Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macroscale biomaterials strategies for local immunomodulation

Abstract

The immune system plays key roles in tissue homeostatic and disease processes, and manipulation of innate and adaptive immune responses is of great promise for a wide array of human afflictions, including tissue repair and regeneration, cancer, autoimmune syndromes and chronic infections. Systemic approaches to immunomodulation can correct both hypoactive and hyperactive immunity; however, they typically interfere with the homeostatic role of the immune system at nontarget sites, are associated with lifelong comorbidities and potentially fatal side effects. To overcome these issues, macroscale delivery devices can be placed at sites of interest in the body and engineered to locally control the pharmacokinetics of immunomodulatory agents, including small molecules, macromolecules and cells. In this Review, we outline important cellular targets of immunotherapies in tissue repair and cancer and discuss how macroscale delivery devices can be designed to modulate the release of molecular factors to impact immune cell behaviour, control the fate of delivered therapeutic cells or directly recruit, house and modulate host cells for immunotherapy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The local immune microenvironment and priming of adaptive immune responses.
Fig. 2: Cellular targets for immunotherapy in tissue repair and regeneration.
Fig. 3: Cellular targets for cancer immunotherapy.
Fig. 4: Biomaterial scaffolds as biomolecule carriers.
Fig. 5: Biomaterials-assisted cell delivery.
Fig. 6: Biomaterial niches for host–cell modulation.

Similar content being viewed by others

References

  1. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  Google Scholar 

  2. Rosenblum, M. D., Gratz, I. K., Paw, J. S. & Abbas, A. K. Treating human autoimmunity: current practice and future prospects. Sci. Transl Med. 4, 125sr1 (2012).

    Article  Google Scholar 

  3. Julier, Z., Park, A. J., Briquez, P. S. & Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53, 13–28 (2017).

    Article  CAS  Google Scholar 

  4. Moslehi, J. J., Salem, J. E., Sosman, J. A., Lebrun-Vignes, B. & Johnson, D. B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391, 933 (2018).

    Article  Google Scholar 

  5. Francis, D. M. & Thomas, S. N. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv. Drug Deliv. Rev. 114, 33–42 (2017).

    Article  CAS  Google Scholar 

  6. Garber, K. Driving T cell immunotherapy to solid tumors. Nat. Biotechnol. 36, 215–219 (2018).

    Article  CAS  Google Scholar 

  7. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  Google Scholar 

  8. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  Google Scholar 

  9. Dvorak, H. F. Tumors: wounds that do not heal—redux. Cancer Immunol. Res. 3, 1–11 (2015).

    Article  CAS  Google Scholar 

  10. Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl Med. 10, eaan3464 (2018).

    Article  CAS  Google Scholar 

  11. Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904–5921 (2008).

    Article  CAS  Google Scholar 

  12. Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017).

    Article  CAS  Google Scholar 

  13. Scheibner, K. A. et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol. 177, 1272–1281 (2006).

    Article  CAS  Google Scholar 

  14. Joffre, O., Nolte, M. A., Spörri, R. & Sousa, C. R. E. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227, 234–247 (2009).

    Article  CAS  Google Scholar 

  15. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    Article  CAS  Google Scholar 

  16. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  Google Scholar 

  17. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–182 (2006).

    Article  CAS  Google Scholar 

  18. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).

    Article  CAS  Google Scholar 

  19. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    Article  CAS  Google Scholar 

  20. Buckley, C. D., Gilroy, D. W., Serhan, C. N., Stockinger, B. & Tak, P. P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2012).

    Article  CAS  Google Scholar 

  21. Kurosaki, T., Kometani, K. & Ise, W. Memory B cells. Nat. Rev. Immunol. 15, 149–159 (2015).

    Article  CAS  Google Scholar 

  22. Selders, G. S., Fetz, A. E., Radic, M. Z. & Bowlin, G. L. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen. Biomater. 4, 55–68 (2017).

    Article  CAS  Google Scholar 

  23. Wang, J. Neutrophils in tissue injury and repair. Cell Tissue Res. 371, 531–539 (2018).

    Article  CAS  Google Scholar 

  24. Nicolás-Ávila, J. Á., Adrover, J. M. & Hidalgo, A. Neutrophils in homeostasis, immunity, and cancer. Immunity 46, 15–28 (2017).

    Article  CAS  Google Scholar 

  25. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  Google Scholar 

  26. Arecco, N. et al. Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation. Sci. Rep. 6, 24708 (2016).

    Article  CAS  Google Scholar 

  27. Ogle, M. E., Segar, C. E., Sridhar, S. & Botchwey, E. A. Monocytes and macrophages in tissue repair: implications for immunoregenerative biomaterial design. Exp. Biol. Med. 241, 1084–1097 (2016).

    Article  CAS  Google Scholar 

  28. Osterholzer, J. J. et al. Implicating exudate macrophages and Ly-6Chigh monocytes in CCR2-dependent lung fibrosis following gene-targeted alveolar injury. J. Immunol. 190, 3447–3457 (2013).

    Article  CAS  Google Scholar 

  29. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  Google Scholar 

  30. Jaipersad, A. S., Lip, G. Y. H., Silverman, S. & Shantsila, E. The role of monocytes in angiogenesis and atherosclerosis. J. Am. Coll. Cardiol. 63, 1–11 (2014).

    Article  CAS  Google Scholar 

  31. Chazaud, B. Macrophages: Supportive cells for tissue repair and regeneration. Immunobiology 219, 172–178 (2014).

    Article  CAS  Google Scholar 

  32. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  Google Scholar 

  33. Tidball, J. G., Dorshkind, K. & Wehling-Henricks, M. Shared signaling systems in myeloid cell-mediated muscle regeneration. Development 141, 1184–1196 (2014).

    Article  CAS  Google Scholar 

  34. Braga, T. T., Agudelo, J. S. H. & Camara, N. O. S. Macrophages during the fibrotic process: M2 as friend and foe. Front. Immunol. 6, 602 (2015).

    Article  CAS  Google Scholar 

  35. Reinke, S. et al. Terminally differentiated CD8+T cells negatively affect bone regeneration in humans. Sci. Transl Med. 5, 177ra36 (2013).

    Article  CAS  Google Scholar 

  36. Li, J., Tan, J., Martino, M. M. & Lui, K. O. Regulatory T cells: potential regulator of tissue repair and regeneration. Front. Immunol. 9, 585 (2018).

    Article  CAS  Google Scholar 

  37. Gieseck III, R. L., Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2017).

    Article  CAS  Google Scholar 

  38. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  Google Scholar 

  39. Meng, X. et al. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol. 13, 167–179 (2016).

    Article  CAS  Google Scholar 

  40. Dombrowski, Y. et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20, 674–680 (2017).

    Article  CAS  Google Scholar 

  41. Gay, D. et al. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding. Nat. Med. 19, 916–923 (2013).

    Article  CAS  Google Scholar 

  42. Ono, T. et al. IL-17-producing γδT-cells enhance bone regeneration. Nat. Commun. 7, 10928 (2016).

    Article  CAS  Google Scholar 

  43. Ramirez, K., Witherden, D. A. & Havran, W. L. All hands on DE(T)C: epithelial-resident γδ T cells respond to tissue injury. Cell. Immunol. 296, 57–61 (2015).

    Article  CAS  Google Scholar 

  44. Huang, H. et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ. 16, 1332–1343 (2009).

    Article  CAS  Google Scholar 

  45. Jameson, J. et al. A role for skin gammadelta T cells in wound repair. Science 296, 747–749 (2002).

    Article  CAS  Google Scholar 

  46. Ceccarelli, S., Romano, F., Angeloni, A. & Marchese, C. Potential dual role of KGF/KGFR as a target option in novel therapeutic strategies for the treatment of cancers and mucosal damages. Expert Opin. Ther Targets 16, 377–393 (2012).

    Article  CAS  Google Scholar 

  47. Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    Article  CAS  Google Scholar 

  48. Pallmer, K., Oxenius, A. & Gross, C. C. Recognition and regulation of T cells by NK. Cells. 7, 1–13 (2016).

    Google Scholar 

  49. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  Google Scholar 

  50. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2016).

    Article  CAS  Google Scholar 

  51. Ljunggren, H. G. & Malmberg, K. J. Prospects for the use of NK cells in immunotherapy of human cancer. Nat. Rev. Immunol. 7, 329–339 (2007).

    Article  CAS  Google Scholar 

  52. Carotta, S. Targeting NK cells for anticancer immunotherapy: clinical and preclinical approaches. Front. Immunol. 7, 152 (2016).

    Article  Google Scholar 

  53. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    Article  Google Scholar 

  54. Nishikawa, H. & Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 27, 1–7 (2014).

    Article  CAS  Google Scholar 

  55. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  CAS  Google Scholar 

  56. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  57. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012).

    Article  CAS  Google Scholar 

  58. Park, S. G. et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160–170 (2010).

    Article  CAS  Google Scholar 

  59. Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019).

    Article  CAS  Google Scholar 

  60. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  Google Scholar 

  61. Khalil, D. N., Smith, E. L., Brentjens, R. J. & Wolchok, J. D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 273–290 (2016).

    Article  CAS  Google Scholar 

  62. Banchereau, J. & Palucka, K. Immunotherapy: cancer vaccines on the move. Nat. Rev. Clin. Oncol. 15, 9–10 (2017).

    Article  Google Scholar 

  63. US National Cancer Institute Staff. FDA approvals: cancer currents blog. Cancer.gov https://www.cancer.gov/news-events/cancer-currents-blog/fda-approvals (2019).

  64. Palucka, K. & Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 39, 38–48 (2013).

    Article  CAS  Google Scholar 

  65. Hammerich, L., Binder, A. & Brody, J. D. In situ vaccination: cancer immunotherapy both personalized and off-the-shelf. Mol. Oncol. 9, 1966–1981 (2015).

    Article  CAS  Google Scholar 

  66. Aznar, M. A. et al. Intratumoral delivery of immunotherapy—act locally, think globally. J. Immunol. 198, 31–39 (2017).

    Article  CAS  Google Scholar 

  67. Baggio, L., Laureano, Á. M., Silla, L. M., da, R. & Lee, D. A. Natural killer cell adoptive immunotherapy: coming of age. Clin. Immunol. 177, 3–11 (2017).

    Article  CAS  Google Scholar 

  68. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  Google Scholar 

  69. Lee, S. & Margolin, K. Cytokines in cancer immunotherapy. Cancers 3, 3856–3893 (2011).

    Article  CAS  Google Scholar 

  70. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  71. Lee, K., Silva, E. A. & Mooney, D. J. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8, 153–170 (2011).

    Article  CAS  Google Scholar 

  72. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article  CAS  Google Scholar 

  73. Kwee, B. J. & Mooney, D. J. Biomaterials for skeletal muscle tissue engineering. Curr. Opin. Biotechnol. 47, 16–22 (2017).

    Article  CAS  Google Scholar 

  74. Gu, L. & Mooney, D. J. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer 16, 56–66 (2016).

    Article  CAS  Google Scholar 

  75. Liu, M., Song, X., Wen, Y., Zhu, J. L. & Li, J. Injectable thermoresponsive hydrogel formed by alginate-g-poly(N-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl. Mater. Interfaces 9, 35673–35682 (2017).

    Article  CAS  Google Scholar 

  76. Sanborn, T. J., Messersmith, P. B. & Barron, A. E. In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. Biomaterials 23, 2703–2710 (2002).

    Article  CAS  Google Scholar 

  77. Li, Q. et al. Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27, 1027–1034 (2006).

    Article  CAS  Google Scholar 

  78. Kretlow, J. D., Klouda, L. & Mikos, A. G. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 59, 263–273 (2007).

    Article  CAS  Google Scholar 

  79. Bencherif, S. A. et al. Injectable preformed scaffolds with shape-memory properties. Proc. Natl Acad. Sci. USA 109, 19590–19595 (2012).

    Article  CAS  Google Scholar 

  80. Silva, E. A. & Mooney, D. J. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J. Thromb. Haemost. 5, 590–598 (2007).

    Article  CAS  Google Scholar 

  81. Pakulska, M. M. et al. Encapsulation-free controlled release: electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Sci. Adv. 2, e1600519 (2016).

    Article  CAS  Google Scholar 

  82. Sakiyama-Elbert, S. E. Incorporation of heparin into biomaterials. Acta Biomater. 10, 1581–1587 (2014).

    Article  CAS  Google Scholar 

  83. Kearney, C. J. & Mooney, D. J. Macroscale delivery systems for molecular and cellular payloads. Nat. Mater. 12, 1004–1017 (2013).

    Article  CAS  Google Scholar 

  84. Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R. & Donnelly, R. F. Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J. Funct. Biomater. 9, 13 (2018).

    Article  CAS  Google Scholar 

  85. Hoare, T. R. & Kohane, D. S. Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008).

    Article  CAS  Google Scholar 

  86. Ishihara, J. et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl Med. 9, eaan0401 (2017).

    Article  CAS  Google Scholar 

  87. Ziegler, J. et al. Biological activity of recombinant human growth factors released from biocompatible bone implants. J. Biomed. Mater. Res. 86A, 89–97 (2008).

    Article  CAS  Google Scholar 

  88. Rosales, A. M. & Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016).

    Article  CAS  Google Scholar 

  89. Hastings, C. L. et al. Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. J. Control. Release 161, 73–80 (2012).

    Article  CAS  Google Scholar 

  90. Garbern, J. C., Minami, E., Stayton, P. S. & Murry, C. E. Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32, 2407–2416 (2011).

    Article  CAS  Google Scholar 

  91. Huebsch, N. et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl Acad. Sci. USA 111, 9762–9767 (2014).

    Article  CAS  Google Scholar 

  92. Zhao, X. et al. Active scaffolds for on-demand drug and cell delivery. Proc. Natl Acad. Sci. USA 108, 67–72 (2011).

    Article  CAS  Google Scholar 

  93. Bridges, A. W. & García, A. J. Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J. Diabetes Sci. Technol. 2, 984–994 (2008).

    Article  Google Scholar 

  94. Wen, Y., Waltman, A., Han, H. & Collier, J. H. Switching the immunogenicity of peptide assemblies using surface properties. ACS Nano 10, 9274–9286 (2016).

    Article  CAS  Google Scholar 

  95. Chen, S. et al. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31, 3479–3491 (2010).

    Article  CAS  Google Scholar 

  96. Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017).

    Article  CAS  Google Scholar 

  97. Kim, Y. K., Que, R., Wang, S. W. & Liu, W. F. Modification of biomaterials with a self-protein inhibits the macrophage response. Adv. Healthc. Mater. 3, 989–994 (2014).

    Article  CAS  Google Scholar 

  98. Sok, M. C. P., Tria, M. C., Olingy, C. E., San Emeterio, C. L. & Botchwey, E. A. Aspirin-Triggered Resolvin D1-modified materials promote the accumulation of pro-regenerative immune cell subsets and enhance vascular remodeling. Acta Biomater. 53, 109–122 (2017).

    Article  CAS  Google Scholar 

  99. Vu, T. D. et al. An autologous platelet-rich plasma hydrogel compound restores left ventricular structure, function and ameliorates adverse remodeling in a minimally invasive large animal myocardial restoration model: A translational approach: Vu and Pal “Myocardial Repair: PRP, Hydrogel and Supplements”. Biomaterials 45, 27–35 (2015).

    Article  CAS  Google Scholar 

  100. Webber, M. J., Matson, J. B., Tamboli, V. K. & Stupp, S. I. Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials 33, 6823–6832 (2012).

    Article  CAS  Google Scholar 

  101. Wang, W., Sun, L., Zhang, P., Song, J. & Liu, W. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater. 10, 4983–4995 (2014).

    Article  CAS  Google Scholar 

  102. Zhu, Y. et al. Reactive oxygen species scavenging with a biodegradable, thermally responsive hydrogel compatible with soft tissue injection. Biomaterials 177, 98–112 (2018).

    Article  CAS  Google Scholar 

  103. Friedrich, E. E. et al. Effects of hyaluronic acid conjugation on anti-TNF-α inhibition of inflammation in burns. J. Biomed. Mater. Res. 102A, 1527–1536 (2014).

    Article  CAS  Google Scholar 

  104. Gutowski, S. M. et al. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes. Biomaterials 44, 55–70 (2015).

    Article  CAS  Google Scholar 

  105. Holladay, C. A. et al. Recovery of cardiac function mediated by MSC and interleukin-10 plasmid functionalised scaffold. Biomaterials 33, 1303–1314 (2012).

    Article  CAS  Google Scholar 

  106. Gower, R. M. et al. Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression. Biomaterials 35, 2024–2031 (2014).

    Article  CAS  Google Scholar 

  107. Hu, Z., Ma, C., Rong, X., Zou, S. & Liu, X. Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl. Mater. Interfaces 10, 2377–2390 (2018).

    Article  CAS  Google Scholar 

  108. Spiller, K. L. et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35, 4477–4488 (2014).

    Article  CAS  Google Scholar 

  109. Spiller, K. L. et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37, 194–207 (2015).

    Article  CAS  Google Scholar 

  110. Awojoodu, A. O. et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl Acad. Sci. USA 110, 13785–13790 (2013).

    Article  CAS  Google Scholar 

  111. Krieger, J. R. et al. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling. Biomaterials 77, 280–290 (2016).

    Article  CAS  Google Scholar 

  112. Zhang, K. et al. Application of Wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study. Int. J. Mol. Sci. 16, 27659–27676 (2015).

    Article  CAS  Google Scholar 

  113. Sonnenberg, S. B. et al. Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction. Biomaterials 45, 56–63 (2015).

    Article  CAS  Google Scholar 

  114. Kobayashi, H. et al. Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovasc. Res. 79, 611–620 (2008).

    Article  CAS  Google Scholar 

  115. Wang, R. M. & Christman, K. L. Decellularized myocardial matrix hydrogels: in basic research and preclinical studies. Adv. Drug Deliv. Rev. 96, 77–82 (2016).

    Article  CAS  Google Scholar 

  116. Deng, B. et al. Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J. Biomed. Mater. Res. 103A, 907–918 (2015).

    Article  CAS  Google Scholar 

  117. Wang, Y., Cooke, M. J., Morshead, C. M. & Shoichet, M. S. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials 33, 2681–2692 (2012).

    Article  CAS  Google Scholar 

  118. Kwee, B. J., Budina, E., Najibi, A. J. & Mooney, D. J. CD4 T cells regulate angiogenesis and myogenesis. Biomaterials 178, 109–121 (2018). The regenerative functions of adoptive immunity, specifically soluble factors derived from different types of CD4 + T cells (T H 1, TH 2, TH 17 and T reg ) were highlighted in the context of ischemic muscle injury, using an alginate-based delivery system.

    Article  CAS  Google Scholar 

  119. Liu, J. M. H., Zhang, X., Joe, S., Luo, X. & Shea, L. D. Evaluation of biomaterial scaffold delivery of IL-33 as a localized immunomodulatory agent to supporT-cell transplantation in adipose tissue. J. Immunol. Regen. Med. 1, 1–12 (2018).

    Article  CAS  Google Scholar 

  120. Castiglioni, A. et al. FOXP3+T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLOS ONE 10, e0128094 (2015).

    Article  CAS  Google Scholar 

  121. Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367 (2016).

    Article  CAS  Google Scholar 

  122. Wolinsky, J. B., Colson, Y. L. & Grinstaff, M. W. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release 159, 14–26 (2012).

    Article  CAS  Google Scholar 

  123. Chew, S. A. & Danti, S. Biomaterial-based implantable devices for cancer therapy. Adv. Healthc. Mater. 6, 1600766 (2017).

    Article  CAS  Google Scholar 

  124. Sweeney, E. E., Cano-Mejia, J. & Fernandes, R. Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma. Small 14, 1800678 (2018).

    Article  CAS  Google Scholar 

  125. Ngwa, W. et al. Smart radiation therapy biomaterials. Int. J. Radiat. Oncol. Biol. Phys. 97, 624–637 (2017).

    Article  CAS  Google Scholar 

  126. Moreau, M. et al. Priming the abscopal effect using multifunctional smart radiotherapy biomaterials loaded with immunoadjuvants. Front. Oncol. 8, 56 (2018).

    Article  Google Scholar 

  127. Chao, Y. et al. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Engineer. 2, 611–621 (2018).

    Google Scholar 

  128. Hsiao, C. W. et al. Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ. Biomaterials 56, 26–35 (2015).

    Article  CAS  Google Scholar 

  129. Yata, T. et al. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials 146, 136–145 (2017).

    Article  CAS  Google Scholar 

  130. Makkouk, A. et al. Biodegradable microparticles loaded with doxorubicin and CpG ODN for in situ immunization against cancer. AAPS J. 17, 184–193 (2015).

    Article  CAS  Google Scholar 

  131. Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18, 313–322 (2018).

    Article  CAS  Google Scholar 

  132. Young, K. H. et al. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLOS ONE 11, e0157164 (2016).

    Article  CAS  Google Scholar 

  133. Yasmin-Karim, S. et al. Radiation and local anti-CD40 generate an effective in situ vaccine in preclinical models of pancreatic cancer. Front. Immunol. 9, 2030 (2018).

    Article  CAS  Google Scholar 

  134. Sagiv-Barfi, I. et al. Eradication of spontaneous malignancy by local immunotherapy. Sci. Transl Med. 10, eaan4488 (2018).

    Article  CAS  Google Scholar 

  135. Baird, J. R. et al. Evaluation of explant responses to STING ligands: personalized immunosurgical therapy for head and neck squamous cell carcinoma. Cancer Res. 78, 6308–6319 (2018).

    Article  CAS  Google Scholar 

  136. Leach, D. G. et al. STINGel: controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials 163, 67–75 (2018).

    Article  CAS  Google Scholar 

  137. Park, C. G. et al. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl Med. 10, eaar1916 (2018). Alginate gels placed in tumour beds during resection surgery provided long-term delivery of immunotherapies, and prevented relapse and metastases in breast cancer models by promoting local innate immunity and systemic adaptive responses.

    Article  CAS  Google Scholar 

  138. Umeki, Y. et al. Induction of potent antitumor immunity by sustained release of cationic antigen from a DNA-based hydrogel with adjuvant activity. Adv. Funct. Mater. 25, 5758–5767 (2015).

    Article  CAS  Google Scholar 

  139. Rahimian, S. et al. Polymeric microparticles for sustained and local delivery of anti-CD40 and anti-CTLA-4 in immunotherapy of cancer. Biomaterials 61, 33–40 (2015).

    Article  CAS  Google Scholar 

  140. Hsu, W., Lesniak, M. S., Tyler, B. & Brem, H. Local delivery of interleukin-2 and adriamycin is synergistic in the treatment of experimental malignant glioma. J. Neurooncol. 74, 135–140 (2005).

    Article  CAS  Google Scholar 

  141. Hori, Y., Stern, P. J., Hynes, R. O. & Irvine, D. J. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 30, 6757–6767 (2009).

    Article  CAS  Google Scholar 

  142. Liu, L. et al. Delivery of interleukin-12 in gelatin hydrogels effectively suppresses development of transplanted colonal carcinoma in mice. Cancer Chemother. Pharmacol. 51, 53–57 (2003).

    Article  CAS  Google Scholar 

  143. Wang, C., Ye, Y., Hochu, G. M., Sadeghifar, H. & Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16, 2334–2340 (2016).

    Article  CAS  Google Scholar 

  144. Wang, C. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl Med. 10, eaan3682 (2018).

    Article  CAS  Google Scholar 

  145. Li, Y. et al. Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology 5, e1074374 (2016).

    Article  CAS  Google Scholar 

  146. Ye, Y. et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 10, 8956–8963 (2016).

    Article  CAS  Google Scholar 

  147. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl Med. 5, 179ps7 (2013).

    Article  CAS  Google Scholar 

  148. Kauer, T. M., Figueiredo, J. L., Hingtgen, S. & Shah, K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat. Neurosci. 15, 197–204 (2012).

    Article  CAS  Google Scholar 

  149. Ballios, B. G. et al. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Rep. 4, 1031–1045 (2015).

    Article  CAS  Google Scholar 

  150. Stachowiak, A. N. & Irvine, D. J. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J. Biomed. Mater. Res. 85A, 815–828 (2008).

    Article  CAS  Google Scholar 

  151. Vining, K. H., Stafford, A. & Mooney, D. J. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials 188, 187–197 (2019).

    Article  CAS  Google Scholar 

  152. Huettner, N., Dargaville, T. R. & Forget, A. Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol. 36, 372–383 (2018).

    Article  CAS  Google Scholar 

  153. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  Google Scholar 

  154. Leong, W. & Wang, D. A. Cell-laden polymeric microspheres for biomedical applications. Trends Biotechnol. 33, 653–666 (2015).

    Article  CAS  Google Scholar 

  155. Schmidt, J. J., Rowley, J. & Hyun, J. K. Hydrogels used for cell-based drug delivery. J. Biomed. Mater. Res. 87A, 1113–1122 (2008).

    Article  CAS  Google Scholar 

  156. Desai, R. M., Koshy, S. T., Hilderbrand, S. A., Mooney, D. J. & Joshi, N. S. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials 50, 30–37 (2015).

    Article  CAS  Google Scholar 

  157. Monette, A., Ceccaldi, C., Assaad, E., Lerouge, S. & Lapointe, R. Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies. Biomaterials 75, 237–249 (2016).

    Article  CAS  Google Scholar 

  158. Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).

    Article  CAS  Google Scholar 

  159. Hassan, C. M. & Peppas, N. A. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33, 2472–2479 (2000).

    Article  CAS  Google Scholar 

  160. Nadig, R. Stem cell therapy — hype or hope? A review. J. Conserv. Dent. 12, 131–138 (2009).

    Article  Google Scholar 

  161. Zuloff-Shani, A. et al. Hard to heal pressure ulcers (stage III-IV): efficacy of injected activated macrophage suspension (AMS) as compared with standard of care (SOC) treatment controlled trial. Arch. Gerontol. Geriatr. 51, (268–272 (2010).

    Google Scholar 

  162. De Couto, G. et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J. Clin. Invest. 125, 3147–3162 (2015).

    Article  Google Scholar 

  163. Lu, J. et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 84, 745–755 (2013).

    Article  CAS  Google Scholar 

  164. Novak, M. L., Weinheimer-Haus, E. M. & Koh, T. J. Macrophage activation and skeletal muscle healing following traumatic injury. J. Pathol. 232, 344–355 (2014).

    Article  CAS  Google Scholar 

  165. Jetten, N. et al. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLOS ONE 9, e102994 (2014).

    Article  CAS  Google Scholar 

  166. Wang, Y. et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 72, 290–299 (2007).

    Article  CAS  Google Scholar 

  167. Hu, M. S. et al. Delivery of monocyte lineage cells in a biomimetic scaffold enhances tissue repair. JCI Insight 2, 96260 (2017).

    Article  Google Scholar 

  168. Roche, E. T. et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 35, 6850–6858 (2014).

    Article  CAS  Google Scholar 

  169. Xia, Y. et al. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp. Biol. Med. 240, 593–600 (2015).

    Article  CAS  Google Scholar 

  170. Binder, B. Y. K., Vissers, C. B., Ho, S. S., Murphy, K. C. & Leach, J. K. Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl Med. 5, 773–781 (2016).

    Article  CAS  Google Scholar 

  171. Whyte, W. et al. Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nat. Biomed. Eng. 2, 416–428 (2018). A biomaterial device was introduced that can deliver and replenish therapeutic agents (small molecules, macromolecules and cells) directly to the rodent heart in a controlled and minimally invasive way.

    Article  Google Scholar 

  172. Mao, A. S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2017).

    Article  CAS  Google Scholar 

  173. Sridharan, R., Cameron, A. R., Kelly, D. J., Kearney, C. J. & O’Brien, F. J. Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater. Today 18, 313–325 (2015).

    Article  CAS  Google Scholar 

  174. Spiller, K. L. & Koh, T. J. Macrophage-based therapeutic strategies in regenerative medicine. Adv. Drug Deliv. Rev. 122, 74–83 (2017).

    Article  CAS  Google Scholar 

  175. Zaveri, T. D., Lewis, J. S., Dolgova, N. V., Clare-Salzler, M. J. & Keselowsky, B. G. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials 35, 3504–3515 (2014).

    Article  CAS  Google Scholar 

  176. Kajahn, J. et al. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2, 226–236 (2012).

    Article  Google Scholar 

  177. Friedemann, M. et al. Instructing human macrophage polarization by stiffness and glycosaminoglycan functionalization in 3D collagen networks. Adv. Healthc. Mater. 6, 1600967 (2017).

    Article  CAS  Google Scholar 

  178. Patel, N. R. et al. Cell elasticity determines macrophage function. PLOS ONE 7, e41024 (2012).

    Article  CAS  Google Scholar 

  179. Blakney, A. A. K., Swartzlander, M. D. & Bryant, S. J. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. 100A, 1375–1386 (2012).

    Article  CAS  Google Scholar 

  180. McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. & Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc. Natl Acad. Sci. USA 110, 17253–17258 (2013).

    Article  CAS  Google Scholar 

  181. Bartneck, M. et al. Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials 33, 4136–4146 (2012).

    Article  CAS  Google Scholar 

  182. McWhorter, F. Y., Davis, C. T. & Liu, W. F. Physical and mechanical regulation of macrophage phenotype and function. Cell. Mol. Life Sci. 72, 1303–1316 (2015).

    Article  CAS  Google Scholar 

  183. Ballotta, V., Driessen-Mol, A., Bouten, C. V. C. & Baaijens, F. P. T. Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials 35, 4919–4928 (2014).

    Article  CAS  Google Scholar 

  184. Hao, S. et al. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials 140, 16–25 (2017).

    Article  CAS  Google Scholar 

  185. Vasandan, A. B. et al. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci. Rep. 6, 38308 (2016).

    Article  CAS  Google Scholar 

  186. Wang, D. et al. The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell. Mol. Immunol. 14, 423–431 (2017).

    Article  CAS  Google Scholar 

  187. Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141–150 (2008).

    Article  CAS  Google Scholar 

  188. Cao, X., Han, Z. B., Zhao, H. & Liu, Q. Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice. Int. J. Biochem. Cell Biol. 53, 372–379 (2014).

    Article  CAS  Google Scholar 

  189. Xie, Z. et al. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells 34, 627–639 (2016).

    Article  CAS  Google Scholar 

  190. Akgun, I. et al. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch. Orthop. Trauma Surg. 135, 251–263 (2015).

    Article  Google Scholar 

  191. Corradetti, B. et al. Chondroitin sulfate immobilized on a biomimetic scaffold modulates inflammation while driving chondrogenesis. Stem Cells Transl Med. 5, 670–682 (2016).

    Article  CAS  Google Scholar 

  192. Su, N. et al. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials 141, 74–85 (2017).

    Article  CAS  Google Scholar 

  193. Seib, F. P., Prewitz, M., Werner, C. & Bornhäuser, M. Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). Biochem. Biophys. Res. Commun. 389, 663–667 (2009).

    Article  CAS  Google Scholar 

  194. US Food and Drug Administration. Approved cellular and gene therapy products. FDA.gov https://www.fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/approvedproducts/default.htm (updated 30 Jul 2018).

  195. Joki, T. et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol. 19, 35–39 (2001).

    Article  CAS  Google Scholar 

  196. Aliperta, R. et al. Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy. Sci. Rep. 7, 42855 (2017).

    Article  CAS  Google Scholar 

  197. Cirone, P., Bourgeois, J. M., Austin, R. C. & Chang, P. L. A novel approach to tumor suppression with microencapsulated recombinanT-cells. Hum. Gene Ther. 13, 1157–1166 (2002).

    Article  CAS  Google Scholar 

  198. Choi, S. H. et al. Tumor resection recruits effector T cells and boosts therapeutic efficacy of encapsulated stem cells expressing IFNβ in glioblastomas. Clin. Cancer Res. 23, 7047–7058 (2017).

    Article  CAS  Google Scholar 

  199. Xu, W., Liu, L. & Charles, I. G. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 16, 213–215 (2002).

    Article  CAS  Google Scholar 

  200. Goren, A., Gilert, A., Meyron-Holtz, E., Melamed, D. & Machluf, M. Alginate encapsulated cells secreting Fas-ligand reduce lymphoma carcinogenicity. Cancer Sci. 103, 116–124 (2012).

    Article  CAS  Google Scholar 

  201. Zheng, S., Xiao, Z. X., Pan, Y. L., Han, M. Y. & Dong, Q. Continuous release of interleukin 12 from microencapsulated engineered cells for colon cancer therapy. World J. Gastroenterol. 9, 951–955 (2003).

    Article  CAS  Google Scholar 

  202. Wang, C. et al. In vitro performance of an injectable hydrogel/microsphere based immunocyte delivery system for localised anti-tumour activity. Biomaterials 30, 6986–6995 (2009).

    Article  CAS  Google Scholar 

  203. Hori, Y., Winans, A. M., Huang, C. C., Horrigan, E. M. & Irvine, D. J. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29, 3671–3682 (2008).

    Article  CAS  Google Scholar 

  204. Tsao, C. T. et al. Thermoreversible poly(ethylene glycol)-g-chitosan hydrogel as a therapeutic T lymphocyte depot for localized glioblastoma immunotherapy. Biomacromolecules 15, 2656–2662 (2014).

    Article  CAS  Google Scholar 

  205. Smith, T. T. et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Invest. 127, 2176–2191 (2017).

    Article  Google Scholar 

  206. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T cell therapy. Nat. Biotechnol. 33, 97–101 (2015). An alginate based macroporous gel loaded with T cells and stimulating factors induced T cell expansion and deployment in situ and improved therapeutic efficacy compared with standard systemic and local T cell infusion.

    Article  CAS  Google Scholar 

  207. Bencherif, S. A. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 6, 7556 (2015).

    Article  CAS  Google Scholar 

  208. Wang, T. et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat. Commun. 9, 1532 (2018).

    Article  CAS  Google Scholar 

  209. Vormittag, P., Gunn, R., Ghorashian, S. & Veraitch, F. S. A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol. 53, 164–181 (2018).

    Article  CAS  Google Scholar 

  210. Bromley, S. K., Mempel, T. R. & Luster, A. D. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol. 9, 970–980 (2008).

    Article  CAS  Google Scholar 

  211. Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  Google Scholar 

  212. Purwada, A., Roy, K. & Singh, A. Engineering vaccines and niches for immune modulation. Acta Biomater. 10, 1728–1740 (2014).

    Article  CAS  Google Scholar 

  213. Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).

    Article  CAS  Google Scholar 

  214. Sadtler, K. et al. Divergent immune responses to synthetic and biological scaffolds. Biomaterials 192, 405–415 (2018).

    Article  CAS  Google Scholar 

  215. Dziki, J. L. et al. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J. Biomed. Mater. Res. 105A, 138–147 (2017).

    Article  CAS  Google Scholar 

  216. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015). This study highlights the importance of carefully considering physical parameters of scaffold design by demonstrating that the size and shape of implanted scaffolds can modulate the foreign body reaction in vivo.

    Article  CAS  Google Scholar 

  217. Melman, L. et al. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia 15, 157–164 (2011).

    Article  CAS  Google Scholar 

  218. Abou Neel, E. A. et al. Collagen — emerging collagen based therapies hit the patient. Adv. Drug Deliv. Rev. 65, 429–456 (2013).

    Article  CAS  Google Scholar 

  219. Sussman, E. M., Halpin, M. C., Muster, J., Moon, R. T. & Ratner, B. D. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42, 1508–1516 (2014).

    Article  Google Scholar 

  220. Schmidt, C. E. & Baier, J. M. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21, 2215–2231 (2000).

    Article  CAS  Google Scholar 

  221. Hernandez, M. J. & Christman, K. L. Designing acellular injectable biomaterial therapeutics for treating myocardial infarction and peripheral artery disease. JACC Basic Transl Sci. 2, 212–226 (2017).

    Article  Google Scholar 

  222. Sicari, B. M. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl Med. 6, 234ra58 (2014).

    Article  CAS  Google Scholar 

  223. Mase, V. J. et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33, 511 (2010).

    Google Scholar 

  224. Sadtler, K. et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352, 366–370 (2016). This study demonstrates that tissue-derived ECM scaffolds can reshape adoptive immune responses through modulating T H 2-mediated responses, and improve skeletal muscle regeneration after volumetric loss.

    Article  CAS  Google Scholar 

  225. He, C. et al. ADM scaffolds generate a pro-regenerative microenvironment during full-thickness cutaneous wound healing through M2 macrophage polarization via Lamtor1. Front. Physiol. 9, 657 (2018).

    Article  CAS  Google Scholar 

  226. Sandor, M. et al. Host response to implanted porcine-derived biologic materials in a primate model of abdominal wall repair. Tissue Eng. 14A, 2021–2031 (2008).

    Article  Google Scholar 

  227. Wong, M. L. & Griffiths, L. G. Immunogenicity in xenogeneic scaffold generation: Antigen removal versus decellularisation. Acta Biomater. 10, 1806–1816 (2014).

    Article  CAS  Google Scholar 

  228. Wong, M. L., Wong, J. L., Vapniarsky, N. & Griffiths, L. G. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation. Biomaterials 92, 1–12 (2016).

    Article  CAS  Google Scholar 

  229. Wang, Y. et al. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci. Rep. 6, 24779 (2016).

    Article  CAS  Google Scholar 

  230. Vasconcelos, D. M. et al. Fibrinogen scaffolds with immunomodulatory properties promote in vivo bone regeneration. Biomaterials 111, 163–178 (2016).

    Article  CAS  Google Scholar 

  231. Sasaki, T. & Watanabe, C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 16, 9–15 (1995).

    Article  CAS  Google Scholar 

  232. Schimizzi, A. L. et al. High-molecular-weight hyaluronan inhibits macrophage proliferation and cytokine release in the early wound of a preclinical postlaminectomy rat model. Spine J. 6, 550–556 (2006).

    Article  Google Scholar 

  233. Taraballi, F. et al. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages. J. Tissue Eng. 7, 204173141562466 (2016).

    Article  CAS  Google Scholar 

  234. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  CAS  Google Scholar 

  235. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    Article  CAS  Google Scholar 

  236. Wolf, M. T. et al. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials 35, 6838–6849 (2014).

    Article  CAS  Google Scholar 

  237. Sun, J. long et al. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials 113, 203–216 (2017).

    Article  CAS  Google Scholar 

  238. Lohmann, N. et al. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci. Transl Med. 9, eaai9044 (2017). A hydrogel based on star-shaped polyethylene glycol (starPEG) functionalized with glycosaminoglycan (GAG) heparin scavenges pro-inflammatory factors from the cutaneous wound bed, improving wound healing by resolving inflammation.

    Article  Google Scholar 

  239. Delgado, L. M., Bayon, Y., Pandit, A. & Zeugolis, D. I. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng. 21B, 298–313 (2015).

    Article  CAS  Google Scholar 

  240. Umashankar, P. R., Arun, T. & Kumary, T. V. Effect of chronic inflammation and immune response on regeneration induced by decellularized bovine pericardium. J. Biomed. Mater. Res. 101A, 2202–2209 (2013).

    Article  CAS  Google Scholar 

  241. Ye, Q., Harmsen, M. C., van Luyn, M. J. A. & Bank, R. A. The relationship between collagen scaffold cross-linking agents and neutrophils in the foreign body reaction. Biomaterials 31, 9192–9201 (2010).

    Article  CAS  Google Scholar 

  242. Chan, G. & Mooney, D. J. Ca2+ released from calcium alginate gels can promote inflammatory responses in vitro and in vivo. Acta Biomater. 9, 9281–9291 (2013).

    Article  CAS  Google Scholar 

  243. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009). Development of a scaffold-based cancer vaccine releasing GM-CSF, CpG-oligodeoxynucleotide and tumour lysate to locally recruit and reprogramme host dendritic cells to elicit efficacious anti-tumour immunity in a mouse model of melanoma.

    Article  CAS  Google Scholar 

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01753089 (2012).

  245. Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17, 528–534 (2018).

    Article  CAS  Google Scholar 

  246. Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2015).

    Article  CAS  Google Scholar 

  247. Kim, J., Li, W. A., Sands, W. & Mooney, D. J. Effect of pore structure of macroporous poly(lactide-co-glycolide) scaffolds on the in vivo enrichment of dendritic cells. ACS Appl. Mater. Interfaces 6, 8505–8512 (2014).

    Article  CAS  Google Scholar 

  248. Verbeke, C. S. et al. Multicomponent injectable hydrogels for antigen-specific tolerogenic immune modulation. Adv. Healthc. Mater. 6, 1600773 (2017).

    Article  CAS  Google Scholar 

  249. Azarin, S. M. et al. In vivo capture and label-free detection of early metastatic cells. Nat. Commun. 6, 8094 (2015). Scaffolds were used to recruit innate immune cells to create an environment that resembles the pre-metastatic niche, leading to capture of metastatic cells, which enabled early detection of metastatic events and decreased lung and liver metastases in breast cancer mouse models.

    Article  Google Scholar 

  250. Aguado, B. A. et al. Biomaterial scaffolds as pre-metastatic niche mimics systemically alter the primary tumor and tumor microenvironment. Adv. Healthc. Mater. 7, 1700903 (2018).

    Article  CAS  Google Scholar 

  251. Gajanayake, T. et al. A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft. Sci. Transl Med. 6, 249ra110 (2014).

    Article  CAS  Google Scholar 

  252. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    Article  CAS  Google Scholar 

  253. Thelin, M. A. et al. In vivo enrichment of diabetogenic T-cells. Diabetes 66, 2220–2229 (2017).

    Article  CAS  Google Scholar 

  254. Mandal, A. et al. Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Sci. Transl Med. 10, eaar2227 (2018).

    Article  CAS  Google Scholar 

  255. Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003).

    Article  CAS  Google Scholar 

  256. Vignali, D. A. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by grants from the National Cancer Institute (5U01 CA214369; 5R01 CA223255), National Institute of Biomedical Imaging and Bioegineering (5R01 EB023287) and National Institute of Dental and Craniofacial Research (2R01 DE013349). The authors thank M. Brennan and A. Elosegui-Artola for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.O.D. and B.R.S. researched data and wrote the manuscript. M.O.D., B.R.S. and D.J.M. discussed the content and reviewed and/or edited the manuscript.

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

Novartis, sponsored research: D.J.M. Agnovos, consulting: D.J.M. Amgen, sponsored research: D.J.M. Samyang Corp., consulting: D.J.M. Decibel, sponsored research: D.J.M. Merck, sponsored research: D.J.M. Immulus, equity: D.J.M.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dellacherie, M.O., Seo, B.R. & Mooney, D.J. Macroscale biomaterials strategies for local immunomodulation. Nat Rev Mater 4, 379–397 (2019). https://doi.org/10.1038/s41578-019-0106-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0106-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer