, L., Li, J. & Ye, Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv. Sci. 5, 1800736 (2018).

    Article  Google Scholar 

  95. Jiang, Q. et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano 11, 1073–1079 (2017).

    Article  CAS  Google Scholar 

  96. Xiao, C. et al. Inhomogeneous doping of perovskite materials by dopants from hole-transport layer. Matter 2, 261–272 (2020).

    Article  Google Scholar 

  97. Vicente, N. & Garcia-Belmonte, G. Methylammonium lead bromide perovskite battery anodes reversibly host high Li-ion concentrations. J. Phys. Chem. Lett. 8, 1371–1374 (2017).

    Article  CAS  Google Scholar 

  98. Xia, H. R., Sun, W. T. & Peng, L. M. Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chem. Commun. 51, 13787–13790 (2015).

    Article  CAS  Google Scholar 

  99. Cao, J., Tao, S. X., Bobbert, P. A., Wong, C. P. & Zhao, N. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, 1707350 (2018).

    Article  Google Scholar 

  100. Liu, T. et al. Enhanced control of self-doping in halide perovskites for improved thermoelectric performance. Nat. Commun. 10, 5750 (2019).

    Article  CAS  Google Scholar 

  101. Leijtens, T., Prasanna, R., Gold-Parker, A., Toney, M. F. & McGehee, M. D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2, 2159–2165 (2017).

    Article  CAS  Google Scholar 

  102. Chatterjee, S. & Pal, A. J. Tin(IV) substitution in (CH3NH3)3Sb2I9: Toward low-band-gap defect-ordered hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 10, 35194–35205 (2018).

    Article  CAS  Google Scholar 

  103. Yang, Z. et al. Anchored ligands facilitate efficient B-site doping in metal halide perovskites. J. Am. Chem. Soc. 141, 8296–8305 (2019).

    Article  CAS  Google Scholar 

  104. Zunger, A. Practical doping principles. Appl. Phys. Lett. 83, 57–59 (2003).

    Article  CAS  Google Scholar 

  105. Miller, E. M. et al. Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 22122–22130 (2014).

    Article  CAS  Google Scholar 

  106. Schulz, P. et al. Electronic level alignment in inverted organometal perovskite solar cells. Adv. Mater. Interfaces 2, 1400532 (2015).

    Article  Google Scholar 

  107. Wang, C. et al. Surface analytical investigation on organometal triiodide perovskite. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 33, 032401 (2015).

    Google Scholar 

  108. Olthof, S. & Meerholz, K. Substrate-dependent electronic structure and film formation of MAPbI3 perovskites. Sci. Rep. 7, 40267 (2017).

    Article  CAS  Google Scholar 

  109. Meng, Y. et al. Perovskite core–shell nanowire transistors: Interfacial transfer doping and surface passivation. ACS Nano 14, 12749–12760 (2020).

    Article  CAS  Google Scholar 

  110. Noel, N. K. et al. Elucidating the role of a tetrafluoroborate-based ionic liquid at the n-type oxide/perovskite interface. Adv. Energy Mater. 10, 1903231 (2020).

    Article  CAS  Google Scholar 

  111. Wu, Q. et al. Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 8, 34464–34473 (2016).

    Article  CAS  Google Scholar 

  112. Chen, W., Qi, D., Gao, X. & Wee, A. T. S. Surface transfer doping of semiconductors. Prog. Surf. Sci. 84, 279–321 (2009).

    Article  CAS  Google Scholar 

  113. Strobel, P., Riedel, M., Ristein, J. & Ley, L. Surface transfer doping of diamond. Nature 430, 439–441 (2004).

    Article  CAS  Google Scholar 

  114. Chen, W., Chen, S., Dong, C. Q., Xing, Y. G. & Wee, A. T. S. Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 129, 10418–10422 (2007).

    Article  CAS  Google Scholar 

  115. Rietwyk, K. J. et al. Charge transfer doping of silicon. Phys. Rev. Lett. 112, 155502 (2014).

    Article  CAS  Google Scholar 

  116. Gao, W. Y. & Kahn, A. Electrical doping: the impact on interfaces of pi-conjugated molecular films. J. Phys. Condens. Matter 15, S2757–S2770 (2003).

    Article  CAS  Google Scholar 

  117. Perry, E. E., Labram, J. G., Venkatesan, N. R., Nakayama, H. & Chabinyc, M. L. N-type surface doping of MAPbI3 via charge transfer from small molecules. Adv. Electron. Mater. 4, 1800087 (2018).

    Article  Google Scholar 

  118. Noel, N. et al. Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy Environ. Sci. 12, 3063 (2019).

    Article  CAS  Google Scholar 

  119. Arramel et al. Surface molecular doping of all-inorganic perovskite using zethrenes molecules. Nano Res. 12, 77–84 (2019).

    Article  CAS  Google Scholar 

  120. Lüssem, B., Riede, M. & Leo, K. Doping of organic semiconductors. Phys. Status Solidi Appl. Mater. Sci. 210, 9–43 (2013).

    Article  Google Scholar 

  121. Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    Article  CAS  Google Scholar 

  122. Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015).

    Article  CAS  Google Scholar 

  123. Wu, B. et al. Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI3 perovskite crystal for solar cells. Adv. Funct. Mater. 27, 1604818 (2017).

    Article  Google Scholar 

  124. Jiang, Q. et al. Interfacial molecular doping of metal halide perovskites for highly efficient solar cells. Adv. Mater. 32, 2001581 (2020).

    Article  CAS  Google Scholar 

  125. Wu, W. et al. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 9, 1625 (2018).

    Article  Google Scholar 

  126. Liu, C. et al. Grain boundary modification via F4TCNQ to reduce defects of perovskite solar cells with excellent device performance. ACS Appl. Mater. Interfaces 10, 1909–1916 (2018).

    Article  CAS  Google Scholar 

  127. Chen, H. et al. Organic N-type molecule: Managing the electronic states of bulk perovskite for high-performance photovoltaics. Adv. Funct. Mater. 30, 2001788 (2020).

    Article  CAS  Google Scholar 

  128. Gaulding, E. A. et al. Conductivity tuning via doping with electron donating and withdrawing molecules in perovskite CsPbI3 nanocrystal films. Adv. Mater. 31, 1902250 (2019).

    Article  Google Scholar 

  129. Heaney, M. B. in Electrical Measurement, Signal Processing, and Displays (ed. Webster, J. G.) (CRC, 2003).

  130. Schroder, D. K. Semiconductor Material And Device Characterization (Wiley, 2006).

  131. Zhang, Y. et al. Thermoelectric properties of all-inorganic perovskite CsSnBr3: A combined experimental and theoretical study. Chem. Phys. Lett. 754, 137637 (2020).

    Article  CAS  Google Scholar 

  132. Zheng, L. et al. Enhanced thermoelectric performance of F4-TCNQ doped FASnI3 thin films. J. Mater. Chem. A 8, 25431–25442 (2020).

    Article  CAS  Google Scholar 

  133. Liu, C. et al. Sn-based perovskite for highly sensitive photodetectors. Adv. Sci. 6, 1900751 (2019).

    Article  Google Scholar 

  134. Kirchartz, T. et al. Sensitivity of the Mott–Schottky analysis in organic solar cells. J. Phys. Chem. C 116, 7672–7680 (2012).

    Article  CAS  Google Scholar 

  135. Awni, R. A. et al. Influence of charge transport layers on capacitance measured in halide perovskite solar cells. Joule 4, 644–657 (2020).

    Article  CAS  Google Scholar 

  136. Almora, O., Aranda, C., Mas-Marzá, E. & Garcia-Belmonte, G. On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phys. Lett. 109, 173903 (2016).

    Article  Google Scholar 

  137. Gunawan, O. et al. Carrier-resolved photo-Hall effect. Nature 575, 151–155 (2019).

    Article  CAS  Google Scholar 

  138. Chen, Y. et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat. Commun. 7, 12253 (2016).

    Article  CAS  Google Scholar 

  139. Gunawan, O., Virgus, Y. & Tai, K. F. A parallel dipole line system. Appl. Phys. Lett. 106, 062407 (2015).

    Article  Google Scholar 

  140. Béchu, S., Ralaiarisoa, M., Etcheberry, A. & Schulz, P. Photoemission spectroscopy characterization of halide perovskites. Adv. Energy Mater. 10, 1904007 (2020).

    Article  Google Scholar 

  141. Cahen, D. & Kahn, A. Electron energetics at surfaces and interfaces: Concepts and experiments. Adv. Mater. 15, 271–277 (2003).

    Article  CAS  Google Scholar 

  142. Zhang, F. et al. Ultraviolet photoemission spectroscopy and Kelvin probe measurements on metal halide perovskites: Advantages and pitfalls. Adv. Energy Mater. 10, 1903252 (2020).

    Article  CAS  Google Scholar 

  143. Kahn, A. Fermi level, work function and vacuum level. Mater. Horiz. 3, 7–10 (2016).

    Article  CAS  Google Scholar 

  144. Hu, Z. et al. The impact of atmosphere on energetics of lead halide perovskites. Adv. Energy Mater. 10, 2000908 (2020).

    Article  CAS  Google Scholar 

  145. Gao, W. & Kahn, A. Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects. Org. Electron. 3, 53–63 (2002).

    Article  CAS  Google Scholar 

  146. Gao, W. & Kahn, A. Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane. J. Appl. Phys. 94, 359–366 (2003).

    Article  CAS  Google Scholar 

  147. Dai, A. et al. Enhanced charge-carrier injection and collection via lamination of doped polymer layers p-doped with a solution-processible molybdenum complex. Adv. Funct. Mater. 24, 2197–2204 (2014).

    Article  CAS  Google Scholar 

  148. Herrbach, J., Revaux, A., Vuillaume, D. & Kahn, A. P-doped organic semiconductor: Potential replacement for PEDOT:PSS in organic photodetectors. Appl. Phys. Lett. 109, 073301 (2016).

    Article  Google Scholar 

  149. Méndez, H. et al. Charge-transfer crystallites as molecular electrical dopants. Nat. Commun. 6, 8560 (2015).

    Article  Google Scholar 

  150. Chappell, J. S. et al. Degree of charge transfer in organic conductors by infrared Absorption spectroscopy. J. Am. Chem. Soc. 103, 2442–2443 (1981).

    Article  CAS  Google Scholar 

  151. Goldstein, J. I. et al. SEM Microscopy and X-Ray Microanalysis (Springer, 2018).

  152. Hoque, M. N. F., He, R., Warzywoda, J. & Fan, Z. Effects of moisture based grain boundary passivation on cell performance and ionic migration in organic–inorganic halide perovskite solar cells. ACS Appl. Mater. Interfaces 10, 30322–30329 (2018).

    Article  CAS  Google Scholar 

  153. Euvrard, J. et al. The formation of polymer-dopant aggregates as a possible origin of limited doping efficiency at high dopant concentration. Org. Electron. 53, 135–140 (2018).

    Article  CAS  Google Scholar 

  154. Harvey, S. P. et al. Probing perovskite inhomogeneity beyond the surface: TOF-SIMS analysis of halide perovskite photovoltaic devices. ACS Appl. Mater. Interfaces 10, 28541–28552 (2018).

    Article  CAS  Google Scholar 

  155. Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61, 745–842 (2012).

    Article  CAS  Google Scholar 

  156. Kubicki, D. J., Prochowicz, D., Pinon, A. & Stevanato, G. Doping and phase segregation in Mn2+ and Co2+ doped lead halide perovskites from 133Cs and 1H NMR relaxation enhancement. J. Mater. Chem. A 7, 2326–2333 (2019).

    Article  CAS  Google Scholar 

  157. Olthof, S. et al. Ultralow doping in organic semiconductors: Evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).

    Article  Google Scholar 

  158. Peng, J., Chen, Y., Zheng, K., Pullerits, T. & Liang, Z. Insights into charge carrier dynamics in organo-metal halide perovskites: From neat films to solar cells. Chem. Soc. Rev. 46, 5714–5729 (2017).

    Article  CAS  Google Scholar 

  159. Savenije, T. J., Guo, D., Caselli, V. M. & Hutter, E. M. Quantifying charge-carrier mobilities and recombination rates in metal halide perovskites from time-resolved microwave photoconductivity measurements. Adv. Energy Mater. 10, 1903788 (2020).

    Article  CAS  Google Scholar 

  160. Linford, M. R. et al. Proliferation of faulty materials data analysis in the literature. Microsc. Microanal. 26, 1–2 (2020).

    Article  CAS  Google Scholar 

  161. Baer, D. R. & Gilmore, I. S. Responding to the growing issue of research reproducibility. J. Vac. Sci. Technol. A 36, 068502 (2018).

    Article  Google Scholar 

  162. Liao, J., Wu, W., Jiang, Y. & Zhong, J. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. Chem. Soc. Rev. 49, 354–381 (2020).

    Article  CAS  Google Scholar 

  163. Zhao, L. et al. Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 1, 595–602 (2016).

    Article  CAS  Google Scholar 

  164. Sanehira, E. M. et al. Influence of electrode interfaces on the stability of perovskite solar cells: Reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38–45 (2016).

    Article  CAS  Google Scholar 

  165. Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).

    Article  Google Scholar 

  166. Calado, P. & Barnes, P. R. F. Is it possible for a perovskite p-n homojunction to persist in the presence of mobile ionic charge? Preprint at ArXiv 1905.11892 (2019).

  167. Kirchartz, T. & Cahen, D. Minimum doping densities for p–n junctions. Nat. Energy 5, 973–975 (2020).

    Article  CAS  Google Scholar 

  168. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  CAS  Google Scholar 

  169. Game, O. S., Buchsbaum, G. J., Zhou, Y., Padture, N. P. & Kingon, A. I. Ions matter: Description of the anomalous electronic behavior in methylammonium lead halide perovskite devices. Adv. Funct. Mater. 27, 1606584 (2017).

    Article  Google Scholar 

  170. Chattopadhyay, D. & Queisser, H. J. Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 53, 745–768 (1981).

    Article  CAS  Google Scholar 

  171. Zhao, T., Shi, W., Xi, J., Wang, D. & Shuai, Z. Intrinsic and extrinsic charge transport in CH3NH3PbI3 perovskites predicted from first-principles. Sci. Rep. 6, 19968 (2016).

    Article  Google Scholar 

  172. Filippetti, A., Mattoni, A., Caddeo, C., Saba, M. I. & Delugas, P. Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH3NH3PbI3 perovskites. Phys. Chem. Chem. Phys. 18, 15352–15362 (2016).

    Article  CAS  Google Scholar 

  173. Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Article  Google Scholar 

  174. Sendner, M. et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz. 3, 613–620 (2016).

    Article  CAS  Google Scholar 

  175. Wen, X. et al. Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites. J. Mater. Chem. C 4, 793–800 (2016).

    Article  CAS  Google Scholar 

  176. Hutter, E. M., Gélvez-Rueda, M. C., Bartesaghi, D., Grozema, F. C. & Savenije, T. J. Band-like charge transport in Cs2AgBiBr6 and mixed antimony–bismuth Cs2AgBi1−XSbXBr6 halide double perovskites. ACS Omega 3, 11655–11662 (2018).

    Article  CAS  Google Scholar 

  177. Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Article  CAS  Google Scholar 

  178. Shao, S. et al. The effect of the microstructure on trap-assisted recombination and light soaking phenomenon in hybrid perovskite solar cells. Adv. Funct. Mater. 26, 8094–8102 (2016).

    Article  CAS  Google Scholar 

  179. Zhang, Y., De Boer, B. & Blom, P. W. M. Trap-free electron transport in poly(p-phenylene vinylene) by deactivation of traps with n-type doping. Phys. Rev. B Condens. Matter Mater. Phys. 81, 085201 (2010).

    Article  Google Scholar 

  180. Lu, M. & Nicolai, H. T., . & Wetzelaer, G-J. A. H. & Blom, P. W. M. N-type doping of poly(p-phenylene vinylene) with air-stable dopants. Appl. Phys. Lett. 99, 173302 (2011).

    Article  Google Scholar 

  181. Qi, Y. et al. Solution doping of organic semiconductors using air-stable n-dopants. Appl. Phys. Lett. 100, 083305 (2012).

    Article  Google Scholar 

  182. Olthof, S. et al. Passivation of trap states in unpurified and purified C60 and the influence on organic field-effect transistor performance. Appl. Phys. Lett. 101, 253303 (2012).

    Article  Google Scholar 

  183. Tietze, M. L., Pahner, P., Schmidt, K., Leo, K. & Lüssem, B. Doped organic semiconductors: Trap-filling, impurity saturation, and reserve regimes. Adv. Funct. Mater. 25, 2701–2707 (2015).

    Article  CAS  Google Scholar 

  184. Higgins, A., Mohapatra, S. K., Barlow, S., Marder, S. R. & Kahn, A. Dopant controlled trap-filling and conductivity enhancement in an electron-transport polymer. Appl. Phys. Lett. 106, 163301 (2015).

    Article  Google Scholar 

  185. Milot, R. L. et al. Radiative monomolecular recombination boosts amplified spontaneous emission in HC(NH2)2SnI3 perovskite films. J. Phys. Chem. Lett. 7, 4178–4184 (2016).

    Article  CAS  Google Scholar 

  186. Miller, S. A. et al. Empirical modeling of dopability in diamond-like semiconductors. npj Comput. Mater. 4, 71 (2018).

    Article  CAS  Google Scholar 

  187. Zhang, S. B., Wei, S. H. & Zunger, A. A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds. J. Appl. Phys. 83, 3192–3196 (1998).

    Article  CAS  Google Scholar 

  188. Yang, J. H. et al. Enhanced p-type dopability of P and As in CdTe using non-equilibrium thermal processing. J. Appl. Phys. 118, 025102 (2015).

    Article  Google Scholar 

  189. Yang, J. H. et al. Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe. Phys. Rev. B Condens. Matter Mater. Phys. 90, 245202 (2014).

    Article  Google Scholar 

  190. Rakita, Y., Lubomirsky, I. & Cahen, D. When defects become ‘dynamic’: halide perovskites: a new window on materials? Mater. Horiz. 6, 1297–1305 (2019).

    Article  CAS  Google Scholar 

  191. Kumar, S., Hodes, G. & Cahen, D. Defects in halide perovskites: The lattice as a boojum *? MRS Bull. 45, 478–484 (2020).

    Article  Google Scholar 

  192. Zhao, L., Lin, Y. L., Kim, H., Giebink, N. C. & Rand, B. P. Donor/acceptor charge-transfer states at two-dimensional metal halide perovskite and organic semiconductor interfaces. ACS Energy Lett. 3, 2708–2712 (2018).

    Article  CAS  Google Scholar 

  193. Gélvez-Rueda, M. C. et al. Inducing charge separation in solid-state two-dimensional hybrid perovskites through the incorporation of organic charge-transfer complexes. J. Phys. Chem. Lett. 11, 824–830 (2020).

    Article  Google Scholar 

  194. Cui, P. et al. Highly efficient electron-selective layer free perovskite solar cells by constructing effective p–n heterojunction. Sol. RRL 1, 1600027 (2017).

    Article  Google Scholar 

  195. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  Google Scholar 

  196. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    Article  CAS  Google Scholar 

  197. Dang, Y. et al. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. 55, 3447–3450 (2016).

    Article  CAS  Google Scholar 

  198. Chan, C. K. et al. N-type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene. Chem. Phys. Lett. 431, 67–71 (2006).

    Article  CAS  Google Scholar 

  199. Lee, D. H. et al. Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors. J. Mater. Chem. C 6, 5497–5505 (2018).

    Article  CAS  Google Scholar 

  200. Zhang, F. & Kahn, A. Investigation of the high electron affinity molecular dopant F6-TCNNQ for hole-transport materials. Adv. Funct. Mater. 28, 1703780 (2018).

    Article  Google Scholar 

  201. Qi, Y. et al. Use of a high electron-affinity molybdenum dithiolene complex to p-dope hole-transport layers. J. Am. Chem. Soc. 131, 12530–12531 (2009).

    Article  CAS  Google Scholar 

  202. Belasco, J. et al. Molecular doping and tuning threshold voltage in 6,13-bis(triisopropylsilylethynyl)pentacene/polymer blend transistors. Appl. Phys. Lett. 105, 063301 (2014).

    Article  Google Scholar 

  203. Endres, J. et al. Valence and conduction band densities of states of metal halide perovskites: A combined experimental-theoretical study. J. Phys. Chem. Lett. 7, 2722–2729 (2016).

    Article  CAS  Google Scholar 

  204. Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Kahn for the helpful discussions. J.E. and D.B.M. are supported by the National Science Foundation under grant no. 1709294. Y.Y. acknowledges support from the Center for Hybrid Organic-Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science within the U.S. Department of Energy through contract number DE-AC36-08G028308.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content. J.E. researched the data and wrote the initial draft. D.B.M. and Y.Y. revised the manuscript.

Corresponding author

Correspondence to David B. Mitzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Euvrard, J., Yan, Y. & Mitzi, D.B. Electrical doping in halide perovskites. Nat Rev Mater 6, 531–549 (2021). https://doi.org/10.1038/s41578-021-00286-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00286-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing