Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Writing magnetic memory with ultrashort light pulses

Abstract

Laser pulses are the shortest stimulus known to control the magnetization of materials and to switch magnetic devices on the picosecond to femtosecond timescales. Femtosecond laser pulses have been able to trigger the fastest changes in the magnetic state of matter, and thus these pulses may lead to technologies with increased speed and energy efficiency of magnetic data storage and memory. In the past decade, materials enabling optical control of magnetism and concepts of devices employing such opto-magnetic phenomena have been shown. In this Review, we explore ultrafast all-optical switching (AOS) of magnetization as the least-dissipative and fastest method for magnetic writing. We outline the physical processes responsible for mechanisms of AOS, define the materials suitable for optical control of magnetism and test these mechanisms and materials against three important criteria of recording: speed, accompanying dissipations and scalability. In particular, we emphasize that switching magnetization with the help of light outperforms other methods in terms of the speed of the write–read magnetic recording event (less than 20 ps) and the unprecedentedly low heat load (<6 J cm−3). Finally, we outline the integration of AOS in spintronic devices and the perspective of large-scale integration towards magnetic random access memory and other memory applications with low-energy dissipations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of classical and ultrafast scenarios for magnetization reversal.
Fig. 2: One-spin model of all-optical switching.
Fig. 3: Two-spin model of all-optical switching.
Fig. 4: Dynamics of all-optical switching in Co/Pt multilayers.
Fig. 5: Switching energy and switching time for selected devices.
Fig. 6: Direct magnetoelectric readout of optical switching in a GdFeCo film by measuring its magnetoresistance67.
Fig. 7: An optically switchable magnetic tunnel junction67.
Fig. 8: Schematics of large-scale integration of all-optical switching devices in an array for high-speed memory applications.

Similar content being viewed by others

References

  1. Reinsel, D., Gantz, J. & Rydning, J. Data age 2025: the evolution of data to life-critical. An IDC white paper. Seagate https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf (2018).

  2. Madami, M., Chiuchiù, D., Carlotti, G. & Gammaitoni, L. Fundamental energy limits in the physics of nanomagnetic binary switches. Nano Energy 15, 313–320 (2015).

    CAS  Google Scholar 

  3. Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D 50, 363001 (2017).

    Google Scholar 

  4. Pitaevskii, L. Electric forces in a transparent dispersive medium. Sov. Phys. JETP 12, 1008–1013 (1961).

    Google Scholar 

  5. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    CAS  Google Scholar 

  6. Mikhaylovskiy, R. et al. Ultrafast optical modification of exchange interactions in iron oxides. Nat. Commun. 6, 8190 (2015).

    CAS  Google Scholar 

  7. Subkhangulov, R. et al. All-optical manipulation and probing of the d–f exchange interaction in EuTe. Sci. Rep. 4, 4368 (2014).

    CAS  Google Scholar 

  8. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    CAS  Google Scholar 

  9. Aeschlimann, M. et al. High-speed magnetization reversal near the compensation temperature of amorphous GdTbFe. Appl. Phys. Lett. 59, 2189–2191 (1991).

    CAS  Google Scholar 

  10. Hohlfeld, J. et al. Fast magnetization reversal of GdFeCo induced by femtosecond laser pulses. Phys. Rev. B 65, 012413 (2001).

    Google Scholar 

  11. Vahaplar, K. et al. Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. Phys. Rev. Lett. 103, 117201 (2009).

    CAS  Google Scholar 

  12. Vahaplar, K. et al. All-optical magnetization reversal by circularly polarized laser pulses: experiment and multiscale modeling. Phys. Rev. B 85, 104402 (2012).

    Google Scholar 

  13. Hertel, R. Viewpoint: for faster magnetic switching—destroy and rebuild. Physics 2, 73 (2009).

    Google Scholar 

  14. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    CAS  Google Scholar 

  15. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).

    CAS  Google Scholar 

  16. Mentink, J. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202 (2012).

    CAS  Google Scholar 

  17. Steil, D., Alebrand, S., Hassdenteufel, A., Cinchetti, M. & Aeschlimann, M. All-optical magnetization recording by tailoring optical excitation parameters. Phys. Rev. B 84, 224408 (2011).

    Google Scholar 

  18. Khorsand, A. R. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205 (2012).

    CAS  Google Scholar 

  19. Savoini, M. et al. Highly efficient all-optical switching of magnetization in GdFeCo microstructures by interference-enhanced absorption of light. Phys. Rev. B 86, 140404 (2012).

    Google Scholar 

  20. Hylick, A., Sohan, R., Rice, A. & Jones, B. An analysis of hard drive energy consumption. Presented at the 2008 IEEE International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems (MASCOTS) in Baltimore, MD, USA (2008).

  21. Liu, J. P., Fullerton, E., Gutfleisch, O. & Sellmyer, D. J. Nanoscale Magnetic Materials and Applications (Springer US, 2009).

  22. Wang, K., Alzate, J. & Amiri, P. K. Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D 46, 074003 (2013).

    Google Scholar 

  23. Le Guyader, L. et al. Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures. Nat. Commun. 6, 5839 (2015).

    Google Scholar 

  24. Le Guyader, L. et al. Demonstration of laser induced magnetization reversal in GdFeCo nanostructures. Appl. Phys. Lett. 101, 022410 (2012).

    Google Scholar 

  25. El Hadri, M. S., Hehn, M., Malinowski, G. & Mangin, S. Materials and devices for all-optical helicity-dependent switching. J. Phys. D 50, 133002 (2017).

    Google Scholar 

  26. Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Google Scholar 

  27. Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Inertia-free thermally driven domain-wall motion in antiferromagnets. Phys. Rev. Lett. 117, 107201 (2016).

    Google Scholar 

  28. Higuchi, T. & Kuwata-Gonokami, M. Control of antiferromagnetic domain distribution via polarization-dependent optical annealing. Nat. Commun. 7, 10720 (2016).

    CAS  Google Scholar 

  29. Landau, L. & Lifshitz, E. Electrodynamics of Continious Media (Pergamon, Oxford, 1984).

  30. Kovalenko, V. & Nagaev, É. L. Photoinduced magnetism. Sov. Phys. Usp. 29, 297–321 (1986).

    Google Scholar 

  31. Fridkin, V. M. Photoferroelectrics Vol. 9 (Springer Science & Business Media, 2012).

  32. Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 287–293 (2014).

    Google Scholar 

  33. Kimel, A. V. All-optical switching: three rules of design. Nat. Mater. 13, 225–226 (2014).

    CAS  Google Scholar 

  34. Liu, T. M. et al. Nanoscale confinement of all-optical magnetic switching in TbFeCo - Competition with nanoscale heterogeneity. Nano Lett. 15, 6862–6868 (2015).

    Google Scholar 

  35. Lambert, C. H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    CAS  Google Scholar 

  36. Cornelissen, T., Córdoba, R. & Koopmans, B. Microscopic model for all optical switching in ferromagnets. Appl. Phys. Lett. 108, 142405 (2016).

    Google Scholar 

  37. El Hadri, M. S. et al. Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses. Phys. Rev. B 94, 064412 (2016).

    Google Scholar 

  38. Medapalli, R. et al. Multiscale dynamics of helicity-dependent all-optical magnetization reversal in ferromagnetic Co/Pt multilayers. Phys. Rev. B 96, 224421 (2017).

    Google Scholar 

  39. Gerasimov, M., Logunov, M., Spirin, A., Nozdrin, Y. N. & Tokman, I. Time evolution of domain-wall motion induced by nanosecond laser pulses. Phys. Rev. B 94, 014434 (2016).

    Google Scholar 

  40. Ellis, M. O., Fullerton, E. E. & Chantrell, R. W. All-optical switching in granular ferromagnets caused by magnetic circular dichroism. Sci. Rep. 6, 30522 (2016).

    CAS  Google Scholar 

  41. John, R. et al. Magnetisation switching of FePt nanoparticle recording medium by femtosecond laser pulses. Sci. Rep. 7, 4114 (2017).

    CAS  Google Scholar 

  42. Vomir, M., Albrecht, M. & Bigot, J.-Y. Single shot all optical switching of intrinsic micron size magnetic domains of a Pt/Co/Pt ferromagnetic stack. Appl. Phys. Lett. 111, 242404 (2017).

    Google Scholar 

  43. Gorchon, J. et al. Single shot ultrafast all optical magnetization switching of ferromagnetic Co/Pt multilayers. Appl. Phys. Lett. 111, 042401 (2017).

    Google Scholar 

  44. Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).

    CAS  Google Scholar 

  45. Becker, J. et al. Ultrafast magnetism of a ferrimagnet across the spin-flop transition in high magnetic fields. Phys. Rev. Lett. 118, 117203 (2017).

    CAS  Google Scholar 

  46. Back, C. et al. Magnetization reversal in ultrashort magnetic field pulses. Phys. Rev. Lett. 81, 3251 (1998).

    CAS  Google Scholar 

  47. Back, C. et al. Minimum field strength in precessional magnetization reversal. Science 285, 864–867 (1999).

    CAS  Google Scholar 

  48. Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals To Nanoscale Dynamics Vol. 152 (Springer Science & Business Media, 2007).

  49. Sun, J. et al. Effect of subvolume excitation and spin-torque efficiency on magnetic switching. Phys. Rev. B 84, 064413 (2011).

    Google Scholar 

  50. Bedau, D. et al. Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy. Appl. Phys. Lett. 96, 022514 (2010).

    Google Scholar 

  51. Diao, Z. et al. Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers. Appl. Phys. Lett. 87, 232502 (2005).

    Google Scholar 

  52. Zhao, H. et al. Sub-200 ps spin transfer torque switching in in-plane magnetic tunnel junctions with interface perpendicular anisotropy. J. Phys. D 45, 025001 (2012).

    Google Scholar 

  53. Ikeda, S. et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    CAS  Google Scholar 

  54. Worledge, D. C. et al. Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 022501 (2011).

    Google Scholar 

  55. Gajek, M. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett. 100, 132408 (2012).

    Google Scholar 

  56. Garello, K. et al. Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Google Scholar 

  57. Aradhya, S. V., Rowlands, G. E., Oh, J., Ralph, D. C. & Buhrman, R. A. Nanosecond-timescale low energy switching of in-plane magnetic tunnel junctions through dynamic Oersted-field-assisted spin Hall effect. Nano Lett. 16, 5987–5992 (2016).

    CAS  Google Scholar 

  58. Wang, M. et al. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nat. Commun. 9, 671 (2018).

    Google Scholar 

  59. Shi, S., Ou, Y., Aradhya, S. V., Ralph, D. C. & Buhrman, R. A. Fast low-current spin-orbit-torque switching of magnetic tunnel junctions through atomic modifications of the free-layer interfaces. Phys. Rev. Appl. 9, 011002 (2018).

    Google Scholar 

  60. Sato, N., Xue, F., White, R. M., Bi, C. & Wang, S. X. Two-terminal spin–orbit torque magnetoresistive random access memory. Nat. Electron. 1, 508–511 (2018).

    Google Scholar 

  61. Cubukcu, M. et al. Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104, 042406 (2014).

    Google Scholar 

  62. Grezes, C. et al. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108, 012403 (2016).

    Google Scholar 

  63. Alzate, J. G. et al. in 2012 International Electron Devices Meeting (IEDM 2012): San Francisco, California, USA, 10–13 December 2012 (ed. Veena, M.) 29.5.1–29.5.4 (IEEE, 2012).

  64. Kanai, S. et al. In-plane magnetic field dependence of electric field-induced magnetization switching. Appl. Phys. Lett. 103, 072408 (2013).

    Google Scholar 

  65. He, L., Chen, J.-Y., Wang, J.-P. & Li, M. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser. Appl. Phys. Lett. 107, 102402 (2015).

    Google Scholar 

  66. El Hadri, M. S. et al. Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses. Appl. Phys. Lett. 108, 092405 (2016).

    Google Scholar 

  67. Wang, J.-P. et al. in Proceedings of the 54th Annual Design Automation Conference 2017 (DAC ‘17) 14.1 (ACM, Austin, TX, USA, 2017).

  68. Chen, J.-Y., He, L., Wang, J.-P. & Li, M. All-optical switching of magnetic tunnel junctions with single subpicosecond laser pulses. Phys. Rev. Appl. 7, 021001 (2017).

    Google Scholar 

  69. Nishimura, N. et al. Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J. Appl. Phys. 91, 5246 (2002).

    CAS  Google Scholar 

  70. Lalieu, M. L. M., Peeters, M. J. G., Haenen, S. R. R., Lavrijsen, R. & Koopmans, B. Deterministic all-optical switching of synthetic ferrimagnets using single femtosecond laser pulses. Phys. Rev. B 96, 220411 (2017).

    Google Scholar 

  71. Pisana, S. et al. Measurement of the Curie temperature distribution in FePt granular magnetic media. Appl. Phys. Lett. 104, 162407 (2014).

    Google Scholar 

  72. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Google Scholar 

  73. Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    CAS  Google Scholar 

  74. Melnikov, A. et al. Ultrafast transport of laser-excited spin-polarized carriers in Au/Fe/MgO (001). Phys. Rev. Lett. 107, 076601 (2011).

    Google Scholar 

  75. Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    CAS  Google Scholar 

  76. Gerrits, Th, van den Berg, H. A. M., Hohlfeld, J., Bär, L. & Rasing, Th. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002).

    CAS  Google Scholar 

  77. Lalieu, M. L. M., Lavrijsen, R. & Koopmans, B. Integrating all-optical switching with spintronics, Integrating all-optical switching with spintronics. Nat. Commun. 10, 110 (2019).

  78. Bergeard, N. et al. Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers. Phys. Rev. Lett. 117, 147203 (2016).

    CAS  Google Scholar 

  79. Xu, Y. et al. Ultrafast magnetization manipulation using single femtosecond light and hot-electron pulses. Adv. Mater. 29, 1703474 (2017).

    Google Scholar 

  80. Iihama, S. et al. Single-shot multi-level all-optical magnetization switching mediated by spin transport. Adv. Mater. 30, 1804004 (2018).

    Google Scholar 

  81. Gorchon, J. et al. Role of electron and phonon temperatures in the helicity-independent all-optical switching of GdFeCo. Phys. Rev. B 94, 184406 (2016).

    Google Scholar 

  82. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017).

    Google Scholar 

  83. Plumer, M. L., Van Ek, J. & Weller, D. The Physics of Ultra-High-Density Magnetic Recording Vol. 41 (Springer Science & Business Media, 2012).

  84. Kryder, M. H. et al. Heat assisted magnetic recording. Proc. IEEE 96, 1810–1835 (2008).

    CAS  Google Scholar 

  85. Weller, D. et al. in Ultrafast Magnetism I 228–231 (Springer, 2015).

  86. Richter, H. et al. Recording potential of bit-patterned media. Appl. Phys. Lett. 88, 222512 (2006).

    Google Scholar 

  87. Albrecht, T. R. et al. Bit patterned media at 1 Tdot/in2 and beyond. IEEE Trans. Magn. 49, 773–778 (2013).

    CAS  Google Scholar 

  88. Linder, J. & Robinson, J. W. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

A.V.K. acknowledges funding from the Netherlands Organization for Scientific Research (NWO) and the Leading Scientist of the Russian Ministry of Education and Science programme (14.Z50.31.0034). M.L. acknowledges support from the Center for Spintronic Materials, Interfaces and Novel Architectures (C-SPIN), one of six centres of STARnet, a Semiconductor Research Corporation programme, sponsored by the Microelectronics Advanced Research Corporation (MARCO) and US Defense Advanced Research Projects Agency (DARPA). The authors acknowledge the help of A. Pogrebna in the making of figure 5.

Author information

Authors and Affiliations

Authors

Contributions

A.V.K. and M.L. discussed the idea of the paper and wrote the manuscript.

Corresponding author

Correspondence to Alexey V. Kimel.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimel, A.V., Li, M. Writing magnetic memory with ultrashort light pulses. Nat Rev Mater 4, 189–200 (2019). https://doi.org/10.1038/s41578-019-0086-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0086-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing