Review Article | Published:

Size effects on the fracture of microscale and nanoscale materials

Nature Reviews Materialsvolume 3pages211224 (2018) | Download Citation

Abstract

Micro- and nanoscale materials have remarkable mechanical properties, such as enhanced strength and toughness, but they usually display sample-to-sample fluctuations and size effects. These variations are a nuisance for engineering applications and an intriguing problem for science. Our understanding of size effects in small-scale materials has progressed in the past few years thanks to experimental measurements of carbon-based nanomaterials, such as graphene and carbon nanotubes, and of crystalline and amorphous micro- and nanopillars and micro- and nanowires. At the same time, increased computational power has allowed atomistic simulations to reach experimentally relevant sample sizes. From a theoretical point of view, the standard analysis and interpretation of experimental and computational data rely on traditional extreme value theories developed decades ago for macroscopic samples, with recent work extending some of the limiting assumptions of these theories to the micro- and nanoscale. In this Review, we discuss experimental and computational studies of size effects on the fracture in micro- and nanoscale materials, point out the advantages and limitations of existing theories and, finally, provide a pedagogical guide to the analysis of fracture data from micro- and nanoscale samples.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    da Vinci, L. I libri di Meccanica (Hoepli, Milan, 1940).

  2. 2.

    Weibull, W. A. Statistical Theory of the Strength of Materials (Generalstabens litografiska anstalts förlag, Stockholm, 1939).

  3. 3.

    Gumbel, E. J. Statistics of Extremes (Columbia Univ. Press, New York, 2004).

  4. 4.

    Griffith, A. A. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A 221, 163–198 (1921).

  5. 5.

    Weiss, J., Girard, L., Gimbert, F., Amitrano, D. & Vandembroucq, D. (Finite) statistical size effects on compressive strength. Proc. Natl Acad. Sci. USA 111, 6231–6236 (2014).

  6. 6.

    Zaiser, M. & Moretti, P. Fluctuation phenomena in crystal plasticity — a continuum model. J. Stat. Mech. Theory Exp. https://doi.org/10.1088/1742-5468/2005/08P08004 (2005).

  7. 7.

    Zaiser, M. Scale invariance in plastic flow of crystalline solids. Adv. Phys. 55, 185–245 (2006).

  8. 8.

    Tüzes, D., Ispánovity, P. D. & Zaiser, M. Disorder is good for you: the influence of local disorder on strain localization and ductility of strain softening materials. Int. J. Fract. 205, 139–150 (2017).

  9. 9.

    Freundenthal, A. M. Statistical Approach to Brittle Fracture (Academic Press, New York, 1968).

  10. 10.

    Duxbury, P. M., Leath, P. L. & Beale, P. D. Breakdown properties of quenched random systems: the random-fuse network. Phys. Rev. B 36, 367–380 (1987).

  11. 11.

    Beale, P. D. & Duxbury, P. M. Theory of dielectric breakdown in metal-loaded dielectrics. Phys. Rev. B 37, 2785 (1988).

  12. 12.

    Manzato, C. et al. Fracture strength of disordered media: universality, interactions, and tail asymptotics. Phys. Rev. Lett. 108, 065504 (2012).

  13. 13.

    Bertalan, Z., Shekhawat, A., Sethna, J. P. & Zapperi, S. Fracture strength: stress concentration, extreme value statistics, and the fate of the weibull distribution. Phys. Rev. Appl. 2, 034008 (2014).

  14. 14.

    Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

  15. 15.

    Dimiduk, D., Uchic, M. & Parthasarathy, T. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065–4077 (2005).

  16. 16.

    Uchic, M. D., Shade, P. A. & Dimiduk, D. M. Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009).

  17. 17.

    Dimiduk, D. M., Woodward, C., Lesar, R. & Uchic, M. D. Scale-free intermittent flow in crystal plasticity. Science 312, 1188–1190 (2006).

  18. 18.

    Miguel, M. C., Vespignani, A., Zapperi, S., Weiss, J. & Grasso, J.-R. Intermittent dislocation flow in viscoplastic deformation. Nature 410, 667–671 (2001).

  19. 19.

    Csikor, F. F., Motz, C., Weygand, D., Zaiser, M. & Zapperi, S. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318, 251–254 (2007).

  20. 20.

    Greer, J. R. & Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

  21. 21.

    Shan, Z., Mishra, R. K., Asif, S. S., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

  22. 22.

    Greer, J. R. & De Hosson, J. T. M. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

  23. 23.

    Wu, W. F., Li, Y. & Schuh, C. A. Strength, plasticity and brittleness of bulk metallic glasses under compression: statistical and geometric effects. Philos. Mag. 88, 71–89 (2008).

  24. 24.

    Jang, D., Gross, C. T. & Greer, J. R. Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int. J. Plast. 27, 858–867 (2011).

  25. 25.

    Kraft, O., Gruber, P. A., Mönig, R. & Weygand, D. Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010).

  26. 26.

    Sethna, J. P. et al. Deformation of crystals: connections with statistical physics. Annu. Rev. Mater. Res. 47, 217–246 (2017).

  27. 27.

    Mielke, S. L., Belytschko, T. & Schatz, G. C. Nanoscale fracture mechanics. Annu. Rev. Phys. Chem. 58, 185–209 (2007).

  28. 28.

    Jeon, S. K., Jang, H.-S., Kwon, O. H. & Nahm, S. H. Mechanical test method and properties of a carbon nanomaterial with a high aspect ratio. Nano Converg. 3, 29 (2016).

  29. 29.

    Yu, M.-F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

  30. 30.

    Barber, A. H., Andrews, R., Schadler, L. S. & Wagner, H. D. On the tensile strength distribution of multiwalled carbon nanotubes. Appl. Phys. Lett. 87, 203106 (2005).

  31. 31.

    Barber, A., Kaplan-Ashiri, I., Cohen, S., Tenne, R. & Wagner, H. D. Stochastic strength of nanotubes: an appraisal of available data. Compos. Sci. Technol. 65, 2380–2384 (2005).

  32. 32.

    Zussman, E. et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43, 2175–2185 (2005).

  33. 33.

    Deng, F. et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 49, 1752–1757 (2011).

  34. 34.

    Sun, G. et al. A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects. Appl. Phys. Lett. 101, 131905 (2012).

  35. 35.

    Zheng, L., Sun, G. & Zhan, Z. Tuning array morphology for high-strength carbon-nanotube fibers. Small 6, 132–137 (2010).

  36. 36.

    Naito, K., Yang, J.-M., Tanaka, Y. & Kagawa, Y. The effect of gauge length on tensile strength and Weibull modulus of polyacrylonitrile (PAN)-and pitch-based carbon fibers. J. Mater. Sci. 47, 632–642 (2012).

  37. 37.

    Kaplan-Ashiri, I. et al. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl Acad. Sci. USA 103, 523–528 (2006).

  38. 38.

    Chae, H. G. et al. High strength and high modulus carbon fibers. Carbon 93, 81–87 (2015).

  39. 39.

    Hill, F. A., Havel, T. F., Hart, A. J. & Livermore, C. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification. ACS Appl. Mater. Interfaces 5, 7198–7207 (2013).

  40. 40.

    Jang, H.-S., Jeon, S. K., Lee, H. J. & Nahm, S. H. Mechanical and electrical properties of multi-walled carbon nanotubes by nano-manipulator. Procedia Eng. 10, 2917–2922 (2011).

  41. 41.

    Chen, B. et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Compos. Sci. Technol. 113, 1–8 (2015).

  42. 42.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

  43. 43.

    Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

  44. 44.

    Kim, K. et al. Ripping graphene: preferred directions. Nano Lett. 12, 293–277 (2012).

  45. 45.

    Zhang, P. et al. Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014).

  46. 46.

    Bhushan, B. Nanotribology and Nanomechanics 253–299 (Springer, 2017).

  47. 47.

    Petrovic, J., Milewski, J., Rohr, D. & Gac, F. Tensile mechanical properties of SiC whiskers. J. Mater. Sci. 20, 1167–1177 (1985).

  48. 48.

    Nemeth, N. N. et al. Fabrication and probabilistic fracture strength prediction of high-aspect-ratio single crystal silicon carbide microspecimens with stress concentration. Thin Solid Films 515, 3283–3290 (2007).

  49. 49.

    Fujii, T. et al. Nano-scale tensile testing and sample preparation techniques for silicon nanowires. Jpn J. Appl. Phys. 52, 110118 (2013).

  50. 50.

    Namazu, T., Isono, Y. & Tanaka, T. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450–459 (2000).

  51. 51.

    Li, X. & Bhushan, B. Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Surf. Coat. Technol. 163, 521–526 (2003).

  52. 52.

    Sundararajan, S. & Bhushan, B. Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sens. Actuators A 101, 338–351 (2002).

  53. 53.

    Espinosa, H. et al. Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon. Appl. Phys. Lett. 89, 073111 (2006).

  54. 54.

    Kang, W., Merrill, M. & Wheeler, J. M. In situ thermomechanical testing methods for micro/nano-scale materials. Nanoscale 9, 2666–2688 (2017).

  55. 55.

    Kang, W. & Saif, M. T. A. In situ study of size and temperature dependent brittle-to-ductile transition in single crystal silicon. Adv. Funct. Mater. 23, 713–719 (2013).

  56. 56.

    Uesugi, A., Yasutomi, T., Hirai, Y., Tsuchiya, T. & Tabata, O. High-temperature tensile testing machine for investigation of brittle–ductile transition behavior of single crystal silicon microstructure. Jpn J. Appl. Phys. 54, 06FP04 (2015).

  57. 57.

    Hoffmann, S. et al. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6, 622–625 (2006).

  58. 58.

    Gordon, M. J., Baron, T., Dhalluin, F., Gentile, P. & Ferret, P. Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett. 9, 525–529 (2009).

  59. 59.

    Zhu, Y., Xu, F., Qin, Q., Fung, W. Y. & Lu, W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009).

  60. 60.

    Zhang, D. et al. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J. Microelectromech. Syst. 19, 663–674 (2010).

  61. 61.

    Steighner, M. et al. Dependence on diameter and growth direction of apparent strain to failure of Si nanowires. J. Appl. Phys. 109, 033503 (2011).

  62. 62.

    Kim, Y.-J. et al. Exploring nanomechanical behavior of silicon nanowires: AFM bending versus nanoindentation. Adv. Funct. Mater. 21, 279–286 (2011).

  63. 63.

    Kizuka, T., Takatani, Y., Asaka, K. & Yoshizaki, R. Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width. Phys. Rev. B 72, 035333 (2005).

  64. 64.

    Han, X. et al. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007).

  65. 65.

    Zheng, K. et al. Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9, 2471–2476 (2009).

  66. 66.

    Wang, L., Zheng, K., Zhang, Z. & Han, X. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 11, 2382–2385 (2011).

  67. 67.

    Östlund, F. et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439–2444 (2009).

  68. 68.

    Tang, D.-M. et al. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 12, 1898–1904 (2012).

  69. 69.

    Jadaan, O. M., Nemeth, N. N., Bagdahn, J. & Sharpe, W. Probabilistic Weibull behavior and mechanical properties of mems brittle materials. J. Mater. Sci. 38, 4087–4113 (2003).

  70. 70.

    French, P. Polysilicon: a versatile material for microsystems. Sens. Actuators A 99, 3–12 (2002).

  71. 71.

    Boyce, B., Shaw, M., Lu, P. & Dugger, M. Stronger silicon for microsystems. Acta Mater. 58, 439–448 (2010).

  72. 72.

    Boyce, B. L., Grazier, J. M., Buchheit, T. E. & Shaw, M. J. Strength distributions in polycrystalline silicon MEMS. J. Microelectromech. Syst. 16, 179–190 (2007).

  73. 73.

    Bagdahn, J., Sharpe, W. N. & Jadaan, O. Fracture strength of polysilicon at stress concentrations. J. Microelectromech. Syst. 12, 302–312 (2003).

  74. 74.

    McCarty, A. & Chasiotis, I. Description of brittle failure of non-uniform MEMS geometries. Thin Solid Films 515, 3267–3276 (2007).

  75. 75.

    Vayrette, R. et al. Size dependent fracture strength and cracking mechanisms in freestanding polycrystalline silicon films with nanoscale thickness. Eng. Fract. Mech. 168, 190–203 (2016).

  76. 76.

    Chasiotis, I. & Knauss, W. G. The mechanical strength of polysilicon films: part 1. The influence of fabrication governed surface conditions. J. Mech. Phys. Solids 51, 1533–1550 (2003).

  77. 77.

    Andersons, J., Joffe, R., Hojo, M. & Ochiai, S. Glass fibre strength distribution determined by common experimental methods. Compos. Sci. Technol. 62, 131–145 (2002).

  78. 78.

    Brambilla, G. & Payne, D. N. The ultimate strength of glass silica nanowires. Nano Lett. 9, 831–835 (2009).

  79. 79.

    Luo, J. et al. Size-dependent brittle-to-ductile transition in silica glass nanofibers. Nano Lett. 16, 105–113 (2015).

  80. 80.

    Sevillano, J. G., Arizcorreta, I. O. & Kubin, L. Intrinsic size effects in plasticity by dislocation glide. Mater. Sci. Eng. A 309, 393–405 (2001).

  81. 81.

    Khan, A. S., Farrokh, B. & Takacs, L. Compressive properties of cu with different grain sizes: sub-micron to nanometer realm. J. Mater. Sci. 43, 3305–3313 (2008).

  82. 82.

    Kiener, D., Grosinger, W., Dehm, G. & Pippan, R. A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580–592 (2008).

  83. 83.

    Lin, M.-T., Tong, C.-J. & Shiu, K.-S. Novel microtensile method for monotonic and cyclic testing of freestanding copper thin films. Exp. Mech. 50, 55–64 (2010).

  84. 84.

    Jennings, A. T., Burek, M. J. & Greer, J. R. Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

  85. 85.

    Haque, M. & Saif, M. In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp. Mech. 42, 123–128 (2002).

  86. 86.

    Yue, Y. et al. Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Lett. 13, 3812–3816 (2013).

  87. 87.

    Motz, C., Schoberl, T. & Pippan, R. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53, 4269–4279 (2005).

  88. 88.

    Kiener, D., Motz, C., Schöberl, T., Jenko, M. & Dehm, G. Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 1119–1125 (2006).

  89. 89.

    Florando, J. & Nix, W. A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates. J. Mech. Phys. Solids 53, 619–638 (2005).

  90. 90.

    Vlassak, J. & Nix, W. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J Mater. Res. 7, 3242–3249 (1992).

  91. 91.

    Wei, X., Lee, D., Shim, S., Chen, X. & Kysar, J. W. Plane-strain bulge test for nanocrystalline copper thin films. Scr. Mater. 57, 541–544 (2007).

  92. 92.

    Merle, B., Schweitzer, E. W. & Göken, M. Thickness and grain size dependence of the strength of copper thin films as investigated with bulge tests and nanoindentations. Philos. Mag. 92, 3172–3187 (2012).

  93. 93.

    Brenner, S. S. Tensile strength of whiskers. J. Appl. Phys. 27, 1484–1491 (1956).

  94. 94.

    Brenner, S. Growth and properties of ”whiskers”. Science 128, 569–575 (1958).

  95. 95.

    Richter, G. et al. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009).

  96. 96.

    Hemker, K. & Sharpe, W. Jr. Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37, 93–126 (2007).

  97. 97.

    Gianola, D. et al. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253–2263 (2006).

  98. 98.

    Gupta, S. & Pierron, O. N. A MEMS tensile testing technique for measuring true activation volume and effective stress in nanocrystalline ultrathin microbeams. J. Microelectromech. Syst. 26, 1082–1092 (2017).

  99. 99.

    Chen, W., You, Z., Tao, N., Jin, Z. & Lu, L. Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Mater. 125, 255–264 (2017).

  100. 100.

    Jennings, A. T. & Greer, J. R. Tensile deformation of electroplated copper nanopillars. Philos. Mag. 91, 1108–1120 (2011).

  101. 101.

    Jennings, A. T., Li, J. & Greer, J. R. Emergence of strain-rate sensitivity in Cu nanopillars: transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627–5637 (2011).

  102. 102.

    Wang, J. et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater. 14, 594–600 (2015).

  103. 103.

    Lilleodden, E. Microcompression study of Mg (0001) single crystal. Scr. Mater. 62, 532–535 (2010).

  104. 104.

    Kunz, A., Pathak, S. & Greer, J. R. Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 59, 4416–4424 (2011).

  105. 105.

    Kim, J.-Y., Jang, D. & Greer, J. R. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355–2363 (2010).

  106. 106.

    Wang, J. et al. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 4, 1742 (2013).

  107. 107.

    Sim, G.-D. et al. An apparatus for performing microtensile tests at elevated temperatures inside a scanning electron microscope. Acta Mater. 61, 7500–7510 (2013).

  108. 108.

    Sim, G.-D. & Vlassak, J. J. High-temperature tensile behavior of freestanding Au thin films. Scr. Mater. 75, 34–37 (2014).

  109. 109.

    Vayrette, R., Raskin, J.-P. & Pardoen, T. On-chip fracture testing of freestanding nanoscale materials. Eng. Fract. Mech. 150, 222–238 (2015).

  110. 110.

    Gorham, D. The effect of specimen dimensions on high strain rate compression measurements of copper. J. Phys. D Appl. Phys. 24, 1489 (1991).

  111. 111.

    Sun, B. & Wang, W. The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211–307 (2015).

  112. 112.

    Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012).

  113. 113.

    Greer, A., Cheng, Y. & Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 74, 71–132 (2013).

  114. 114.

    Lai, Y. et al. Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr. Mater. 58, 890–893 (2008).

  115. 115.

    Schuster, B. E. et al. Bulk and microscale compressive properties of a Pd-based metallic glass. Scr. Mater. 57, 517–520 (2007).

  116. 116.

    Chen, T.-H. & Tsai, C.-K. The microstructural evolution and mechanical properties of Zr-based metallic glass under different strain rate compressions. Materials 8, 1831–1840 (2015).

  117. 117.

    Calvo, M. Application of the Weibull statistics to the characterization of metallic glass ribbons. J. Mater. Sci. 24, 1801–1808 (1989).

  118. 118.

    Ocelik, V., Bengus, V., Diko, P. & Hudak, O. Statistical investigations of fracture demonstrations on Ni–Si–B. metallic glass ribbons failed in tension at 4.2 to 300 k. J. Mater. Sci. Lett. 6, 1333–1335 (1987).

  119. 119.

    Zhao, Y.-Y., Ma, E. & Xu, J. Reliability of compressive fracture strength of Mg–Zn–Ca bulk metallic glasses: flaw sensitivity and Weibull statistics. Scr. Mater. 58, 496–499 (2008).

  120. 120.

    Han, Z., Tang, L., Xu, J. & Li, Y. A three-parameter Weibull statistical analysis of the strength variation of bulk metallic glasses. Scr. Mater. 61, 923–926 (2009).

  121. 121.

    Shamimi Nouri, A., Gu, X., Poon, S., Shiflet, G. & Lewandowski, J. Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses. Philos. Mag. Lett. 88, 853–861 (2008).

  122. 122.

    Yao, J., Wang, J., Lu, L. & Li, Y. High tensile strength reliability in a bulk metallic glass. Appl. Phys. Lett. 92, 041905 (2008).

  123. 123.

    Lee, C. et al. Strength variation and cast defect distribution in metallic glasses. Scr. Mater. 63, 105–108 (2010).

  124. 124.

    Jang, D. & Greer, J. R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215–219 (2010).

  125. 125.

    Pastewka, L., Pou, P., Pérez, R., Gumbsch, P. & Moseler, M. Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range. Phys. Rev. B 78, 161402 (2008).

  126. 126.

    Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990).

  127. 127.

    Van Duin, A. C., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

  128. 128.

    Yang, M., Koutsos, V. & Zaiser, M. Size effect in the tensile fracture of single-walled carbon nanotubes with defects. Nanotechnology 18, 155708 (2007).

  129. 129.

    Lu, Q. & Bhattacharya, B. Effect of randomly occurring stone–wales defects on mechanical properties of carbon nanotubes using atomistic simulation. Nanotechnology 16, 555 (2005).

  130. 130.

    Bhattacharya, B. & Lu, Q. The asymptotic properties of random strength and compliance of single-walled carbon nanotubes using atomistic simulation. J. Stat. Mech. Theory Exp. https://doi.org/10.1088/1742-5468/2006/06/P06021 (2006).

  131. 131.

    Yakobson, B., Campbell, M., Brabec, C. & Bernholc, J. High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997).

  132. 132.

    Wen, M., An, B., Fukuyama, S., Yokogawa, K. & Ngan, A. Thermally activated model for tensile yielding of pristine single-walled carbon nanotubes with nonlinear elastic deformation. Carbon 47, 2070–2076 (2009).

  133. 133.

    Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783 (2002).

  134. 134.

    Tang, C., Guo, W. & Chen, C. Molecular dynamics simulation of tensile elongation of carbon nanotubes: temperature and size effects. Phys. Rev. B 79, 155436 (2009).

  135. 135.

    Jensen, B. D., Wise, K. E. & Odegard, G. M. Simulation of mechanical performance limits and failure of carbon nanotube composites. Model. Simul. Mater. Sci. Eng. 24, 025012 (2016).

  136. 136.

    Sellerio, A. L., Taloni, A. & Zapperi, S. Fracture size effects in nanoscale materials: the case of graphene. Phys. Rev. Appl. 4, 024011 (2015).

  137. 137.

    Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

  138. 138.

    Kang, K. & Cai, W. Size and temperature effects on the fracture mechanisms of silicon nanowires: molecular dynamics simulations. Int. J. Plast. 26, 1387–1401 (2010).

  139. 139.

    Zhang, C., Duan, F. & Liu, Q. Size effects on the fracture behavior of amorphous silica nanowires. Comput. Mater. Sci. 99, 138–144 (2015).

  140. 140.

    Zhou, X., Zhou, H., Li, X. & Chen, C. Size effects on tensile and compressive strengths in metallic glass nanowires. J. Mech. Phys. Solids 84, 130–144 (2015).

  141. 141.

    Sopu, D., Foroughi, A., Stoica, M. & Eckert, J. Brittle-to-ductile transition in metallic glass nanowires. Nano Lett. 16, 4467–4471 (2016).

  142. 142.

    Gu, X. W. et al. Mechanisms of failure in nanoscale metallic glass. Nano Lett. 14, 5858–5864 (2014).

  143. 143.

    Fisher, R. A. & Tippett, L. H. C. in Mathematical Proceedings of the Cambridge Philosophical Society Vol. 24 180–190 (Cambridge Univ. Press, 1928).

  144. 144.

    Fréchet, M. in Annales de la societe Polonaise de Mathematique (ed. Filipowskie, J.) (s.n., 1928).

  145. 145.

    Gnedenko, B. Sur la distribution limite du terme maximum d’une serie aleatoire [French]. Ann. Math. 44, 423–453 (1943).

  146. 146.

    Danzer, R., Supancic, P., Pascual, J. & Lube, T. Fracture statistics of ceramics — Weibull statistics and deviations from weibull statistics. Eng. Fract. Mech. 74, 2919–2932 (2007).

  147. 147.

    Lu, C., Danzer, R. & Fischer, F. D. Fracture statistics of brittle materials: Weibull or normal distribution. Phys. Rev. E 65, 067102 (2002).

  148. 148.

    Doremus, R. Fracture statistics: a comparison of the normal, Weibull & type I extreme value distributions. J. Appl. Phys. 54, 193–198 (1983).

  149. 149.

    Trustrum, K. & Jayatilaka, A. Applicability of Weibull analysis for brittle materials. J. Mater. Sci. 18, 2765–2770 (1983).

  150. 150.

    Nohut, S. & Lu, C. Fracture statistics of dental ceramics: discrimination of strength distributions. Ceram. Interfaces 38, 4979–4990 (2012).

  151. 151.

    Bazant, Z., Xi, Y. & Reid, S. Statistical size effect in quasi-brittle structures: I. Is Weibull theory applicable? J. Eng. Mech. 117, 2609–2622 (1991).

  152. 152.

    Rozenblat, Y. et al. Strength distribution of particles under compression. Powder Technol. 208, 215–224 (2011).

  153. 153.

    Basu, B., Tiwari, D., Kundu, D. & Prasad, R. Is Weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceram. Int. 35, 237–246 (2009).

  154. 154.

    Salminen, L. I., Tolvanen, A. I. & Alava, M. J. Acoustic emission from paper fracture. Phys. Rev. Lett. 89, 185503 (2002).

  155. 155.

    Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A. & Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 350, 39–42 (1991).

  156. 156.

    Garcimartin, A., Guarino, A., Bellon, L. & Ciliberto, S. Statistical properties of fracture precursors. Phys. Rev. Lett. 79, 3202–3205 (1997).

  157. 157.

    Zioupos, P., Currey, J. & Sedman, A. An examination of the micromechanics of failure of bone and antler by acoustic emission tests and laser scanning confocal microscopy. Med. Eng. Phys. 16, 203–212 (1994).

  158. 158.

    Reiterer, A., Stanzl-Tschegg, S. E. & Tschegg, E. K. Mode I fracture and acoustic emission of softwood and hardwood. Wood Sci. Technol. 34, 417–430 (2000).

  159. 159.

    Yukalov, V., Moura, A. & Nechad, H. Self-similar law of energy release before materials fracture. J. Mech. Phys. Solids 52, 453–465 (2004).

  160. 160.

    Anifrani, J.-C., Le Floc’h, C., Sornette, D. & Souillard, B. Universal log-periodic correction to renormalization group scaling for rupture stress prediction from acoustic emissions. J. Phys. I France 5, 631–638 (1995).

  161. 161.

    Alava, M. J., Nukala, P. & Zapperi, S. Statistical models of fracture. Adv. Phys. 55, 349–476 (2006).

  162. 162.

    Wu, D., Zhou, J. & Li, Y. Methods for estimating Weibull parameters for brittle materials. J. Mater. Sci. 41, 5630–5638 (2006).

  163. 163.

    Wu, D., Zhou, J. & Li, Y. Unbiased estimation of Weibull parameters with the linear regression method. J. Eur. Ceram. Soc. 26, 1099–1105 (2006).

  164. 164.

    Ambrožič, M. & Vidovič, K. Reliability of the Weibull analysis of the strength of construction materials. J. Mater. Sci. 42, 9645–9653 (2007).

  165. 165.

    Ambrožič, M. & Gorjan, L. Reliability of a Weibull analysis using the maximum-likelihood method. J. Mater. Sci. 46, 1862–1869 (2011).

  166. 166.

    Cox, D. R. Further results on tests of separate families of hypotheses. J. R. Stat. Soc. Ser. B 24, 406–424 (1962).

  167. 167.

    Shekhawat, A., Zapperi, S. & Sethna, J. P. From damage percolation to crack nucleation through finite size criticality. Phys. Rev. Lett. 110, 185505 (2013).

Download references

Acknowledgements

This work was supported by the European Research Council Advanced Grant SIZEFFECTS (291002) awarded to S.Z.

Author information

Affiliations

  1. CNR-Consiglio Nazionale delle Ricerche, ISC, Rome, Italy

    • Alessandro Taloni
  2. Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy

    • Michele Vodret
    • , Giulio Costantini
    •  & Stefano Zapperi

Authors

  1. Search for Alessandro Taloni in:

  2. Search for Michele Vodret in:

  3. Search for Giulio Costantini in:

  4. Search for Stefano Zapperi in:

Contributions

A.T. and G.C. prepared the figures and tables, and researched and wrote the experiment and simulation sections. A.T., G.C. and M.V. analysed the data. A.T. and S.Z. wrote the theoretical section. S.Z. wrote the introduction and conclusion sections, and revised and coordinated the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Stefano Zapperi.

Supplementary information

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41578-018-0029-4