Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Point defect engineering in thin-film solar cells

Abstract

Control of defect processes in photovoltaic materials is essential for realizing high-efficiency solar cells and related optoelectronic devices. Native defects and extrinsic dopants tune the Fermi level and enable semiconducting p–n junctions; however, fundamental limits to doping exist in many compounds. Optical transitions from defect states can enhance photocurrent generation through sub-bandgap absorption; however, these defect states are also often responsible for carrier trapping and non-radiative recombination events that limit the voltage in operating solar cells. Many classes of materials, including metal oxides, chalcogenides and halides, are being examined for next-generation solar energy applications, and each technology faces distinct challenges that could benefit from point defect engineering. Here, we review the evolution in the understanding of point defect behaviour from Si-based photovoltaics to thin-film CdTe and Cu(In,Ga)Se2 technologies, through to the latest generation of halide perovskite (CH3NH3PbI3) and kesterite (Cu2ZnSnS4) devices. We focus on the chemical bonding that underpins the defect chemistry and the atomistic processes associated with the photophysics of charge-carrier generation, trapping and recombination in solar cells. Finally, we outline general principles to enable defect control in complex semiconducting materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure and electronic band structure of Si, CdTe, CuInSe2 and CH3NH3PbI3.
Fig. 2: Formation energy of intrinsic point defects in CdTe under different growth conditions.
Fig. 3: Atomic chemical potentials that stabilize the formation of CZTS and the formation energy of point defects under two growth conditions.

Similar content being viewed by others

References

  1. Pantelides, S. T. The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys. 50, 797–858 (1978).

    Article  CAS  Google Scholar 

  2. Stoneham, A. M. Theory of Defects in Solids (Oxford Univ. Press, 1975).

  3. Frenkel, J. Über die Wärmebewegung in festen und flüssigen Körpern [German]. Z. Physik. 35, 652–669 (1926).

    Article  CAS  Google Scholar 

  4. Kroger, F. A. & Vink, H. J. Relations between the concentrations of imperfections in solids. J. Phys. Chem. Solids 5, 208–223 (1958).

    Article  CAS  Google Scholar 

  5. Mott, N. F. & Littleton, M. J. Conduction in polar crystals. I. Electrolytic conduction in solid salts. Trans. Faraday Soc. 34, 485–499 (1938).

    Article  CAS  Google Scholar 

  6. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  7. Bracht, H., Haller, E. E. & Clark-Phelps, R. Silicon self-diffusion in isotope heterostructures. Phys. Rev. Lett. 81, 393–396 (1998).

    Article  CAS  Google Scholar 

  8. Jones, E. D., Stewart, N. M. & Mullin, J. B. Studies on the self-diffusion of cadmium in cadmium telluride in the temperature range 350–650 °C using anodic oxidation. J. Cryst. Growth 130, 6–12 (1993).

    Article  CAS  Google Scholar 

  9. Gartsman, K. et al. Direct evidence for diffusion and electromigration of Cu in CuInSe2. J. Appl. Phys. 82, 4282–4285 (1997).

    Article  CAS  Google Scholar 

  10. Istratov, A. A., Flink, C., Hieslmair, H., Weber, E. R. & Heiser, T. Intrinsic diffusion coefficient of interstitial copper in silicon. Phys. Rev. Lett. 81, 1243–1246 (1998).

    Article  CAS  Google Scholar 

  11. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  CAS  Google Scholar 

  12. Buckeridge, J. et al. Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals. Phys. Rev. Lett. 114, 016405 (2015).

    Article  CAS  Google Scholar 

  13. Madelung, O. M. Semiconductors: Data Handbook (Springer, 2003).

  14. De Wolf, S., Descoeudres, A., Holman, Z. C. & Ballif, C. High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012).

    Google Scholar 

  15. Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016).

    Article  CAS  Google Scholar 

  16. Newman, R. C. Defects in silicon. Rep. Prog. Phys. 45, 1163–1210 (1982).

    Article  Google Scholar 

  17. Fahey, P. M., Griffin, P. B. & Plummer, J. D. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 61, 289–384 (1989).

    Article  CAS  Google Scholar 

  18. Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

    Article  CAS  Google Scholar 

  19. Pankove, J. I. & Tarng, M. L. Amorphous silicon as a passivant for crystalline silicon. Appl. Phys. Lett. 34, 156–157 (1979).

    Article  CAS  Google Scholar 

  20. Aberle, A. G. Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. 8, 473–487 (2000).

    Article  CAS  Google Scholar 

  21. Richter, A., Hermle, M. & Glunz, S. W. Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article  Google Scholar 

  22. Broqvist, P., Alkauskas, A. & Pasquarello, A. Defect levels of dangling bonds in silicon and germanium through hybrid functionals. Phys. Rev. B 78, 075203 (2008).

    Article  CAS  Google Scholar 

  23. George, B. M. et al. Atomic structure of interface states in silicon heterojunction solar cells. Phys. Rev. Lett. 110, 1–5 (2013).

    Google Scholar 

  24. Higashi, G. S., Chabal, Y. J., Trucks, G. W. & Raghavachari, K. Ideal hydrogen termination of the Si (111) surface. Appl. Phys. Lett. 56, 656–658 (1990).

    Article  CAS  Google Scholar 

  25. Chang, K. J. & Chadi, D. J. Hydrogen bonding and diffusion in crystalline silicon. Phys. Rev. B 40, 11644–11653 (1989).

    Article  CAS  Google Scholar 

  26. Hoex, B., Gielis, J. J. H., van de Sanden, M. C. M. & Kessels, W. M. M. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J. Appl. Phys. 104, 113703 (2008).

    Article  CAS  Google Scholar 

  27. Davis, J. R. et al. Impurities in silicon solar cells. IEEE Trans. Electron. Devices 27, 677–687 (1980).

    Article  Google Scholar 

  28. Coletti, G. et al. Impact of metal contamination in silicon solar cells. Adv. Funct. Mater. 21, 879–890 (2011).

    Article  CAS  Google Scholar 

  29. Peaker, A. R. et al. Recombination via point defects and their complexes in solar silicon. Phys. Status Solidi A 209, 1884–1893 (2012).

    Article  CAS  Google Scholar 

  30. Gilles, D., Schröter, W. & Bergholz, W. Impact of the electronic structure on the solubility and diffusion of 3d transition elements in silicon. Phys. Rev. B 41, 5770–5782 (1990).

    Article  CAS  Google Scholar 

  31. Zimmermann, H. & Ryssel, H. Gold and platinum diffusion: the key to the understanding of intrinsic point-defect behavior in silicon. Appl. Phys. A 55, 121–134 (1992).

    Article  Google Scholar 

  32. Lemke, H. Properties of silicon crystals doped with zirconium or hafnium. Phys. Status Solidi A 122, 617–630 (1990).

    Article  CAS  Google Scholar 

  33. Istratov, A. A., Buonassisi, T., Pickett, M. D., Heuer, M. & Weber, E. R. Control of metal impurities in ‘dirty’ multicrystalline silicon for solar cells. Mater. Sci. Eng. B 134, 282–286 (2006).

    Article  CAS  Google Scholar 

  34. Hofstetter, J., Lelièvre, J. F., del Cañizo, C. & Luque, A. Acceptable contamination levels in solar grade silicon: from feedstock to solar cell. Mater. Sci. Eng. B 159–160, 299–304 (2009).

    Article  CAS  Google Scholar 

  35. Pizzini, S. Towards solar grade silicon: challenges and benefits for low cost photovoltaics. Sol. Energy Mater. Sol. Cells 94, 1528–1533 (2010).

    Article  CAS  Google Scholar 

  36. Reinders, A., Verlinden, P., van Sark, W. & Freundlich, A. Photovoltaic Solar Energy: From Fundamentals to Applications (Wiley, 2017).

  37. Weber, E. R. Transition metals in silicon. Appl. Phys. A 30, 1–22 (1983).

    Article  Google Scholar 

  38. Myers, S. M., Seibt, M. & Schröter, W. Mechanisms of transition-metal gettering in silicon. J. Appl. Phys. 88, 3795 (2000).

    Article  CAS  Google Scholar 

  39. Rein, S. & Glunz, S. W. Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy. J. Appl. Phys. 98, 113711 (2005).

    Article  CAS  Google Scholar 

  40. Istratov, A. A. et al. Nickel solubility in intrinsic and doped silicon. J. Appl. Phys. 97, 023505 (2005).

    Article  CAS  Google Scholar 

  41. Diez, S., Rein, S., Roth, T. & Glunz, S. W. Cobalt related defect levels in silicon analyzed by temperature- and injection-dependent lifetime spectroscopy. J. Appl. Phys. 101, 033710 (2007).

    Article  CAS  Google Scholar 

  42. Steger, M. et al. Photoluminescence of deep defects involving transition metals in Si: new insights from highly enriched 28Si. J. Appl. Phys. 110, 081301 (2011).

    Article  CAS  Google Scholar 

  43. Markevich, V. P. et al. Titanium in silicon: lattice positions and electronic properties. Appl. Phys. Lett. 104, 152105 (2014).

    Article  CAS  Google Scholar 

  44. Marinopoulos, A. G., Santos, P. & Coutinho, J. DFT+U study of electrical levels and migration barriers of early 3d and 4d transition metals in silicon. Phys. Rev. B 92, 075124 (2015).

    Article  Google Scholar 

  45. Sharan, A., Gui, Z. & Janotti, A. Hybrid-functional calculations of the copper impurity in silicon. Phys. Rev. Appl. 8, 024023 (2017).

    Article  Google Scholar 

  46. Buonassisi, T. et al. Engineering metal-impurity nanodefects for low-cost solar cells. Nat. Mater. 4, 676–679 (2005).

    Article  CAS  Google Scholar 

  47. Pickett, M. D. & Buonassisi, T. Iron point defect reduction in multicrystalline silicon solar cells. Appl. Phys. Lett. 92, 2006–2009 (2008).

    Article  CAS  Google Scholar 

  48. Alkauskas, A., McCluskey, M. D. & Van de Walle, C. G. Tutorial: defects in semiconductors — combining experiment and theory. J. Appl. Phys. 119, 181101 (2016).

    Article  CAS  Google Scholar 

  49. Watkins, G. D. Native defects and their interactions with impurities in silicon. MRS Proc. 469, 139 (1997).

    Article  CAS  Google Scholar 

  50. Tuomisto, F. & Makkonen, I. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85, 1583–1631 (2013).

    Article  CAS  Google Scholar 

  51. Stavola, M. & Fowler, W. B. Tutorial: novel properties of defects in semiconductors revealed by their vibrational spectra. J. Appl. Phys. 123, 161561 (2018).

    Article  CAS  Google Scholar 

  52. McPhail, D. S. Applications of secondary ion mass spectrometry (SIMS) in materials science. J. Mater. Sci. 41, 873–903 (2006).

    Article  CAS  Google Scholar 

  53. Lindroos, J. et al. Nickel: a very fast diffuser in silicon. J. Appl. Phys. 113, 204906 (2013).

    Article  CAS  Google Scholar 

  54. Rinke, P., Janotti, A., Scheffler, M. & Van de Walle, C. Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial. Phys. Rev. Lett. 102, 026402 (2009).

    Article  CAS  Google Scholar 

  55. Estreicher, S. K., Backlund, D. J., Carbogno, C. & Scheffler, M. Activation energies for diffusion of defects in silicon: the role of the exchange-correlation functional. Angew. Chem. Int. Ed. 50, 10221–10225 (2011).

    Article  CAS  Google Scholar 

  56. Śpiewak, P. & Kurzydłowski, K. J. Formation and migration energies of the vacancy in Si calculated using the HSE06 range-separated hybrid functional. Phys. Rev. B 88, 195204 (2013).

    Article  CAS  Google Scholar 

  57. Lindroos, J. & Savin, H. Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126 (2016).

    Article  CAS  Google Scholar 

  58. Niewelt, T., Schon, J., Warta, W., Glunz, S. W. & Schubert, M. C. Degradation of crystalline silicon due to boron–oxygen defects. IEEE J. Photovolt. 7, 383–398 (2017).

    Article  Google Scholar 

  59. Hallam, B. et al. Recent insights into boron-oxygen related degradation: evidence of a single defect. Sol. Energy Mater. Sol. Cells 173, 25–32 (2017).

    Article  CAS  Google Scholar 

  60. Taguchi, M. et al. 24.7% Record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

    Article  Google Scholar 

  61. Masuko, K. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

    Article  Google Scholar 

  62. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  CAS  Google Scholar 

  63. Boulfrad, Y. et al. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge. Appl. Phys. Lett. 105, 182108 (2014).

    Article  CAS  Google Scholar 

  64. Luo, W. et al. Potential-induced degradation in photovoltaic modules: a critical review. Energy Environ. Sci. 10, 43–68 (2017).

    Article  CAS  Google Scholar 

  65. Loferski, J. J. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys. 27, 777–784 (1956).

    Article  CAS  Google Scholar 

  66. McCandless, B. E. & Sites, J. R. in Handbook of Photovoltaic Science and Engineering (eds Luque, A. & Hegedus, S.) 600–641 (John Wiley & Sons, 2011).

  67. Green, M. A. et al. Solar cell efficiency tables (version 51). Prog. Photovolt. 26, 2–12 (2018).

    Google Scholar 

  68. Wei, S.-H., Zhang, S. B. & Zunger, A. First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 87, 1304–1311 (2000).

    Article  CAS  Google Scholar 

  69. Ma, J. et al. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Phys. Rev. Lett. 111, 067402 (2013).

    Article  CAS  Google Scholar 

  70. Kranz, L. et al. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nat. Commun. 4, 3306 (2013).

    Article  CAS  Google Scholar 

  71. Gessert, T. A. et al. Research strategies toward improving thin-film CdTe photovoltaic devices beyond 20% conversion efficiency. Sol. Energy Mater. Sol. Cells 119, 149–155 (2013).

    Article  CAS  Google Scholar 

  72. Reese, M. O. et al. Intrinsic surface passivation of CdTe. J. Appl. Phys. 118, 155305 (2015).

    Article  CAS  Google Scholar 

  73. Burst, J. M. et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat. Energy 1, 16015 (2016).

    Article  CAS  Google Scholar 

  74. Kanevce, A., Reese, M. O., Barnes, T. M., Jensen, S. A. & Metzger, W. K. The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells. J. Appl. Phys. 121, 214506 (2017).

    Article  CAS  Google Scholar 

  75. Yang, J.-H., Yin, W.-J., Park, J.-S., Ma, J. & Wei, S.-H. Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond. Sci. Technol. 31, 083002 (2016).

    Article  Google Scholar 

  76. Shepidchenko, A., Sanyal, B., Klintenberg, M. & Mirbt, S. Small hole polaron in CdTe: Cd-vacancy revisited. Sci. Rep. 5, 14509 (2015).

    Article  CAS  Google Scholar 

  77. Lindström, A., Mirbt, S., Sanyal, B. & Klintenberg, M. High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies. J. Phys. D. 49, 035101 (2016).

    Article  CAS  Google Scholar 

  78. Yang, J. H., Yin, W. J., Park, J. S., Metzger, W. & Wei, S. H. First-principles study of roles of Cu and Cl in polycrystalline CdTe. J. Appl. Phys. 119, 045104 (2016).

    Article  CAS  Google Scholar 

  79. Yang, J. H. et al. Tuning the Fermi level beyond the equilibrium doping limit through quenching: the case of CdTe. Phys. Rev. B 90, 245202 (2014).

    Article  CAS  Google Scholar 

  80. Pautrat, J. L., Francou, J. M., Magnea, N., Molva, E. & Saminadayar, K. Donors and acceptors in tellurium compounds; the problem of doping and self-compensation. J. Cryst. Growth 72, 194–204 (1985).

    Article  CAS  Google Scholar 

  81. Said, M. & Kanehisa, M. A. Excited states of acceptors in CdTe and ZnTe. J. Cryst. Growth 101, 488–492 (1990).

    Article  CAS  Google Scholar 

  82. Poplawsky, J. D. et al. Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells. Adv. Energy Mater. 4, 1400454 (2014).

    Article  CAS  Google Scholar 

  83. Kuciauskas, D. et al. The impact of Cu on recombination in high voltage CdTe solar cells. Appl. Phys. Lett. 107, 243906 (2015).

    Article  CAS  Google Scholar 

  84. Kuciauskas, D. et al. Recombination analysis in cadmium telluride photovoltaic solar cells with photoluminescence spectroscopy. IEEE J. Photovolt. 6, 313–318 (2016).

    Article  Google Scholar 

  85. Yang, J. H., Metzger, W. K. & Wei, S. H. Carrier providers or killers: the case of Cu defects in CdTe. Appl. Phys. Lett. 111, 042106 (2017).

    Article  CAS  Google Scholar 

  86. Yang, J.-H., Park, J.-S., Kang, J. & Wei, S.-H. First-principles multiple-barrier diffusion theory: the case study of interstitial diffusion in CdTe. Phys. Rev. B 91, 075202 (2015).

    Article  CAS  Google Scholar 

  87. Yang, J. H. et al. Enhanced p-type dopability of P and As in CdTe using non-equilibrium thermal processing. J. Appl. Phys. 118, 025102 (2015).

    Article  CAS  Google Scholar 

  88. Mooney, P. M. Deep donor levels (DX centers) in III–V semiconductors. J. Appl. Phys. 67, R1–R26 (1990).

    Article  CAS  Google Scholar 

  89. Wei, S.-H. & Zhang, S. B. Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe. Phys. Rev. B 66, 155211 (2002).

    Article  CAS  Google Scholar 

  90. Barnard, E. S. et al. 3D Lifetime tomography reveals how CdCl2 improves recombination throughout CdTe solar cells. Adv. Mater. 29, 1603801 (2017).

    Article  CAS  Google Scholar 

  91. Moravec, P., Hage-Ali, M., Chibani, L. & Siffert, P. Deep levels in semi-insulating CdTe. Mater. Sci. Eng. B 16, 223–227 (1993).

    Article  Google Scholar 

  92. Balcioglu, A., Ahrenkiel, R. K. & Hasoon, F. Deep-level impurities in CdTe/CdS thin-film solar cells. J. Appl. Phys. 88, 7175–7178 (2000).

    Article  CAS  Google Scholar 

  93. Mathew, X. Photo-induced current transient spectroscopic study of the traps in CdTe. Sol. Energy Mater. Sol. Cells 76, 225–242 (2003).

    Article  CAS  Google Scholar 

  94. Komin, V. et al. The effect of the CdCl2 treatment on CdTe/CdS thin film solar cells studied using deep level transient spectroscopy. Thin Solid Films 431, 143–147 (2003).

    Article  CAS  Google Scholar 

  95. Elhadidy, H., Franc, J., Moravec, P., Höschl, P. & Fiederle, M. Deep level defects in CdTe materials studied by thermoelectric effect spectroscopy and photoinduced current transient spectroscopy. Semicond. Sci. Technol. 22, 537–542 (2007).

    Article  CAS  Google Scholar 

  96. Castaldini, A., Cavallini, A., Fraboni, B., Fernandez, P. & Piqueras, J. Deep energy levels in CdTe and CdZnTe. J. Appl. Phys. 83, 2121–2126 (1998).

    Article  CAS  Google Scholar 

  97. Kuciauskas, D. et al. Charge-carrier transport and recombination in heteroepitaxial CdTe. J. Appl. Phys. 116, 123108 (2014).

    Article  CAS  Google Scholar 

  98. Li, C. et al. From atomic structure to photovoltaic properties in CdTe solar cells. Ultramicroscopy 134, 113–125 (2013).

    Article  CAS  Google Scholar 

  99. Li, C. et al. Grain-boundary-enhanced carrier collection in CdTe solar cells. Phys. Rev. Lett. 112, 156103 (2014).

    Article  CAS  Google Scholar 

  100. Park, J.-S., Yang, J.-H., Barnes, T. & Wei, S.-H. Effect of intermixing at CdS/CdTe interface on defect properties. Appl. Phys. Lett. 109, 14–18 (2016).

    Google Scholar 

  101. Moseley, J. et al. Recombination by grain-boundary type in CdTe. J. Appl. Phys. 118, 025702 (2015).

    Article  CAS  Google Scholar 

  102. Visoly-Fisher, I., Cohen, S. R., Ruzin, A. & Cahen, D. How polycrystalline devices can outperform single-crystal ones: thin film CdTe/CdS solar cells. Adv. Mater. 16, 879–883 (2004).

    Article  CAS  Google Scholar 

  103. Visoly-Fisher, I., Cohen, S. R., Gartsman, K., Ruzin, A. & Cahen, D. Understanding the beneficial role of grain boundaries in polycrystalline solar cells from single-grain-boundary scanning probe microscopy. Adv. Funct. Mater. 16, 649–660 (2006).

    Article  CAS  Google Scholar 

  104. Major, J. D. Grain boundaries in CdTe thin film solar cells: a review. Semicond. Sci. Technol. 31, 093001 (2016).

    Article  CAS  Google Scholar 

  105. Yan, Y., Al-Jassim, M. M. & Jones, K. M. Structure and effects of double-positioning twin boundaries in CdTe. J. Appl. Phys. 94, 2976–2979 (2003).

    Article  CAS  Google Scholar 

  106. Zhang, L. et al. Effect of copassivation of Cl and Cu on CdTe grain boundaries. Phys. Rev. Lett. 101, 155501 (2008).

    Article  CAS  Google Scholar 

  107. Yang, J.-H., Shi, L., Wang, L.-W. & Wei, S.-H. Non-radiative carrier recombination enhanced by two-level process: a first-principles study. Sci. Rep. 6, 21712 (2016).

    Article  CAS  Google Scholar 

  108. Durose, K., Edwards, P. R. & Halliday, D. P. Materials aspects of CdTe/CdS solar cells. J. Cryst. Growth 197, 733–742 (1999).

    Article  CAS  Google Scholar 

  109. Dharmadasa, I. Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding. Coatings 4, 282–307 (2014).

    Article  CAS  Google Scholar 

  110. Yoo, S. et al. Identification of critical stacking faults in thin-film CdTe solar cells. Appl. Phys. Lett. 105, 062104 (2014).

    Article  CAS  Google Scholar 

  111. Kranz, L. et al. Tailoring impurity distribution in polycrystalline CdTe solar cells for enhanced minority carrier lifetime. Adv. Energy Mater. 4, 1301400 (2014).

    Article  CAS  Google Scholar 

  112. Jensen, S. A. et al. Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2. Appl. Phys. Lett. 108, 263903 (2016).

    Article  CAS  Google Scholar 

  113. Ringel, S. A., Smith, A. W., MacDougal, M. H. & Rohatgi, A. The effects of CdCl2 on the electronic properties of molecular-beam epitaxially grown CdTe/CdS heterojunction solar cells. J. Appl. Phys. 70, 881–889 (1991).

    Article  CAS  Google Scholar 

  114. Moutinho, H. R., Al-Jassim, M. M., Levi, D. H., Dippo, P. C. & Kazmerski, L. L. Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films. J. Vac. Sci. Technol. A 16, 1251–1257 (1998).

    Article  CAS  Google Scholar 

  115. Abbas, A. et al. The effect of cadmium chloride treatment on close-spaced sublimated cadmium telluride thin-film solar cells. IEEE J. Photovolt. 3, 1361–1366 (2013).

    Article  Google Scholar 

  116. McCandless, B. E., Moulton, L. V. & Birkmire, R. W. Recrystallization and sulfur diffusion in CdCl2-treated CdTe/CdS thin films. Prog. Photovolt. 5, 249–260 (1997).

    Article  CAS  Google Scholar 

  117. Metzger, W. K., Albin, D., Romero, M. J., Dippo, P. & Young, M. CdCl2 treatment, S diffusion, and recombination in polycrystalline CdTe. J. Appl. Phys. 99, 103703 (2006).

    Article  CAS  Google Scholar 

  118. Williams, B. L. et al. A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry. Adv. Energy Mater. 5, 1500554 (2015).

    Article  CAS  Google Scholar 

  119. Major, J. D., Treharne, R. E., Phillips, L. J. & Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 511, 334–337 (2014).

    Article  CAS  Google Scholar 

  120. Jaffe, J. E. & Zunger, A. Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2. Phys. Rev. B 28, 5822–5847 (1983).

    Article  CAS  Google Scholar 

  121. Butler, D. Thin films: ready for their close-up? Nature 454, 558–559 (2008).

    Article  CAS  Google Scholar 

  122. Noufi, R., Axton, R., Herrington, C. & Deb, S. K. Electronic properties versus composition of thin films of CuInSe2. Appl. Phys. Lett. 45, 668–670 (1984).

    Article  CAS  Google Scholar 

  123. Wei, S.-H., Zhang, S. B. & Zunger, A. Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Appl. Phys. Lett. 72, 3199–3201 (1998).

    Article  CAS  Google Scholar 

  124. Zhang, S. B., Wei, S.-H., Zunger, A. & Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642–9656 (1998).

    Article  CAS  Google Scholar 

  125. Stephan, C., Schorr, S., Tovar, M. & Schock, H.-W. Comprehensive insights into point defect and defect cluster formation in CuInSe2. Appl. Phys. Lett. 98, 091906 (2011).

    Article  CAS  Google Scholar 

  126. Malitckaya, M., Komsa, H. P., Havu, V. & Puska, M. J. First-principles modeling of point defects and complexes in thin-film solar-cell absorber CuInSe2. Adv. Electron. Mater. 3, 1600353 (2017).

    Article  CAS  Google Scholar 

  127. Pohl, J. & Albe, K. Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory. Phys. Rev. B 87, 245203 (2013).

    Article  CAS  Google Scholar 

  128. Fearheiley, M. L. The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals. Sol. Cells 16, 91–100 (1986).

    Article  CAS  Google Scholar 

  129. Han, S.-H., Hasoon, F. S., Al-Thani, H. A., Hermann, A. M. & Levi, D. H. Effect of Cu deficiency on the defect levels of Cu0.86In1.09Se2.05 determined by spectroscopic ellipsometry. Appl. Phys. Lett. 86, 021903 (2005).

    Article  CAS  Google Scholar 

  130. Schmid, D., Ruckh, M., Grunwald, F. & Schock, H. W. Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J. Appl. Phys. 73, 2902–2909 (1993).

    Article  CAS  Google Scholar 

  131. Ruberto, M. N. & Rothwarf, A. Time-dependent open-circuit voltage in CuInSe2/CdS solar cells: theory and experiment. J. Appl. Phys. 61, 4662–4669 (1987).

    Article  CAS  Google Scholar 

  132. Rau, U., Schmitt, M., Parisi, J., Riedl, W. & Karg, F. Persistent photoconductivity in Cu(In, Ga)Se2 heterojunctions and thin films prepared by sequential deposition. Appl. Phys. Lett. 73, 223–225 (1998).

    Article  CAS  Google Scholar 

  133. Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

    Article  CAS  Google Scholar 

  134. Harvey, S. P., Johnston, S. & Teeter, G. Effects of voltage-bias annealing on metastable defect populations in CIGS and CZTSe solar cells. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) https://doi.org/10.1109/PVSC.2016.7750018 (2016).

  135. Teeter, G., Harvey, S. P. & Johnston, S. Controlling metastable native point-defect populations in Cu(In, Ga)Se2 and Cu2ZnSnSe4 materials and solar cells through voltage-bias annealing. J. Appl. Phys. 121, 043102 (2017).

    Article  CAS  Google Scholar 

  136. Zabierowski, P., Rau, U. & Igalson, M. Classification of metastabilities in the electrical characteristics of ZnO/CdS/Cu(In, Ga)Se2 solar cells. Thin Solid Films 387, 147–150 (2001).

    Article  CAS  Google Scholar 

  137. Lany, S. & Zunger, A. Light- and bias-induced metastabilities in Cu(In, Ga)Se2 based solar cells caused by the (V SeV Cu) vacancy complex. J. Appl. Phys. 100, 113715–113725 (2006).

    Article  CAS  Google Scholar 

  138. Lang, D. V. & Logan, R. A. Large–lattice-relaxation model for persistent photoconductivity in compound semiconductors. Phys. Rev. Lett. 39, 635–639 (1977).

    Article  CAS  Google Scholar 

  139. Chadi, D. J. & Chang, K. J. Theory of the atomic and electronic structure of DX centers in GaAs and AlxGa1−xAs alloys. Phys. Rev. Lett. 61, 873–876 (1988).

    Article  CAS  Google Scholar 

  140. Thio, T., Bennett, J. W., Chadi, D. J., Linke, R. A. & Tamargo, M. C. DX centers in II-VI semiconductors and heterojunctions. J. Electron. Mater. 25, 229–233 (1996).

    Article  CAS  Google Scholar 

  141. Lany, S. & Zunger, A. Intrinsic DX centers in ternary chalcopyrite semiconductors. Phys. Rev. Lett. 100, 016401 (2008).

    Article  CAS  Google Scholar 

  142. Niles, D. W. et al. Na impurity chemistry in photovoltaic CIGS thin films: investigation with x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. 15, 3044–3049 (1997).

    Article  CAS  Google Scholar 

  143. Kimura, R. et al. Effects of sodium on CuIn3Se5 thin films. Jpn. J. Appl. Phys. 38, L899–L901 (1999).

    Article  CAS  Google Scholar 

  144. Pianezzi, F. et al. Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Phys. Chem. Chem. Phys. 16, 8843–8851 (2014).

    Article  CAS  Google Scholar 

  145. Lammer, M., Klemm, U. & Powalla, M. Sodium co-evaporation for low temperature Cu(In, Ga)Se2 deposition. Thin Solid Films 387, 33–36 (2001).

    Article  CAS  Google Scholar 

  146. Wei, S.-H., Zhang, S. B. & Zunger, A. Effects of Na on the electrical and structural properties of CuInSe2. J. Appl. Phys. 85, 7214–7218 (1999).

    Article  CAS  Google Scholar 

  147. Oikkonen, L. E., Ganchenkova, M. G., Seitsonen, A. P. & Nieminen, R. M. Effect of sodium incorporation into CuInSe2 from first principles. J. Appl. Phys. 114, 083503 (2013).

    Article  CAS  Google Scholar 

  148. Yuan, Z. K. et al. Na-diffusion enhanced p-type conductivity in Cu(In, Ga)Se2: a new mechanism for efficient doping in semiconductors. Adv. Energy Mater. 6, 1–7 (2016).

    Google Scholar 

  149. Forest, R. V., Eser, E., McCandless, B. E., Chen, J. G. & Birkmire, R. W. Reversibility of (Ag, Cu)(In, Ga)Se2 electrical properties with the addition and removal of Na: role of grain boundaries. J. Appl. Phys. 117, 115102 (2015).

    Article  CAS  Google Scholar 

  150. Kronik, L., Cahen, D. & Schock, H. W. Effects of sodium on polycrystalline Cu(In, Ga)Se2 and its solar cell performance. Adv. Mater. 10, 31–36 (1998).

    Article  CAS  Google Scholar 

  151. Persson, C. & Zunger, A. Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. Phys. Rev. Lett. 91, 266401 (2003).

    Article  CAS  Google Scholar 

  152. Siebentritt, S., Igalson, M., Persson, C. & Lany, S. The electronic structure of chalcopyrites — bands, point defects and grain boundaries. Prog. Photovolt. 18, 390–410 (2010).

    Article  CAS  Google Scholar 

  153. Abou-Ras, D. et al. Direct insight into grain boundary reconstruction in polycrystalline Cu(In, Ga)Se2 with atomic resolution. Phys. Rev. Lett. 108, 075502 (2012).

    Article  CAS  Google Scholar 

  154. Yin, W.-J., Wu, Y., Noufi, R., Al-Jassim, M. & Yan, Y. Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe2. Appl. Phys. Lett. 102, 193905 (2013).

    Article  CAS  Google Scholar 

  155. Keller, D. et al. Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy. Appl. Phys. Lett. 109, 153103 (2016).

    Article  CAS  Google Scholar 

  156. Goodman, C. H. L. The prediction of semiconducting properties in inorganic compounds. J. Phys. Chem. Solids 6, 305–314 (1958).

    Article  CAS  Google Scholar 

  157. Pamplin, B. R. A systematic method of deriving new semiconducting compounds by structural analogy. J. Phys. Chem. Solids 25, 675–684 (1964).

    Article  CAS  Google Scholar 

  158. Pamplin, B. R. & Shah, J. S. Studies in the adamantine family of semiconductors. J. Electrochem. Soc. 116, 1565–1568 (1969).

    Article  CAS  Google Scholar 

  159. Chen, S., Gong, X. G., Walsh, A. & Wei, S.-H. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys. Rev. B 79, 165211 (2009).

    Article  CAS  Google Scholar 

  160. Walsh, A., Chen, S., Wei, S.-H. & Gong, X.-G. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400–409 (2012).

    Article  CAS  Google Scholar 

  161. Chen, S. Y. et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells. Phys. Rev. B 83, 125201 (2011).

    Article  CAS  Google Scholar 

  162. Wallace, S. K., Mitzi, D. B. & Walsh, A. The steady rise of kesterite solar cells. ACS Energy Lett. 2, 776–779 (2017).

    Article  CAS  Google Scholar 

  163. Wang, W. et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014).

    Article  CAS  Google Scholar 

  164. Bourdais, S. et al. Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6, 1502276 (2016).

    Article  CAS  Google Scholar 

  165. Chen, S., Walsh, A., Gong, X.-G. & Wei, S.-H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013).

    Article  CAS  Google Scholar 

  166. Chen, S. Y., Yang, J.-H., Gong, X. G., Walsh, A. & Wei, S.-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 81, 245204 (2010).

    Article  CAS  Google Scholar 

  167. Chen, S., Gong, X. G., Walsh, A. & Wei, S.-H. H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010).

    Article  CAS  Google Scholar 

  168. Yoo, H. & Fauchet, P. Dielectric constant reduction in silicon nanostructures. Phys. Rev. B 77, 115355 (2008).

    Article  CAS  Google Scholar 

  169. Han, D. et al. Deep electron traps and origin of p-type conductivity in the earth-abundant solar-cell material Cu2ZnSnS4. Phys. Rev. B 87, 155206 (2013).

    Article  CAS  Google Scholar 

  170. Zhai, Y. T. et al. Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): a first-principles investigation. Phys. Rev. B 84, 075213 (2011).

    Article  CAS  Google Scholar 

  171. Burton, L. A., Kumagai, Y., Walsh, A. & Oba, F. DFT investigation into the underperformance of sulfide materials in photovoltaic applications. J. Mater. Chem. A 5, 9132–9140 (2017).

    Article  CAS  Google Scholar 

  172. Schorr, S. The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 95, 1482–1488 (2011).

    Article  CAS  Google Scholar 

  173. Paris, M., Choubrac, L., Lafond, A., Guillot-Deudon, C. & Jobic, S. Solid-state NMR and Raman spectroscopy to address the structure of defects and the tricky issue of the Cu/Zn disorder in Cu-poor, Zn-rich CZTS materials. Inorg. Chem. 53, 8646–8653 (2014).

    Article  CAS  Google Scholar 

  174. Dimitrievska, M., Fairbrother, A., Saucedo, E., Pérez-Rodríguez, A. & Izquierdo-Roca, V. Influence of compositionally induced defects on the vibrational properties of device grade Cu2ZnSnSe4 absorbers for kesterite based solar cells. Appl. Phys. Lett. 106, 073903 (2015).

    Article  CAS  Google Scholar 

  175. Schorr, S. Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films 515, 5985–5991 (2007).

    Article  CAS  Google Scholar 

  176. Choubrac, L. et al. Multinuclear (67Zn, 119Sn and 65Cu) NMR spectroscopy — an ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials. Phys. Chem. Chem. Phys. 15, 10722–10725 (2013).

    Article  CAS  Google Scholar 

  177. Scragg, J. J. S., Choubrac, L., Lafond, A., Ericson, T. & Platzer-Björkman, C. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films. Appl. Phys. Lett. 104, 041911 (2014).

    Article  CAS  Google Scholar 

  178. Rey, G. et al. The band gap of Cu2ZnSnSe4: effect of order–disorder. Appl. Phys. Lett. 105, 112106 (2014).

    Article  CAS  Google Scholar 

  179. Valentini, M. et al. Effect of the order–disorder transition on the optical properties of Cu2ZnSnS4. Appl. Phys. Lett. 108, 211909 (2016).

    Article  CAS  Google Scholar 

  180. Rudisch, K., Ren, Y., Platzer-Björkman, C. & Scragg, J. Order–disorder transition in B-type Cu2ZnSnS4 and limitations of ordering through thermal treatments. Appl. Phys. Lett. 108, 231902 (2016).

    Article  CAS  Google Scholar 

  181. Scragg, J. J. S. et al. Cu–Zn disorder and band gap fluctuations in Cu2ZnSn(S,Se)4: theoretical and experimental investigations. Phys. Status Solidi B 253, 247–254 (2016).

    Article  CAS  Google Scholar 

  182. Zawadzki, P., Zakutayev, A. & Lany, S. Entropy-driven clustering in tetrahedrally bonded multinary materials. Phys. Rev. Appl. 3, 1–7 (2015).

    Article  CAS  Google Scholar 

  183. Repins, I. L. et al. Indications of short minority-carrier lifetime in kesterite solar cells. J. Appl. Phys. 114, 1–5 (2013).

    Article  CAS  Google Scholar 

  184. Liu, F. et al. Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells. Adv. Energy Mater. 6, 1600706 (2016).

    Article  CAS  Google Scholar 

  185. Hages, C. J. et al. Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials. Adv. Energy Mater. 116, 1700167 (2017).

    Article  CAS  Google Scholar 

  186. Kim, S., Park, J.-S. & Walsh, A. Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett 3, 496–500 (2018).

    Article  CAS  Google Scholar 

  187. Møller, C. K. Crystal structure and photoconductivity of cæsium plumbohalides. Nature 182, 1436–1436 (1958).

    Article  Google Scholar 

  188. Weber, D. CH3NH3PbX3, a Pb(ii)-system with cubic perovskite structure. Z. Naturforsch. B 33, 1443–1445 (1978).

    Article  Google Scholar 

  189. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  190. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  CAS  Google Scholar 

  191. Walsh, A. Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C 119, 5755–5760 (2015).

    Article  CAS  Google Scholar 

  192. Brivio, F., Butler, K. T., Walsh, A. & Van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

    Article  CAS  Google Scholar 

  193. Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016).

    Article  CAS  Google Scholar 

  194. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  CAS  Google Scholar 

  195. Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    Article  CAS  Google Scholar 

  196. Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 16, 964–967 (2017).

    Article  CAS  Google Scholar 

  197. Stoddard, R. J., Eickemeyer, F. T., Katahara, J. K. & Hillhouse, H. W. Correlation between photoluminescence and carrier transport and a simple in situ passivation method for high-bandgap hybrid perovskites. J. Phys. Chem. Lett. 8, 3289–3298 (2017).

    Article  CAS  Google Scholar 

  198. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).

    Article  CAS  Google Scholar 

  199. Baumann, A. et al. Identification of trap states in perovskite solar cells. J. Phys. Chem. Lett. 6, 2350–2354 (2015).

    Article  CAS  Google Scholar 

  200. Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  CAS  Google Scholar 

  201. Kim, G. Y. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445–449 (2018).

    Article  CAS  Google Scholar 

  202. Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).

    Article  CAS  Google Scholar 

  203. Du, M.-H. Density functional calculations of native defects in CH3NH3PbI3: effects of spin–orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015).

    Article  CAS  Google Scholar 

  204. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid-halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

    Article  CAS  Google Scholar 

  205. Mandel, G. Self-compensation limited conductivity in binary semiconductors. I. Theory. Phys. Rev. 134, A1073–A1079 (1964).

    Article  Google Scholar 

  206. Whalley, L. D., Crespo-Otero, R. & Walsh, A. H-Center and V-center defects in hybrid halide perovskites. ACS Energy Lett 2, 2713–2714 (2017).

    Article  CAS  Google Scholar 

  207. Tasker, P. W. & Stoneham, A. M. An appraisal of the molecular model for the V k centre. J. Phys. Chem. Solids 38, 1185–1189 (1977).

    Article  CAS  Google Scholar 

  208. Shluger, A. L., Puchin, V. E., Suzuki, T., Tanimura, K. & Itoh, N. Optical transitions of the H centers in alkali halides. Phys. Rev. B 52, 4017–4028 (1995).

    Article  CAS  Google Scholar 

  209. Zohar, A. et al. What is the mechanism of MAPbI3 p-doping by I2? Insights from optoelectronic properties. ACS Energy Lett. 2, 2408–2414 (2017).

    Article  CAS  Google Scholar 

  210. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  Google Scholar 

  211. Mosconi, E. et al. Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy Environ. Sci. 9, 3180–3187 (2016).

    Article  CAS  Google Scholar 

  212. Grancini, G. et al. Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites. Nat. Photonics 9, 695–702 (2015).

    Article  CAS  Google Scholar 

  213. Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M. & Maier, J. Significance of ion conduction in a organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).

    Article  CAS  Google Scholar 

  214. Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science 267, 1473–1476 (1995).

    Article  CAS  Google Scholar 

  215. Savory, C. N., Walsh, A. & Scanlon, D. O. Can Pb-free halide double perovskites support high-effciency solar cells? ACS Energy Lett. 1, 949–955 (2016).

    Article  CAS  Google Scholar 

  216. Zakutayev, A., Perry, N. H., Mason, T. O., Ginley, D. S. & Lany, S. Non-equilibrium origin of high electrical conductivity in gallium zinc oxide thin films. Appl. Phys. Lett. 103, 232106 (2013).

    Article  CAS  Google Scholar 

  217. Zhang, S. B., Wei, S.-H. & Zunger, A. Microscopic origin of the phenomenological equilibrium “doping limit rule” in n-type III-V semiconductors. Phys. Rev. Lett. 84, 1232–1235 (2000).

    Article  CAS  Google Scholar 

  218. Walukiewicz, W. Mechanism of Fermi-level stabilization in semiconductors. Phys. Rev. B 37, 4760–4763 (1988).

    Article  CAS  Google Scholar 

  219. Zunger, A. Practical doping principles. Appl. Phys. Lett. 83, 57–59 (2003).

    Article  CAS  Google Scholar 

  220. Wei, S.-H. Overcoming the doping bottleneck in semiconductors. Comput. Mater. Sci. 30, 337–348 (2004).

    Article  CAS  Google Scholar 

  221. Zhang, S. B., Wei, S.-H. & Zunger, A. A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–V2 compounds. J. Appl. Phys. 83, 3192–3196 (1998).

    Article  CAS  Google Scholar 

  222. Walsh, A. et al. Limits to doping of wide band gap semiconductors. Chem. Mater. 25, 2924–2926 (2013).

    Article  CAS  Google Scholar 

  223. Buckeridge, J. et al. Polymorph engineering of TiO2: demonstrating how absolute reference potentials are determined by local coordination. Chem. Mater. 27, 3844–3851 (2015).

    Article  CAS  Google Scholar 

  224. Shi, L. & Wang, L.-W. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys. Rev. Lett. 109, 245501 (2012).

    Article  CAS  Google Scholar 

  225. Alkauskas, A., Yan, Q., de Walle, C. G. & Van De Walle, C. G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90, 17–27 (2014).

    Article  CAS  Google Scholar 

  226. Mandelkorn, J. & Lamneck, J. H. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells. Sol. Cells 29, 121–130 (1990).

    Article  Google Scholar 

  227. Lundberg, O., Bodegård, M., Malmström, J. & Stolt, L. Influence of the Cu(In, Ga)Se2 thickness and Ga grading on solar cell performance. Prog. Photovolt. 11, 77–88 (2003).

    Article  CAS  Google Scholar 

  228. Lee, M., Ngan, L., Hayes, W., Sorensen, J. & Panchula, A. F. Understanding next generation cadmium telluride photovoltaic performance due to spectrum. 2015 IEEE 42nd Photovolt. Specialist Conference (PVSC) https://doi.org/10.1109/PVSC.2015.7356003 (2015).

  229. Sinsermsuksakul, P. et al. Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1400496 (2014).

    Article  CAS  Google Scholar 

  230. Polizzotti, A. et al. Improving the carrier lifetime of tin sulfide via prediction and mitigation of harmful point defects. J. Phys. Chem. Lett. 8, 3661–3667 (2017).

    Article  CAS  Google Scholar 

  231. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  232. Yu, L. & Zunger, A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012).

    Article  CAS  Google Scholar 

  233. Blank, B., Kirchartz, T., Lany, S. & Rau, U. Selection metric for photovoltaic materials screening based on detailed-balance analysis. Phys. Rev. Appl. 8, 024032 (2017).

    Article  Google Scholar 

  234. Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    Article  CAS  Google Scholar 

  235. Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014).

    Article  CAS  Google Scholar 

  236. Hendon, C. H. et al. Electroactive nanoporous metal oxides and chalcogenides by chemical design. Chem. Mater. 29, 3663–3670 (2017).

    Article  CAS  Google Scholar 

  237. Ganose, A. M., Savory, C. N. & Scanlon, D. O. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem. Commun. 103, 15729–15735 (2016).

    Google Scholar 

  238. Tan, Y. P., Povolotskyi, M., Kubis, T., Boykin, T. B. & Klimeck, G. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution. Phys. Rev. B 92, 085301 (2015).

    Article  CAS  Google Scholar 

  239. Menéndez-Proupin, E., Amézaga, A. & Cruz Hernández, N. Electronic structure of CdTe using GGA+USIC. Phys. B Condens. Matter 452, 119–123 (2014).

    Article  CAS  Google Scholar 

  240. Park, J.-S., Yang, J.-H., Ramanathan, K. & Wei, S.-H. Defect properties of Sb- and Bi-doped CuInSe2: the effect of the deep lone-pair s states. Appl. Phys. Lett. 105, 243901 (2014).

    Article  CAS  Google Scholar 

  241. Redinger, A. et al. Time resolved photoluminescence on Cu(In, Ga)Se2 absorbers: distinguishing degradation and trap states. Appl. Phys. Lett. 110, 122104 (2017).

    Article  CAS  Google Scholar 

  242. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  243. Yang, Y. et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688–4692 (2015).

    Article  CAS  Google Scholar 

  244. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  Google Scholar 

  245. deQuilettes, D. W. et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438–444 (2016).

    Article  CAS  Google Scholar 

  246. Poindexter, E. H. et al. Electronic traps and P b centers at the Si/SiO2 interface: band-gap energy distribution. J. Appl. Phys. 56, 2844–2849 (1984).

    Article  CAS  Google Scholar 

  247. Voronkov, V. V., Falster, R., Bothe, K., Lim, B. & Schmidt, J. Lifetime-degrading boron-oxygen centres in p-type and n-type compensated silicon. J. Appl. Phys. 110, 063515 (2011).

    Article  CAS  Google Scholar 

  248. Niewelt, T., Schön, J., Broisch, J., Warta, W. & Schubert, M. Electrical characterization of the slow boron oxygen defect component in Czochralski silicon. Phys. Status Solidi RRL 9, 692–696 (2015).

    Article  CAS  Google Scholar 

  249. Niewelt, T., Mägdefessel, S. & Schubert, M. C. Fast in-situ photoluminescence analysis for a recombination parameterization of the fast BO defect component in silicon. J. Appl. Phys. 120, 085705 (2016).

    Article  CAS  Google Scholar 

  250. Huang, B. et al. Origin of reduced efficiency in Cu(In, Ga)Se2 solar cells with high ga concentration: alloy solubility versus intrinsic defects. IEEE J. Photovolt. 4, 477–482 (2014).

    Article  Google Scholar 

  251. Krysztopa, A., Igalson, M., Gütay, L., Larsen, J. K. & Aida, Y. Defect level signatures in CuInSe2 by photocurrent and capacitance spectroscopy. Thin Solid Films 535, 366–370 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S.-H. Wei, K.J. Chang, A. Zunger, A.A. Sokol, C.R.A. Catlow, and C.G. van de Walle for illuminating discussions regarding defects in semiconductors. This project has received funding from the European Horizon 2020 Framework Programme for research, technological development and demonstration (Grant No. 720907); see STARCELL for further information. A.W. is supported by a Royal Society University Research Fellowship and the Leverhulme Trust, and J.P. is supported by a Royal Society Shooter Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed to the discussion of content. J.-S.P., S.K. and A.W. wrote the article, and Z.X. edited and reviewed the article prior to submission.

Corresponding author

Correspondence to Aron Walsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SC-FERMI: https://sourceforge.net/projects/sc-fermi/

STARCELL: http://www.starcell.eu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.S., Kim, S., Xie, Z. et al. Point defect engineering in thin-film solar cells. Nat Rev Mater 3, 194–210 (2018). https://doi.org/10.1038/s41578-018-0026-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0026-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing