Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Graphene-based integrated photonics for next-generation datacom and telecom

Abstract

Graphene is an ideal material for optoelectronic applications. Its photonic properties give several advantages and complementarities over Si photonics. For example, graphene enables both electro-absorption and electro-refraction modulation with an electro-optical index change exceeding 10−3. It can be used for optical add–drop multiplexing with voltage control, eliminating the current dissipation used for the thermal detuning of microresonators, and for thermoelectric-based ultrafast optical detectors that generate a voltage without transimpedance amplifiers. Here, we present our vision for graphene-based integrated photonics. We review graphene-based transceivers and compare them with existing technologies. Strategies for improving power consumption, manufacturability and wafer-scale integration are addressed. We outline a roadmap of the technological requirements to meet the demands of the datacom and telecom markets. We show that graphene-based integrated photonics could enable ultrahigh spatial bandwidth density, low power consumption for board connectivity and connectivity between data centres, access networks and metropolitan, core, regional and long-haul optical communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution of communications.
Fig. 2: Optical absorption profiles of SLG devices.
Fig. 3: FOM for electro-refractive modulators and electro-absorption modulators based on SLG.
Fig. 4: Transmission of a reconfigurable optical ADD–DROP multiplexer and effect of τ on its performance.
Fig. 5: Double-gated thermoelectric photodetector.
Fig. 6: Process flow of a SLG photonics integrated device.

Similar content being viewed by others

References

  1. Harrison, B. Amplifiers boost regeneration distance. Lightwave http://www.lightwaveonline.com/articles/1995/11/amplifiers-boost-regeneration-distance-53663947.html (1995).

  2. Berners-Lee, T. & Fischetti, M. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor (Harper Collins, 2000).

  3. Bangerter, B., Talwar, S., Arefi, R. & Stewart, K. Networks and devices for the 5G era. IEEE Commun. Mag. 52, 90–96 (2014).

    Google Scholar 

  4. Next generation mobile networks. 5G white paper by the NGMN Alliance. nmgn https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf (2015).

  5. Atzori, L., Iera, A. & Morabito, G. The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010).

    Google Scholar 

  6. Rohling, G. Facts and forecasts: billions of things, trillions of dollars. Siemens https://www.siemens.com/innovation/en/home/pictures-of-the-future/digitalization-and-software/internet-of-things-facts-and-forecasts.html (2014).

  7. Press, G. Internet of things by the numbers: market estimates and forecasts. Forbes https://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/#5115644b9194 (2014).

  8. Scheck, H. O. ICT & wireless networks and their impact on global warming. Europ. Wireless Conf. https://doi.org/10.1109/EW.2010.5483413 (2010).

    Article  Google Scholar 

  9. van Huden, R. G. H. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8, 865–870 (2014).

    Google Scholar 

  10. Arakawa, Y., Nakamura, T., Urino, Y. & Fujita, T. Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51, 72–77 (2013).

    Google Scholar 

  11. Pavesi, L. & Lockwood, D. J. Silicon Photonics III (Springer, Berlin, 2016).

    Google Scholar 

  12. [no authors listed]. Luxtera ships one millionth transceiver product. Photonics Media http://www.photonics.com/Article.aspx?AID=61153 (2016).

  13. [no authors listed]. Cisco Visual Networking index: global mobile data traffic forecast update, 2016–2021 White Paper. Cisco https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html (2017).

  14. [no authors listed]. White paper on technological developments and trends of optical networks. Huawei http://www-file.huawei.com/~/media/CORPORATE/PDF/white%20paper/White-Paper-on-Technological-Developments-of-Optical-Networks.pdf?source=corp_comm (2016).

  15. The European Commission. The leverage effect of photonics technologies: the European perspective. https://ec.europa.eu/digital-agenda/en/news/leverage-effect-photonics-technologies-european-perspective (2009).

  16. Doerr, C. R. Silicon photonic integration in telecommunications. Front. Phys. 3, 37 (2015).

    Google Scholar 

  17. Marketsandmarkets.com. Optical transceiver market by form factor, data rate, distance, wavelength, application, & geography — global forecast to 2022. Markets and markets http://www.marketsandmarkets.com/Market-Reports/optical-transceiver-market-161339599.html (2016).

  18. The Institute of Electrical and Electronics Engineers. IEEE P802.3ba, 40 Gb/s and 100 Gb/s ethernet task force. IEEE http://www.ieee802.org/3/ba/ (2010).

  19. The Institute of Electrical and Electronics Engineers. IEEE P802.3bs, 200 Gb/s and 400 Gb/s ethernet task force. IEEE http://www.ieee802.org/3/bs/ (2018).

  20. Marketsandmarkets.com. Optical transceiver market worth 6.87 billion USD by 2022. Markets and markets https://www.marketsandmarkets.com/PressReleases/optical-transceiver.asp (2018).

  21. [no authors listed]. Ericsson Mobility Report. Ericsson https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf (2016).

  22. Kallmann, M. & Thalmann, D. in Computer Animation and Simulation ’98 (eds Arnaldi, B., Hégron, G.) (Springer, Vienna, 1999).

    Google Scholar 

  23. Huitema, C. IPv6: The New Internet Protocol 2nd edn (Prentice Hall, 1998).

  24. [no authors listed]. Global sensors in Internet of Things (IoT) devices market 2016–2022: 100 billion IoT connected devices will be installed by 2025 to generate revenue of close to $10 trillion. Globe newswire https://globenewswire.com/news-release/2017/03/10/934261/0/en/Global-Sensors-in-Internet-of-Things-IoT-Devices-Market-2016-2022-100-billion-IoT-Connected-Devices-will-be-Installed-by-2025-to-Generate-Revenue-of-Close-to-10-Trillion.html (2017).

  25. Manyika, J. et al. The Internet of Things: mapping the value beyond the hype. McKinsey Global Institute http://docplayer.net/1730229-The-internet-of-things-mapping-the-value-beyond-the-hype.html (2015).

  26. O’Mahony, M. J., Politi, C., Klonidis, D., Nejabati, R. & Simeonidou, D. Future optical networks. J. Lightwave Technol. 24, 4684–4696 (2006).

    Google Scholar 

  27. Green, P. E. Optical networking update. IEEE J. Sel. Areas Commun. 14, 764–779 (1996).

    Google Scholar 

  28. De La Oliva, A. et al. Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wirel. Commun. 22, 32–40 (2015).

    Google Scholar 

  29. [no authors listed]. Ericsson White Paper. 5G radio access. Ericsson http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf (2016).

  30. Brahmi, N., Yilmaz, O. N. C., Helmersson, K. W., Ashraf, S. A. & Torsner, J. Deployment strategies for ultra-reliable and low-latency communication in factory automation. IEEE Globecom Workshops 1–6 (2015).

  31. Shokri-Ghadikolaei, H., Fischione, C., Popovski, P. & Zorzi, M. Design aspects of short-range millimeter-wave networks: a MAC layer perspective. IEEE Netw. 30, 88–96 (2016).

    Google Scholar 

  32. [no authors listed]. Optical communications market forecast. Lightcounting https://www.lightcounting.com/Forecast.cfm (2018).

  33. Merritt, R. Facebook likes 100G at 1$/G. EETimes www.eetimes.com/document.asp?doc_id=1327552 (2015).

  34. Hardy, S. Consortium for on-board optics targets specs for higher data center faceplate density. Lightwave online http://www.lightwaveonline.com/articles/2015/03/consortium-for-on-board-optics-targets-specs-for-higher-data-center-faceplate-density.html (2015).

  35. Lefebvre, K. R. Optical components market: market share ECOC 2016. The ECOC Exhibition http://www.ecocexhibition.com/sites/default/files/files/Kevin_Ovum_Informa.pdf (2016).

  36. Betts, G. E. in RF Photonic Technology in Optical Fiber Links (ed. Chang, W. S. C.) 81–132 (Cambridge Univ. Press, 2002).

  37. Wang, C., Zhang, M., Stern, B., Lipson, M. & Loncar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

    CAS  Google Scholar 

  38. Juodawlkis, P. W. et al. InGaAsP/InP quantum-well electrorefractive modulators with sub-volt Vπ. Proc. SPIE 5435 (2004).

  39. Letal, G. et al. Low loss InP C-band IQ Modulator with 40 GHz bandwidth and 1.5 V Vπ. Optical Fiber Commun. Conf. http://remapnetwork.org/wp-content/uploads/2015/11/ReMAP-O8-Low_Loss_InP_C-Band_IQ_Modulator_with_40_GHz_….pdf (2015).

  40. Coldren, L. A. Indium-phosphide photonic integrated circuits. OSA Technical Digest https://doi.org/10.1364/OFC.2017.W4G.1 (2017).

    Article  Google Scholar 

  41. Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photon. 4, 527–534 (2010).

    CAS  Google Scholar 

  42. Shiue, R. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    CAS  Google Scholar 

  43. Salamin, Y. et al. 100 GHz Plasmonic Photodetector, ACS Photonics, June 2018.

    CAS  Google Scholar 

  44. Bennett, G. The right material for the job: finding the best fit for InP and silicon. Infinera https://www.infinera.com/the-right-material-for-the-job-findingthe-best-fit-for-inp-and-silicon/ (2015).

  45. [no authors listed]. Silicon photonics for data centers and other applications 2016. i-Micronews https://www.i-micronews.com/report/product/silicon-photonicsfor-data-centers-and-other-applications-2016.html?utm_source=PR&utm_medium=email&utm_campaign=SiliconPhotonics_Markets_Applications_Yole_Nov2016 (2016).

  46. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166 (2009).

    CAS  Google Scholar 

  47. Kleinert, M. et al. Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform. Opt. Mater. Expr. 6, 1800–1807 (2016).

    CAS  Google Scholar 

  48. Pérez, D., Domenech, D., Munoz, P. & Capmany, J. Electro-refraction modulation predictions for silicon graphene waveguides in the 1540–1560 nm region. IEEE Photon. J. 8, 4501613 (2016).

    Google Scholar 

  49. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two- dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    CAS  Google Scholar 

  50. Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).

    CAS  Google Scholar 

  51. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    CAS  Google Scholar 

  52. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    CAS  Google Scholar 

  53. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    CAS  Google Scholar 

  54. Kim, K., Choi, J., Kim, T., Cho, S. & Chung, H. A role for graphene in silicon based semiconductor devices. Nature 479, 338–344 (2011).

    CAS  Google Scholar 

  55. Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

    CAS  Google Scholar 

  56. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    CAS  Google Scholar 

  57. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    CAS  Google Scholar 

  58. Phare, C. T., Lee, Y. D., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

    CAS  Google Scholar 

  59. Reed, G. T. & Png, C. E. J. Silicon optical modulators. Mater. Today 8, 40–50 (2005).

    CAS  Google Scholar 

  60. Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photon. 2, 433–437 (2008).

    CAS  Google Scholar 

  61. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    CAS  Google Scholar 

  62. Gardes, F. Y., Thomson, D. J., Emerson, N. G. & Reed, G. T. 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt. Express 19, 11804–11814 (2011).

    CAS  Google Scholar 

  63. Snyder, A. W. Optical Waveguide Theory (Springer Verlag, 1983).

  64. Keldysh, L. V. Behaviour of non-metallic crystals in strong electric fields. J. Exptl. Theor. Phys. 33, 994–1003 (1957).

    CAS  Google Scholar 

  65. Keldish, L. V. Ionization in the field of a strong electromagnetic wave. J. Exptl. Theor. Phys. 47, 1945–1957 (1964).

    Google Scholar 

  66. Feng, D. et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt. Express 20, 22224–22232 (2012).

    CAS  Google Scholar 

  67. Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

    CAS  Google Scholar 

  68. Dumas, D. C. S. et al. Ge/SiGe quantum confined Stark effect electro-absorption modulation with low voltage swing at λ = 1550 nm. Opt. Express 22, 19284–19292 (2014).

    CAS  Google Scholar 

  69. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    CAS  Google Scholar 

  70. Sorianello, V., Midrio, M. & Romagnoli, M. Design optimization of single and double layer graphene phase modulators in SOI. Opt. Express 23, 6478–6490 (2015).

    CAS  Google Scholar 

  71. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Google Scholar 

  72. Liu, M., Yin, X. & Zhang, X. Double layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012).

    Google Scholar 

  73. Hanson, G. W. Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008).

    Google Scholar 

  74. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4, 532–535 (2008).

    CAS  Google Scholar 

  75. Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2007).

    Google Scholar 

  76. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Google Scholar 

  77. Midrio, M., Galli, P., Romagnoli, M., Kimerling, L. C. & Michel, J. Graphene-based optical phase modulation of waveguide transverse electric modes. Photon. Res. 2, A34–A40 (2014).

    CAS  Google Scholar 

  78. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top- gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    CAS  Google Scholar 

  79. Sorianello, V. et al. Complex effective index in graphene-silicon waveguide. Opt. Express 24, 29984–29993 (2016).

    CAS  Google Scholar 

  80. Chang, Y. C., Liu, C. H., Liu, C. H., Zhong, Z. & Norris, T. B. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett. 104, 261909 (2014).

    Google Scholar 

  81. Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).

    CAS  Google Scholar 

  82. Stauber, T., Peres, N. M. R. & Geim, A. K. Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008).

    Google Scholar 

  83. Mak, K. F., Ju, L. F., Wang, F. & Heinz, T. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012).

    CAS  Google Scholar 

  84. Moss, T. S., Burrell, G. J. & Ellis, B. Semiconductor Opto-Electronics (Butterworth, London, 1973).

    Google Scholar 

  85. Agrawal, G. P. Fiber-Optic Communication Systems 4th edn (John Wiley & Sons, Hoboken, 2014).

    Google Scholar 

  86. Sorianello, V. et al. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

    CAS  Google Scholar 

  87. Gnauck, A. H. & Winzer, P. J. Optical phase-shift-keyed transmission. IEEE J. Lightwave Technol. 23, 115 (2005).

    Google Scholar 

  88. Xu, C. & Liu, X. Differential phase-shift keying for high spectral efficiency optical transmissions. IEEE J. Sel. Top. Quantum Electron. 10, 281–293 (2004).

    CAS  Google Scholar 

  89. Proakis, J. G. Digital Communications (McGraw Hill, Singapore, 1995).

    Google Scholar 

  90. Kramer, G. Ashikhmin, van Wijngaarden, A., A. & Wei, X. Spectral efficiency of coded phase-shift keying for fiber optic communications. IEEE J. Lightwave Technol. 21, 2438–2445 (2003).

    Google Scholar 

  91. Yan, L.-S., Liu, X. & Shieh, W. Toward the Shannon limit of spectral efficiency. IEEE Photon. J. 3, 325–330 (2011).

    Google Scholar 

  92. Lotz, T. H., Sauer-Greff, W. & Urbansky, R. Spectral efficient coding schemes in optical communications. Int. J. Optoelectron. Eng. 2, 18–25 (2012).

    Google Scholar 

  93. Webster, M. A. et al. Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers. Optical Fiber Commun. Conf. https://doi.org/10.1364/OFC.2015.W4H.3 (2015).

    Article  Google Scholar 

  94. Thomson, D. J. et al. High performance Mach–Zehnder-based silicon optical modulators. IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).

    Google Scholar 

  95. Xiao, X. et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express 21, 4116–4125 (2013).

    CAS  Google Scholar 

  96. Ding, J., Ji, R., Zhang, L. & Yang, L. Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator. IEEE J. Lightwave Technol. 31, 2434–2440 (2013).

    Google Scholar 

  97. Yang, Y. et al. High-efficiency Si optical modulator using Cu travelling-wave electrode. Opt. Express 22, 29978–29985 (2014).

    Google Scholar 

  98. Ding, R. et al. Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator. Opt. Commun. 321, 124–133 (2014).

    CAS  Google Scholar 

  99. Xiong, C. et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 3, 1060–1065 (2016).

    Google Scholar 

  100. Streshinsky, M. et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt. Express 21, 30350–30357 (2013).

    Google Scholar 

  101. Tu, X. et al. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express 21, 12776–12782 (2013).

    Google Scholar 

  102. Azadeh, S. S. et al. Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express 23, 23526–23550 (2015).

    CAS  Google Scholar 

  103. Gill, D. M. et al. Demonstration of a high extinction ratio monolithic CMOS integrated nanophotonic transmitter and 16 Gb/s optical link. IEEE J. Sel. Top. Quantum Electron. 21, 3400311 (2015).

    Google Scholar 

  104. Milivojevic, B. et al. 112 Gb/s DP-QPSK transmission over 2427 km SSMF using small size silicon photonics IQ modulator and low power CMOS driver. Optical Fiber Commun. Conf. https://doi.org/10.1364/OFC.2013.OTh1D.1 (2013).

    Article  Google Scholar 

  105. Hiraki, T. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photon. 11, 482–485 (2017).

    CAS  Google Scholar 

  106. Han, J.-H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).

    CAS  Google Scholar 

  107. Abraham, A., Olivier, S., Marris-Morini, D. & Vivien, L. Evaluation of the performances of a silicon optical modulator based on a silicon-oxide-silicon capacitor. 11th Inter. Conf. Group IV Photonics (GFP) https://doi.org/10.1109/Group4.2014.6961999 (2014).

    Article  Google Scholar 

  108. Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    Google Scholar 

  109. Denoyer, G. et al. Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber. Europ. Conf. Optical Communication https://doi.org/10.1109/ECOC.2014.6964262 (2014).

  110. Gupta, S. et al. 50 GHz Ge waveguide electro-absorption modulator integrated in a 220 nm SOI photonics platform. Optical Fiber Commun. Conf. https://doi.org/10.1364/OFC.2015.Tu2A.4 (2015).

  111. Feng, N. N. et al. 30 GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide. Opt. Express 19, 7062–7067 (2011).

    CAS  Google Scholar 

  112. Feng, D. et al. High-speed GeSi electroabsorption modulator on the SOI waveguide platform. IEEE J. Sel. Top. Quantum Electron. 19, 3401710 (2013).

    Google Scholar 

  113. Sorianello, V. et al. Chirp management in silicon-graphene electro absorption modulators. Opt. Express 25, 19371–19381 (2017).

    CAS  Google Scholar 

  114. Colinge, J.-P. Silicon-on-Insulator Technology: Materials to VLSI. (Springer Science & Business Media LLC, 2013).

  115. Liow, T.-Y. et al. Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization. IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).

    CAS  Google Scholar 

  116. Romagnoli, M. Graphene integrated photonics for next generation optical communications [abstract]. Graphene Conf. http://www.phantomsnet.net/Graphene_Conf/2016/Abstracts/a_Romagnoli_Marco.pdf (2016).

  117. Philipp, H. R. Optical properties of silicon nitride. ECS J. Solid State Sci. Technol. 120, 295–300 (1973).

    CAS  Google Scholar 

  118. Rahim, A. et al. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. IEEE J. Lightwave Technol. 35, 639–649 (2016).

    Google Scholar 

  119. Barwicz, T. et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat. Photon. 1, 57–60 (2007).

    CAS  Google Scholar 

  120. Plummer, J. D., Deal, M. & Griffin, P. B. Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, 2000).

  121. Muzio, E. Optical lithography cost of ownership (COO) – final report for LITG501. Int. SEMATECH http://www.sematech.org/docubase/document/4014atr.pdf (2000).

  122. [no authors listed]. The problem with packaging. Fibre Systems https://www.fibre-systems.com/feature/problem-packaging (2015).

  123. Kawachi, M. Silica waveguides on silicon and their application to integrated-optic components. Opt. Quantum Electron. 22, 391–416 (1990).

    CAS  Google Scholar 

  124. Reed, G. T. & Knights, A. P. Silicon Photonics: An Introduction (John Wiley & Sons, 2004).

  125. Gill, D. M. et al. Demonstration of error-free 32 Gb/s operation from mono lithic CMOS nanophotonic transmitters. IEEE Photon. Technol. Lett. 28, 1410–1413 (2016).

    Google Scholar 

  126. Liu, J. M. Photonic Devices (Cambridge Univ. Press, 2005).

  127. Josephs, H. C. A figure of merit for digital systems. Microelectron. Reliab. 4, 345–350 (1965).

    Google Scholar 

  128. Hinton, K. et al. Power consumption and energy efficiency in the internet. IEEE Netw. 25, 6–12 (2011).

    Google Scholar 

  129. Miller, D. A. B. Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012).

    Google Scholar 

  130. Leuthold, J. et al. High-speed, low-power optical modulators in silicon. 15th Int. Conf. Transparent Optical Networks https://doi.org/10.1109/ICTON.2013.6603001 (2013).

    Article  Google Scholar 

  131. Li, G. L., Mason, T. G. B. & Yu, P. K. L. Analysis of segmented traveling- wave optical modulators. IEEE J. Lightwave Technol. 22, 1789–1796 (2004).

    CAS  Google Scholar 

  132. Tekin, T. & Pleros, N. Optical Interconnects for Data Centers (Elsevier, 2016).

  133. Seimetz, M. High-Order Modulation for Optical Fiber Transmission (Springer, 2009).

  134. Webster, M. et al. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. 11th Int. Conf. Group IV Photonics (GFP) https://doi.org/10.1109/Group4.2014.6961998 (2014).

    Article  Google Scholar 

  135. Rajagopalan, B., Pendarakis, D., Saha, D., Ramamoorthy, R. S. & Bala, K. IP over optical networks: architectural aspects. IEEE Commun. Mag. 38, 94–102 (2000).

    Google Scholar 

  136. Kachris, C., Kanonakis, K. & Tomkos, I. Optical interconnection networks in data centers: Recent trends and future challenges. IEEE Commun. Mag. 51, 39–45 (2013).

    Google Scholar 

  137. Singh, A. et al. Jupiter rising: a decade of Clos topologies and centralized control in Google’s datacenter network. Computer Commun. Rev. 45, 183–197 (2015).

    Google Scholar 

  138. Liu, X. & Effenberger, F. Emerging optical access network technologies for 5G wireless. J. Opt. Commun. Netw. 8, B70–B79 (2016).

    Google Scholar 

  139. El-Bawab, T. S. Optical Switching (Springer, 2006).

  140. Papagiannaki, K. et al. A pragmatic definition of elephants in internet backbone traffic. Proc. ACM Sigcomm Internet Measurement Workshop http://www.academia.edu/620709/A_pragmatic_definition_of_elephants_in_internet_backbone_traffic (2002).

  141. Idzikowski, F., Orlowski, S., Raack, C., Woesner, H. & Wolisz, A. Dynamic routing at different layers in IP-over-WDM networks – maximizing energy savings. Opt. Switch. Netw. 8, 181–200 (2011).

    Google Scholar 

  142. Zang, H., Jue, J. P. & Mukherjee, B. A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1, 47–60 (2000).

    Google Scholar 

  143. Friedman, L., Soref, R. A. & Lorenzo, J. P. Silicon double-injection electro-optic modulator with junction gate-control. J. Appl. Phys. 63, 1831–1839 (1988).

    CAS  Google Scholar 

  144. Kuroyanagi, S. & Nishi, T. Optical path restoration schemes and cross-connect architectures for photonic transport networks. IEEE GLOBECOM https://doi.org/10.1109/GLOCOM.1998.775938 (1998).

    Article  Google Scholar 

  145. McKeown, N. Software-defined networking. Proc. IEEE Infocom https://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.pdf (2009).

  146. Cugini, F. et al. Toward plug-and-play software-defined elastic optical networks. IEEE J. Lightwave Technol. 34, 1494–1500 (2016).

    Google Scholar 

  147. Tombaz, S. et al. Energy performance of 5G-NX wireless access utilizing massive beamforming and an ultra-lean system design. IEEE GLOBECOM https://doi.org/10.1109/GLOCOM.2015.7417240 (2015).

    Article  Google Scholar 

  148. Fiorani, M. et al. Modeling energy performance of C-RAN with optical transport in 5G network scenarios. J. Opt. Commun. Netw. 8, B21–B34 (2016).

    Google Scholar 

  149. Kitayama, K. et al. Photonic network vision 2020—toward smart photonic cloud. IEEE J. Lightwave Technol. 32, 2760–2770 (2014).

    Google Scholar 

  150. Stabile, R., Albores-Mejia, A., Rohit, A. & Williams, K. A. Integrated optical switch matrices for packet data networks. Microsyst. Nanoeng. 2, 15042 (2016).

    Google Scholar 

  151. Neyer, A. Electro-optic switch using single-mode Ti:LiNbO3 channel waveguides. Electron. Lett. 19, 553–554 (1983).

    Google Scholar 

  152. Okayama, H. & Kawahara, M. Prototype 32 × 32 optical switch matrix. Electron. Lett. 30, 1128–1129 (1994).

    Google Scholar 

  153. Doerr, C. R. Proposed WDM cross connect using a planar arrangement of waveguide grating routers and phase shifters. IEEE Photon. Technol. Lett. 10, 528–530 (1998).

    Google Scholar 

  154. Okayama, H. Lithium niobate: electro-optic guided-wave optical switch. Proc. SPIE 4532, 73–85 (2001).

    Google Scholar 

  155. Krähenbühl, R., Dubinger, J. & Greenblatt, A. S. Performance and modeling of advanced Ti: LiNbO3 digital optical switches. IEEE J. Lightwave Technol. 20, 92–99 (2002).

    Google Scholar 

  156. Smith, D. A. et al. Evolution of the acousto-optic wavelength routing switch. IEEE J. Lightwave Technol. 14, 1005–1019 (1996).

    Google Scholar 

  157. Smith, D. A. et al. Multiwavelength performance of an apodized acousto-optic switch. IEEE J. Lightwave Technol. 14, 2044–2051 (2002).

    Google Scholar 

  158. Sapriel, J., Molchanov, V., Aubin, G. & Gosselin, S. Acousto-optic switch for telecommunication networks. Proc. SPIE 5828, 68–75 (2005).

    CAS  Google Scholar 

  159. Goh, T. et al. Low loss and high extinction ratio strictly nonblocking 16 × 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology. IEEE J. Lightwave Technol. 19, 371–379 (2001).

    CAS  Google Scholar 

  160. Ji, R. et al. Five-port optical router based on microring switches for photonic networks-on-chip. Opt. Express 21, 20258–20268 (2011).

    Google Scholar 

  161. Das Mahapatra, P., Stabile, R., Rohit, A. & Williams, K. A. Optical crosspoint matrix using broadband resonant switches. IEEE J. Sel. Top. Quantum Electron. 20, 5900410 (2014).

    Google Scholar 

  162. Suzuki, K. et al. Ultra-compact 8 × 8 strictly non-blocking Si-wire PILOSS switch. Opt. Express 22, 3887–3894 (2014).

    CAS  Google Scholar 

  163. Tanizawa, K. et al. Ultra-compact 32 × 32 strictly non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express 23, 17599–17606 (2015).

    CAS  Google Scholar 

  164. Johnson, K. M., McKnight, D. J. & Underwood, I. Smart spatial light modulators using liquid crystals on silicon. IEEE J. Quant. Electron. 23, 699–710 (1993).

    Google Scholar 

  165. Riza, N. A. & Yuan, S. Low optical interchannel crosstalk, fast switching speed, polarisation independent 2 × 2 fiber optic switch using ferroelectric liquid crystals. Electron. Lett. 34, 1341–1342 (1998).

    Google Scholar 

  166. Baxter, G. et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements. Proc. Optical Fiber Commun. https://doi.org/10.1109/OFC.2006.215365 (2006).

    Article  Google Scholar 

  167. Wall, P., Colbourne, P., Reimer, C. & McLaughlin, S. WSS switching engine technologies. Optical Fiber Commun. Conf. https://doi.org/10.1109/OFC.2008.4528672 (2008).

    Article  Google Scholar 

  168. Ford, J. E., Aksyuk, V. A., Bishop, D. J. & Walker, J. A. Wavelength add-drop switching using tilting micromirrors. IEEE J. Lightwave Technol. 17, 904–911 (1999).

    Google Scholar 

  169. Ollier, E. Optical MEMS devices based on moving waveguides. IEEE J. Sel. Top. Quantum Elect. 8, 155–162 (2002).

    CAS  Google Scholar 

  170. Yamamoto, T. et al. A three-dimensional MEMS optical switching module having 100 input and 100 output ports. IEEE Photon. Technol. Lett. 15, 1360–1362 (2003).

    Google Scholar 

  171. Zheng, X. et al. Three-dimensional MEMS photonic crossconnect switch design and performance. IEEE J. Sel. Top. Quantum Electron. 9, 571–578 (2003).

    CAS  Google Scholar 

  172. Wu, M. C., Solgaard, O. & Ford, J. E. Optical MEMS for lightwave communication. IEEE J. Lightwave Technol. 24, 4433–4454 (2006).

    Google Scholar 

  173. Han, S., Seok, T. J., Quack, N., Yoo, B.-W. & Wu, M. C. Large-scale silicon photonic switches with movable directional couplers. Optica 2, 370–375 (2015).

    Google Scholar 

  174. Varrazza, R., Djordjevic, I. B. & Y., S. Active vertical-coupler-based optical crosspoint switch matrix for optical packet-switching applications. IEEE J. Lightwave Technol. 22, 2034–2042 (2004).

    Google Scholar 

  175. Wang, H., Wonfor, A., Williams, K. A., Penty, R. V. & White, I. H. Demonstration of a lossless monolithic 16 × 16 QW SOA switch. Proc. 35th Europ. Con. Optical Communication https://pure.tue.nl/ws/files/2817777/Metis234139.pdf (2009).

  176. Nicholes, S. C. et al. An 8 × 8 InP monolithic tunable optical router (MOTOR) packet forwarding chip. IEEE J. Lightwave Technol. 2, 641–650 (2012).

    Google Scholar 

  177. Soganci, I. M., Tanemura, T. & Nakano, Y. Integrated phased-array switches for largescale photonic routing on chip. Laser Photon. Rev. 6, 549–563 (2012).

    Google Scholar 

  178. Stabile, R., Albores-Mejia, A. & Williams, K. A. Monolithic active-passive 16 × 16 optoelectronic switch. Opt. Lett. 37, 4666–4668 (2012).

    CAS  Google Scholar 

  179. Stabile, R., Rohit, A. & Williams, K. A. Monolithically integrated 8 × 8 space and wavelength selective cross-connect. IEEE J. Lightwave Technol. 32, 201–207 (2013).

    Google Scholar 

  180. Smit, M., van der Tol, J. & Hill, M. Moore’s law in photonics. Laser Photon. Rev. 6, 1–13 (2012).

    CAS  Google Scholar 

  181. Doerr, C. in Optical Fiber Telecommunications IV-A Components (Eds Kaminov, I. P. & Li, T.) (Academic Press, Cambridge, MA, 2002).

    Google Scholar 

  182. Suzuki, S., Shuto, S. & Hibino, Y. Integrated-optic ring resonators with two stacked layers of silica waveguide on Si. IEEE Photon. Technol. Lett. 4, 1256–1258 (1992).

    Google Scholar 

  183. Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. & Laine, J. P. Microring resonator channel dropping filters. IEEE J. Lightwave Technol. 15, 998–1005 (1997).

    Google Scholar 

  184. Little, B. E. et al. Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10, 549–551 (1998).

    Google Scholar 

  185. Little, B. E., Chu, S. T., Hryniewicz, J. V. & Absil, P. P. Filter synthesis of periodically coupled microring resonators. Opt. Lett. 5, 344–346 (2000).

    Google Scholar 

  186. Little, B. E., Chu, S. T., Pan, W. & Kokobun, Y. Microring resonator arrays for VLSI photonics. IEEE Photon. Technol. Lett. 12, 323–325 (2000).

    Google Scholar 

  187. Grover, R. et al. Parallel-cascaded semiconductor microring resonators for high-order and wide FSR-filters. IEEE J. Lightwave Technol. 20, 900–905 (2002).

    CAS  Google Scholar 

  188. Vorckel, A., Monster, M., Henschel, W., Bolivar, P. H. & Kurz, H. Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers. IEEE Photon. Technol. Lett. 15, 921–923 (2003).

    Google Scholar 

  189. Klein, E. J. et al. Reconfigurable optical add–drop multiplexer using microring resonators. IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).

    CAS  Google Scholar 

  190. Yangfang, L., Yonghui, T. & Lin, Y. Integrated reconfigurable optical add-drop multiplexers based on cascaded microring resonators. J. Semicond. 34, 094012 (2013).

    Google Scholar 

  191. Xiao, X. et al. Eight-channel optical add-drop multiplexer with cascaded parent-sub microring resonators. IEEE Photon. J. 7, 7801307 (2015).

    Google Scholar 

  192. Brackett, C. A. Dense wavelength division multiplexing networks: principles and applications. IEEE J. Sel. Areas Commun. 8, 948–964 (1990).

    Google Scholar 

  193. Ramaswami, R. & Sivarajan, K. N. Optical Networks (Morgan Kaufmann, San Francisco, 1998).

    Google Scholar 

  194. Kaminow, I. P. & Koch, T. L. Optical Fiber Communications IIIA (Academic Press, San Diego, 1997).

    Google Scholar 

  195. Laude, J.-P. DWDM Fundamentals, Components and Applications (Artech House, Norwood MA, 2002).

    Google Scholar 

  196. Internatinal Telecommunication Union. Optical Fibres, Cables and Systems (ITU, 2009).

  197. Geuzebroek, D. H. et al. Thermally tuneable, wide FSR switch based on micro-ring resonators. Proc. Symposium IEEE/LEOS https://ris.utwente.nl/ws/portalfiles/portal/6149675 (2002).

  198. Kiyat, I., Aydinli, A. & Dagli, N. Low-power thermo optical tuning of SOI resonator switch. IEEE Photon. Technol. Lett. 18, 364–366 (2006).

    CAS  Google Scholar 

  199. Gan, F. et al. Maximizing the thermo-optic tuning range of silicon photonic structures. Photonics in Switching https://doi.org/10.1109/PS.2007.4300747 (2007).

    Article  Google Scholar 

  200. Dai, D., Yang, L. & He, S. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. IEEE J. Lightwave Technol. 26, 704–709 (2008).

    CAS  Google Scholar 

  201. Atabaki, A. H., Shah Hosseini, E., Eftekhar, A. A., Yegnanarayanan, S. & Adibi, A. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express 18, 18312–18323 (2010).

    CAS  Google Scholar 

  202. Bogaerts, W. et al. Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012).

    CAS  Google Scholar 

  203. Cocorullo, G. & Rendina, I. Thermo-optical modulation at 1.5 μm in silicon etalon. Electron. Lett. 28, 83–84 (1992).

    Google Scholar 

  204. Cocorullo, G., Della Corte, F. G., Rendina, I. & Sarro, P. M. Thermo-optic effect exploitation in silicon microstructures. Sens. Actuators A. 71, 19–26 (1998).

    CAS  Google Scholar 

  205. Clark, S. A., Culshaw, B., Dawnay, E. J. C. & Day, I. E. Thermo-optic phase modulation in SIMOX structures. Proc. SPIE 3936, 16–24 (2000).

    CAS  Google Scholar 

  206. Cassese, T. et al. Capacitive actuation and switching of add-drop graphene-silicon micro-ring filters. Photon Res. 5, 762–766 (2017).

    Google Scholar 

  207. Mukherjee, B. Optical Communication Networks (McGraw-Hill, New York, 1997).

    Google Scholar 

  208. Chinni, V. Crosstalk in a lossy directional coupler switch. IEEE J. Lightwave Technol. 13, 1530–1535 (1995).

    Google Scholar 

  209. Prati, G. E. Photonic Networks, Advances in Optical Communications (Springer, 1997).

  210. Hinton, H. S. An Introduction to Photonic Switching Fabrics (Plenum, New York, 1998).

    Google Scholar 

  211. Gyselings, T., Morthier, G. & Baets, R. Crosstalk analysis of multiwavelength optical cross connect. IEEE J. Lightwave Technol. 17, 1273–1283 (1999).

    Google Scholar 

  212. Lin, B.-C. & Lea, C.-T. Crosstalk analysis for microring based optical interconnection networks. IEEE J. Lightwave Technol. 30, 2415–2420 (2012).

    Google Scholar 

  213. Gautam, R. et al. Thermo-optically driven silicon microring-resonator-loaded Mach–Zehnder modulator for low power consumption and multiple-wavelength modulation. Jpn J. Appl. Phys. 53, 022201 (2014).

    Google Scholar 

  214. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

    CAS  Google Scholar 

  215. Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

    Google Scholar 

  216. Echtermeyer, T. J. et al. Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. Nano Lett. 14, 3733–3742 (2014).

    CAS  Google Scholar 

  217. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    CAS  Google Scholar 

  218. Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nat. Photon. 7, 53–59 (2012).

    Google Scholar 

  219. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    CAS  Google Scholar 

  220. Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    CAS  Google Scholar 

  221. Tielrooij, K. J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015).

    CAS  Google Scholar 

  222. Dawlaty, J. M. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008).

    Google Scholar 

  223. Schuler, S. et al. Controlled generation of a pn-junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107–7112 (2016).

    CAS  Google Scholar 

  224. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    CAS  Google Scholar 

  225. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    CAS  Google Scholar 

  226. Song, J. C. W. Hot Carriers in Graphene. Thesis, Harvard Univ. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070076 (2014).

  227. Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    CAS  Google Scholar 

  228. Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41 (2018).

    CAS  Google Scholar 

  229. Basko, D. A. Photothermoelectric effect in graphene. Science 334, 610–611 (2011).

    CAS  Google Scholar 

  230. Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    CAS  Google Scholar 

  231. Liu, C. H., Dissanayake, N. M., Lee, S., Lee, K. & Zhong, Z. H. Evidence for extraction of photoexcited hot carriers from graphene. ACS Nano 6, 7172–7176 (2012).

    CAS  Google Scholar 

  232. Zhang, B. Y., Liu, T., Mengo, B. & Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).

    Google Scholar 

  233. Chang, H. L., Chang, Y.-C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

    Google Scholar 

  234. Lemme, M. et al. Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 11, 4134–4137 (2011).

    CAS  Google Scholar 

  235. Gan, X., Shiue, R.-J., Gao, Y. & Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 7, 888–891 (2013).

    Google Scholar 

  236. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photon. 7, 892–896 (2013).

    CAS  Google Scholar 

  237. Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 1, 781–784 (2014).

    CAS  Google Scholar 

  238. Alexander, S. B. Optical Communication Receiver Design (SPIE Press, 1997).

  239. Goykhman, I. et al. On-chip integrated, silicon–graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 16, 3005–3013 (2016).

    CAS  Google Scholar 

  240. [no authors listed]. Basics of microstructuring. MicroChemicals https://www.microchemicals.com/technical_information/lift_off_photoresist.pdf (2013).

  241. Gupta, T. Copper Interconnect Technology (Springer-Verlag, New York, 2009).

    Google Scholar 

  242. Smith, A. D., Vaziri, S., Rodriguez, S., Östling, M. & Lemme, M. C. Wafer scale graphene transfer for back end of the line device integration. 15th Int. Conf. Ultimate Integration on Silicon (2014).

  243. Heo, J. et al. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics. Nano Lett. 13, 5967–5971 (2013).

    CAS  Google Scholar 

  244. Rizzi, L. G. et al. Cascading wafer-scale integrated graphene complementary inverters under ambient conditions. Nano Lett. 12, 3948–3953 (2012).

    CAS  Google Scholar 

  245. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    CAS  Google Scholar 

  246. [no authors listed]. International technology roadmap for semiconductors 2.0. https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2015/0_2015%20ITRS%202.0%20Executive%20Report%20(1).pdf (2015).

  247. Kobayashi, N. in Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications (eds Shacham-Diamond, Y., Osaka, T., Dataa, M. & Ohba, T.) 263–273 (Springer-Verlag, New York, 2009).

    Google Scholar 

  248. Singer, P. Making the move to dual damascene processing. Semicond. Int. 20, 79–82 (1997).

    CAS  Google Scholar 

  249. Gelatos, A. V. & Fiordalice, R. W. Process for forming copper interconnect structure. US Patent US5391517A (1993).

  250. Chen, H. T. et al. 25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode. IEEE Photon. J. 7, 7902909 (2015).

    Google Scholar 

  251. Srinivasan, A. S. et al. 56 Gb/s germanium waveguide electro-absorption modulator. IEEE J. Lightwave Technol. 34, 419–424 (2015).

    Google Scholar 

  252. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2015).

    Google Scholar 

  253. Simoen, E. et al. On the temperature and field dependence of trap-assisted tunneling current in Ge pn junctions. IEEE Electron. Device Lett. 30, 562 (2009).

    CAS  Google Scholar 

  254. DiLello, N. A. & Hoyt, J. L. Impact of post-metallization annealing on Ge-on-Si photodiodes passivated with silicon dioxide. Appl. Phys. Lett. 99, 033508 (2011).

    Google Scholar 

  255. Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Google Scholar 

  256. Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    CAS  Google Scholar 

  257. Gao, L. et al. Face-to-face transfer of wafer-scale graphene films. Nature 505, 190–194 (2014).

    CAS  Google Scholar 

  258. Zhang, Y., Zhang, L. & Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013).

    CAS  Google Scholar 

  259. Inohara, M. et al. Copper contamination induced degradation of MOSFET characteristics and reliability. Proc. IEEE 2000 Symposium of VLSI (2000).

  260. Istratov, A. A. & Weber, E. R. Physics of copper in silicon. J. Electrochem. Soc. 149, G21–G30 (2002).

    CAS  Google Scholar 

  261. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Google Scholar 

  262. Gao, L. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).

    Google Scholar 

  263. Vikas, B. Impermeability of graphene and its applications. Carbon 62, 1–10 (2013).

    Google Scholar 

  264. Couto, N. J. G. et al. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 4, 041019 (2014).

    Google Scholar 

  265. Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single electron transistor. Nat. Phys. 4, 144–148 (2008).

    CAS  Google Scholar 

  266. Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009).

    CAS  Google Scholar 

  267. Gao, W., Xiao, P., Henkelman, G., Liechti, K. M. & Huang, R. Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. J. Phys. D 47, 255301 (2014).

    Google Scholar 

  268. Banszerus, L. et al. Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett. 16, 1387–1391 (2016).

    CAS  Google Scholar 

  269. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. arXiv, 1803.00912 (2018).

  270. Xue, J. et al. STM spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

    CAS  Google Scholar 

  271. Dean, C. R. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    CAS  Google Scholar 

  272. Jang, A. R. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360–3366 (2016).

    CAS  Google Scholar 

  273. Shautsova, K., Gilbertson, A. M., Black, N. C. G., Maier, S. A. & Cohen, L. F. Hexagonal boron nitride assisted transfer and encapsulation of large area CVD graphene. Sci. Rep. 6, 30210 (2016).

    CAS  Google Scholar 

  274. Chen, C.-T., Casu, E. A., Gajek, M. & Raoux, S. Low-damage high-throughput grazing-angle sputter deposition on graphene. Appl. Phys. Lett. 103, 033109 (2013).

    Google Scholar 

  275. Tang, X. et al. Damage evaluation in graphene underlying atomic layer deposition dielectrics. Sci. Rep. 5, 13523 (2015).

    CAS  Google Scholar 

  276. George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    CAS  Google Scholar 

  277. Green, M. L. et al. Nucleation and growth of atomic layer deposited HfO2 gate dielectric layers on chemical oxide (Si–O–H) and thermal oxide (SiO2 or Si–O–N) underlayers. J. Appl. Phys. 92, 7168–7174 (2002).

    CAS  Google Scholar 

  278. Puurunen, R. L. & Vandervorst, W. Island growth as a growth mode in atomic layer deposition. J. Appl. Phys. 96, 7686–7695 (2004).

    CAS  Google Scholar 

  279. Oh, I. L. et al. Nucleation and growth of the HfO2 dielectric layer for graphene-based devices. Chem. Mater. 27, 5868–5877 (2015).

    CAS  Google Scholar 

  280. Young, M. J., Musgrave, C. B. & George, S. M. Growth characterization of Al2O3 atomic layer deposition films on sp(2)-graphitic carbon substrates using NO2/trimethylaluminum pretreatment. ACS Appl. Mater. Interfaces 7, 12030–12037 (2015).

    CAS  Google Scholar 

  281. Chen, W. K. (ed.) The VLSI Handbook 2nd edn (CRC Press, 2007).

  282. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Google Scholar 

  283. Miseikis, V. et al. Deterministic patterned growth of high-mobility large-crystal graphene: a path towards wafer scale integration. 2D Mater. 4, 021004 (2017).

    Google Scholar 

  284. Song, J. et al. General method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 8, 356–362 (2013).

    CAS  Google Scholar 

  285. Ma, P. et al. Plasmonically enhanced graphene photodetector featuring 100 GBd, high-responsivity and compact size. ArXiv preprint at https://arxiv.org/abs/1808.10823 (2018).

    Google Scholar 

  286. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Google Scholar 

  287. Liu, J.-M. Principles of Photonics (Cambridge Univ. Press, 2016).

  288. Tamir, T. Integrated Optics (Springer-Verlag, 1975).

  289. Nakazawa, M., Kikuchi, K. & Miyazaki, T. High Spectral Density Optical Communication Technologies (Springer-Verlag, 2010).

  290. Reed, G. T. Silicon Photonics (John Wiley & Sons, Chichester, 2008).

    Google Scholar 

  291. Hu, Y. T. et al. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photon. Rev. 10, 307–316 (2016).

    Google Scholar 

  292. [no authors listed]. Extinction ratio and power penalty. Maxin Integrated https://pdfserv.maximintegrated.com/en/an/AN596.pdf (2008).

  293. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Google Scholar 

  294. Xu, T. Digital signal processing for optical communications and networks I: Linear compensation. arXiv, 1705.05284v1 (2017).

  295. Li, G. L. & Yu, P. K. L. Optical intensity modulators for digital and analog applications. IEEE J. Lightwave Technol. 21, 2010–2030 (2003).

    Google Scholar 

  296. Wang, H. et al. Simulation and experiment of 1310 nm high speed InGaAsP/InP EAM. Proc. SPIE 9270 (2014).

  297. Wang, H. T. et al. Optimization of 1.3−μm InGaAsP/InP electro-absorption modulator. Chin. Phys. Lett. 32, 084203 (2015).

    Google Scholar 

  298. Gill, D. M. et al. A figure of merit based transmitter link penalty calculation for CMOS-compatible plasma-dispersion electro-optic Mach-Zehnder modulators. arXiv, 1211.2419

  299. Chin, M. K. On the figures of merit for electro-absorption waveguide modulators. IEEE Photon. Technol. Lett. 4, 527–534 (2010).

    Google Scholar 

  300. Beling, A. & Campbell, J. C. InP-based high-speed photodetectors. IEEE J. Lightwave Technol. 27, 343–355 (2009).

    Google Scholar 

  301. Papes, M. Fiber-chip edge coupler with large mode size for silicon photonics wire waveguides. Opt. Express 24, 5026–5038 (2016).

    CAS  Google Scholar 

  302. Iwai, H. Roadmap for 22 nm and beyond. Microelectron. Eng. 86, 1520–1528 (2009).

    CAS  Google Scholar 

  303. Dong, P. et al. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express 20, 6163–6169 (2012).

    CAS  Google Scholar 

  304. Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Google Scholar 

  305. Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Mater. Today 15, 564 (2012).

    CAS  Google Scholar 

  306. Hwang, E. H., Adam, S., Hu, B. Y. K. & Das Sarma, S. Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer. Phys. Rev. B 77, 195412 (2008).

    Google Scholar 

  307. Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).

    Google Scholar 

  308. Soref, R. A. Silicon based optoelectronics. Proc. IEEE 81, 1687–1706 (1993).

    CAS  Google Scholar 

  309. Liu, A. et al. A high-speed silicon optical modulator based on metal-oxide semiconductor capacity. Nature 427, 615–618 (2004).

    CAS  Google Scholar 

  310. Treyz, G. V., May, P. G. & Halbout, J. M. Silicon optical modulators at 1.3 micrometer based on free-carrier absorption. IEEE Electron. Device Lett. 12, 276–278 (1991).

    CAS  Google Scholar 

  311. Liu, A. et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 25, 660–668 (2007).

    Google Scholar 

  312. Treyz, G. V., May, P. G. & Halbout, J. M. Silicon Mach-Zehnder waveguide interferometer based on the plasma dispersion effect. Appl. Phys. Lett. 59, 771–773 (1991).

    Google Scholar 

  313. Tang, C. K., Reed, G. T., Wilson, A. J. & Rickman, A. G. Low-loss, single-mode, optical phase modulator in SIMOX material. IEEE J. Lightwave Technol. 12, 1394–1400 (1994).

    Google Scholar 

  314. Tang, C. K. & Reed, G. T. Highly efficient optical phase modulator in SOI waveguide. Electron. Lett. 31, 451–452 (1995).

    Google Scholar 

  315. Dainesi, P. et al. CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology. IEEE Photon. Technol. Lett. 12, 660–662 (2000).

    Google Scholar 

  316. Png, C. E., Chan, S. P., Lim, S. T. & Reed, G. T. Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). IEEE J. Lightwave Technol. 22, 1573–1582 (2004).

    CAS  Google Scholar 

  317. Jackson, J. D. Classical Electrodynamics (John Wiley & Sons, Inc., 1999).

  318. Franz, W. Einflußeines elektrischen feldes auf eine optische absorptionskante. Z. Naturforschung 13a, 484–489 (1958).

    Google Scholar 

  319. Verbist, J. et al. First real-time 100-Gb/s NRZ-OOK transmission over 2 km with a silicon photonic electro-absorption modulator. Proc. Optical Fiber Commun. Conf. https://biblio.ugent.be/publication/8523677/file/8523680.pdf (2017).

  320. Falkovsky, L. A. & Pershoguba, S. S. Optical far infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007).

    Google Scholar 

  321. Falkovski, L. A. Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008).

    Google Scholar 

  322. Young, I. A. et al. Optical I/O technology for tera-scale computing. IEEE J. Solid-State Circuits 45, 235–248 (2010).

    Google Scholar 

  323. Smith, D. R. Digital Transmission Systems (Springer, 2004).

Download references

Acknowledgements

This work was conceived within the Graphene Flagship project. The authors acknowledge funding from the European Union H2020 Graphene Project, European Research Council (ERC) Grant Hetero2D and Engineering and Physical Sciences Research Council (EPSRC) grant nos. EP/509 K01711X/1, EP/K017144/1, EP/ N010345/1, EP/M507799/5101 and EP/L016087/1.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived this work and collaborated equally in the writing of the text.

Corresponding author

Correspondence to Andrea C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CLR4: https://www.clr4-alliance.org/

Ethernet Alliance: http://www.ethernetalliance.org/

Information and Communication Technologies, Environmental Sustainability and Climate Change: http://www.itu.int/en/action/climate/Pages/default.aspx

International Technology Roadmap for Semiconductors 2.0, 2013 Edition, Design: http://www.itrs2.net/2013-itrs.html

International Telecommunications Union: Interfaces for the optical transport network: https://www.itu.int/rec/T-REC-G.709/en

International Telecommunications Union: Support of IP-based services using IP transfer capabilities: https://www.itu.int/rec/T-REC-Y.1241/en

Internet of Everything: https://newsroom.cisco.com/ioe

New 2018 Ethernet roadmap looks to future speeds of 1.6 terabits/s. inside HPC: https://insidehpc.com/2018/03/new-2018-ethernet-roadmap-looks-future-speeds-1-6-terabits-s/

Photonics Component & Circuit Design Software: https://www.lumerical.com/tcad-products/

Si-on-insulator (SOI): https://order.universitywafer.com/default.aspx?cat=Silicon%20on%20Insulator%20(SOI)%20wafers

The ethernet roadmap: https://newsroom.cisco.com/ioe

Xilinx: https://www.xilinx.com/publications/about/3-D_Architectures.pdf

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romagnoli, M., Sorianello, V., Midrio, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater 3, 392–414 (2018). https://doi.org/10.1038/s41578-018-0040-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0040-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing