Review Article | Published:

Point defect engineering in thin-film solar cells

Nature Reviews Materialsvolume 3pages194210 (2018) | Download Citation

Abstract

Control of defect processes in photovoltaic materials is essential for realizing high-efficiency solar cells and related optoelectronic devices. Native defects and extrinsic dopants tune the Fermi level and enable semiconducting p–n junctions; however, fundamental limits to doping exist in many compounds. Optical transitions from defect states can enhance photocurrent generation through sub-bandgap absorption; however, these defect states are also often responsible for carrier trapping and non-radiative recombination events that limit the voltage in operating solar cells. Many classes of materials, including metal oxides, chalcogenides and halides, are being examined for next-generation solar energy applications, and each technology faces distinct challenges that could benefit from point defect engineering. Here, we review the evolution in the understanding of point defect behaviour from Si-based photovoltaics to thin-film CdTe and Cu(In,Ga)Se2 technologies, through to the latest generation of halide perovskite (CH3NH3PbI3) and kesterite (Cu2ZnSnS4) devices. We focus on the chemical bonding that underpins the defect chemistry and the atomistic processes associated with the photophysics of charge-carrier generation, trapping and recombination in solar cells. Finally, we outline general principles to enable defect control in complex semiconducting materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SC-FERMI: https://sourceforge.net/projects/sc-fermi/

STARCELL: http://www.starcell.eu

References

  1. 1.

    Pantelides, S. T. The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys. 50, 797–858 (1978).

  2. 2.

    Stoneham, A. M. Theory of Defects in Solids (Oxford Univ. Press, 1975).

  3. 3.

    Frenkel, J. Über die Wärmebewegung in festen und flüssigen Körpern [German]. Z. Physik. 35, 652–669 (1926).

  4. 4.

    Kroger, F. A. & Vink, H. J. Relations between the concentrations of imperfections in solids. J. Phys. Chem. Solids 5, 208–223 (1958).

  5. 5.

    Mott, N. F. & Littleton, M. J. Conduction in polar crystals. I. Electrolytic conduction in solid salts. Trans. Faraday Soc. 34, 485–499 (1938).

  6. 6.

    Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

  7. 7.

    Bracht, H., Haller, E. E. & Clark-Phelps, R. Silicon self-diffusion in isotope heterostructures. Phys. Rev. Lett. 81, 393–396 (1998).

  8. 8.

    Jones, E. D., Stewart, N. M. & Mullin, J. B. Studies on the self-diffusion of cadmium in cadmium telluride in the temperature range 350–650 °C using anodic oxidation. J. Cryst. Growth 130, 6–12 (1993).

  9. 9.

    Gartsman, K. et al. Direct evidence for diffusion and electromigration of Cu in CuInSe2. J. Appl. Phys. 82, 4282–4285 (1997).

  10. 10.

    Istratov, A. A., Flink, C., Hieslmair, H., Weber, E. R. & Heiser, T. Intrinsic diffusion coefficient of interstitial copper in silicon. Phys. Rev. Lett. 81, 1243–1246 (1998).

  11. 11.

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

  12. 12.

    Buckeridge, J. et al. Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals. Phys. Rev. Lett. 114, 016405 (2015).

  13. 13.

    Madelung, O. M. Semiconductors: Data Handbook (Springer, 2003).

  14. 14.

    De Wolf, S., Descoeudres, A., Holman, Z. C. & Ballif, C. High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012).

  15. 15.

    Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016).

  16. 16.

    Newman, R. C. Defects in silicon. Rep. Prog. Phys. 45, 1163–1210 (1982).

  17. 17.

    Fahey, P. M., Griffin, P. B. & Plummer, J. D. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 61, 289–384 (1989).

  18. 18.

    Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

  19. 19.

    Pankove, J. I. & Tarng, M. L. Amorphous silicon as a passivant for crystalline silicon. Appl. Phys. Lett. 34, 156–157 (1979).

  20. 20.

    Aberle, A. G. Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. 8, 473–487 (2000).

  21. 21.

    Richter, A., Hermle, M. & Glunz, S. W. Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

  22. 22.

    Broqvist, P., Alkauskas, A. & Pasquarello, A. Defect levels of dangling bonds in silicon and germanium through hybrid functionals. Phys. Rev. B 78, 075203 (2008).

  23. 23.

    George, B. M. et al. Atomic structure of interface states in silicon heterojunction solar cells. Phys. Rev. Lett. 110, 1–5 (2013).

  24. 24.

    Higashi, G. S., Chabal, Y. J., Trucks, G. W. & Raghavachari, K. Ideal hydrogen termination of the Si (111) surface. Appl. Phys. Lett. 56, 656–658 (1990).

  25. 25.

    Chang, K. J. & Chadi, D. J. Hydrogen bonding and diffusion in crystalline silicon. Phys. Rev. B 40, 11644–11653 (1989).

  26. 26.

    Hoex, B., Gielis, J. J. H., van de Sanden, M. C. M. & Kessels, W. M. M. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J. Appl. Phys. 104, 113703 (2008).

  27. 27.

    Davis, J. R. et al. Impurities in silicon solar cells. IEEE Trans. Electron. Devices 27, 677–687 (1980).

  28. 28.

    Coletti, G. et al. Impact of metal contamination in silicon solar cells. Adv. Funct. Mater. 21, 879–890 (2011).

  29. 29.

    Peaker, A. R. et al. Recombination via point defects and their complexes in solar silicon. Phys. Status Solidi A 209, 1884–1893 (2012).

  30. 30.

    Gilles, D., Schröter, W. & Bergholz, W. Impact of the electronic structure on the solubility and diffusion of 3d transition elements in silicon. Phys. Rev. B 41, 5770–5782 (1990).

  31. 31.

    Zimmermann, H. & Ryssel, H. Gold and platinum diffusion: the key to the understanding of intrinsic point-defect behavior in silicon. Appl. Phys. A 55, 121–134 (1992).

  32. 32.

    Lemke, H. Properties of silicon crystals doped with zirconium or hafnium. Phys. Status Solidi A 122, 617–630 (1990).

  33. 33.

    Istratov, A. A., Buonassisi, T., Pickett, M. D., Heuer, M. & Weber, E. R. Control of metal impurities in ‘dirty’ multicrystalline silicon for solar cells. Mater. Sci. Eng. B 134, 282–286 (2006).

  34. 34.

    Hofstetter, J., Lelièvre, J. F., del Cañizo, C. & Luque, A. Acceptable contamination levels in solar grade silicon: from feedstock to solar cell. Mater. Sci. Eng. B 159–160, 299–304 (2009).

  35. 35.

    Pizzini, S. Towards solar grade silicon: challenges and benefits for low cost photovoltaics. Sol. Energy Mater. Sol. Cells 94, 1528–1533 (2010).

  36. 36.

    Reinders, A., Verlinden, P., van Sark, W. & Freundlich, A. Photovoltaic Solar Energy: From Fundamentals to Applications (Wiley, 2017).

  37. 37.

    Weber, E. R. Transition metals in silicon. Appl. Phys. A 30, 1–22 (1983).

  38. 38.

    Myers, S. M., Seibt, M. & Schröter, W. Mechanisms of transition-metal gettering in silicon. J. Appl. Phys. 88, 3795 (2000).

  39. 39.

    Rein, S. & Glunz, S. W. Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy. J. Appl. Phys. 98, 113711 (2005).

  40. 40.

    Istratov, A. A. et al. Nickel solubility in intrinsic and doped silicon. J. Appl. Phys. 97, 023505 (2005).

  41. 41.

    Diez, S., Rein, S., Roth, T. & Glunz, S. W. Cobalt related defect levels in silicon analyzed by temperature- and injection-dependent lifetime spectroscopy. J. Appl. Phys. 101, 033710 (2007).

  42. 42.

    Steger, M. et al. Photoluminescence of deep defects involving transition metals in Si: new insights from highly enriched 28Si. J. Appl. Phys. 110, 081301 (2011).

  43. 43.

    Markevich, V. P. et al. Titanium in silicon: lattice positions and electronic properties. Appl. Phys. Lett. 104, 152105 (2014).

  44. 44.

    Marinopoulos, A. G., Santos, P. & Coutinho, J. DFT+U study of electrical levels and migration barriers of early 3d and 4d transition metals in silicon. Phys. Rev. B 92, 075124 (2015).

  45. 45.

    Sharan, A., Gui, Z. & Janotti, A. Hybrid-functional calculations of the copper impurity in silicon. Phys. Rev. Appl. 8, 024023 (2017).

  46. 46.

    Buonassisi, T. et al. Engineering metal-impurity nanodefects for low-cost solar cells. Nat. Mater. 4, 676–679 (2005).

  47. 47.

    Pickett, M. D. & Buonassisi, T. Iron point defect reduction in multicrystalline silicon solar cells. Appl. Phys. Lett. 92, 2006–2009 (2008).

  48. 48.

    Alkauskas, A., McCluskey, M. D. & Van de Walle, C. G. Tutorial: defects in semiconductors — combining experiment and theory. J. Appl. Phys. 119, 181101 (2016).

  49. 49.

    Watkins, G. D. Native defects and their interactions with impurities in silicon. MRS Proc. 469, 139 (1997).

  50. 50.

    Tuomisto, F. & Makkonen, I. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85, 1583–1631 (2013).

  51. 51.

    Stavola, M. & Fowler, W. B. Tutorial: novel properties of defects in semiconductors revealed by their vibrational spectra. J. Appl. Phys. 123, 161561 (2018).

  52. 52.

    McPhail, D. S. Applications of secondary ion mass spectrometry (SIMS) in materials science. J. Mater. Sci. 41, 873–903 (2006).

  53. 53.

    Lindroos, J. et al. Nickel: a very fast diffuser in silicon. J. Appl. Phys. 113, 204906 (2013).

  54. 54.

    Rinke, P., Janotti, A., Scheffler, M. & Van de Walle, C. Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial. Phys. Rev. Lett. 102, 026402 (2009).

  55. 55.

    Estreicher, S. K., Backlund, D. J., Carbogno, C. & Scheffler, M. Activation energies for diffusion of defects in silicon: the role of the exchange-correlation functional. Angew. Chem. Int. Ed. 50, 10221–10225 (2011).

  56. 56.

    Śpiewak, P. & Kurzydłowski, K. J. Formation and migration energies of the vacancy in Si calculated using the HSE06 range-separated hybrid functional. Phys. Rev. B 88, 195204 (2013).

  57. 57.

    Lindroos, J. & Savin, H. Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126 (2016).

  58. 58.

    Niewelt, T., Schon, J., Warta, W., Glunz, S. W. & Schubert, M. C. Degradation of crystalline silicon due to boron–oxygen defects. IEEE J. Photovolt. 7, 383–398 (2017).

  59. 59.

    Hallam, B. et al. Recent insights into boron-oxygen related degradation: evidence of a single defect. Sol. Energy Mater. Sol. Cells 173, 25–32 (2017).

  60. 60.

    Taguchi, M. et al. 24.7% Record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

  61. 61.

    Masuko, K. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

  62. 62.

    Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

  63. 63.

    Boulfrad, Y. et al. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge. Appl. Phys. Lett. 105, 182108 (2014).

  64. 64.

    Luo, W. et al. Potential-induced degradation in photovoltaic modules: a critical review. Energy Environ. Sci. 10, 43–68 (2017).

  65. 65.

    Loferski, J. J. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys. 27, 777–784 (1956).

  66. 66.

    McCandless, B. E. & Sites, J. R. in Handbook of Photovoltaic Science and Engineering (eds Luque, A. & Hegedus, S.) 600–641 (John Wiley & Sons, 2011).

  67. 67.

    Green, M. A. et al. Solar cell efficiency tables (version 51). Prog. Photovolt. 26, 2–12 (2018).

  68. 68.

    Wei, S.-H., Zhang, S. B. & Zunger, A. First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 87, 1304–1311 (2000).

  69. 69.

    Ma, J. et al. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Phys. Rev. Lett. 111, 067402 (2013).

  70. 70.

    Kranz, L. et al. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nat. Commun. 4, 3306 (2013).

  71. 71.

    Gessert, T. A. et al. Research strategies toward improving thin-film CdTe photovoltaic devices beyond 20% conversion efficiency. Sol. Energy Mater. Sol. Cells 119, 149–155 (2013).

  72. 72.

    Reese, M. O. et al. Intrinsic surface passivation of CdTe. J. Appl. Phys. 118, 155305 (2015).

  73. 73.

    Burst, J. M. et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat. Energy 1, 16015 (2016).

  74. 74.

    Kanevce, A., Reese, M. O., Barnes, T. M., Jensen, S. A. & Metzger, W. K. The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells. J. Appl. Phys. 121, 214506 (2017).

  75. 75.

    Yang, J.-H., Yin, W.-J., Park, J.-S., Ma, J. & Wei, S.-H. Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond. Sci. Technol. 31, 083002 (2016).

  76. 76.

    Shepidchenko, A., Sanyal, B., Klintenberg, M. & Mirbt, S. Small hole polaron in CdTe: Cd-vacancy revisited. Sci. Rep. 5, 14509 (2015).

  77. 77.

    Lindström, A., Mirbt, S., Sanyal, B. & Klintenberg, M. High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies. J. Phys. D. 49, 035101 (2016).

  78. 78.

    Yang, J. H., Yin, W. J., Park, J. S., Metzger, W. & Wei, S. H. First-principles study of roles of Cu and Cl in polycrystalline CdTe. J. Appl. Phys. 119, 045104 (2016).

  79. 79.

    Yang, J. H. et al. Tuning the Fermi level beyond the equilibrium doping limit through quenching: the case of CdTe. Phys. Rev. B 90, 245202 (2014).

  80. 80.

    Pautrat, J. L., Francou, J. M., Magnea, N., Molva, E. & Saminadayar, K. Donors and acceptors in tellurium compounds; the problem of doping and self-compensation. J. Cryst. Growth 72, 194–204 (1985).

  81. 81.

    Said, M. & Kanehisa, M. A. Excited states of acceptors in CdTe and ZnTe. J. Cryst. Growth 101, 488–492 (1990).

  82. 82.

    Poplawsky, J. D. et al. Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells. Adv. Energy Mater. 4, 1400454 (2014).

  83. 83.

    Kuciauskas, D. et al. The impact of Cu on recombination in high voltage CdTe solar cells. Appl. Phys. Lett. 107, 243906 (2015).

  84. 84.

    Kuciauskas, D. et al. Recombination analysis in cadmium telluride photovoltaic solar cells with photoluminescence spectroscopy. IEEE J. Photovolt. 6, 313–318 (2016).

  85. 85.

    Yang, J. H., Metzger, W. K. & Wei, S. H. Carrier providers or killers: the case of Cu defects in CdTe. Appl. Phys. Lett. 111, 042106 (2017).

  86. 86.

    Yang, J.-H., Park, J.-S., Kang, J. & Wei, S.-H. First-principles multiple-barrier diffusion theory: the case study of interstitial diffusion in CdTe. Phys. Rev. B 91, 075202 (2015).

  87. 87.

    Yang, J. H. et al. Enhanced p-type dopability of P and As in CdTe using non-equilibrium thermal processing. J. Appl. Phys. 118, 025102 (2015).

  88. 88.

    Mooney, P. M. Deep donor levels (DX centers) in III–V semiconductors. J. Appl. Phys. 67, R1–R26 (1990).

  89. 89.

    Wei, S.-H. & Zhang, S. B. Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe. Phys. Rev. B 66, 155211 (2002).

  90. 90.

    Barnard, E. S. et al. 3D Lifetime tomography reveals how CdCl2 improves recombination throughout CdTe solar cells. Adv. Mater. 29, 1603801 (2017).

  91. 91.

    Moravec, P., Hage-Ali, M., Chibani, L. & Siffert, P. Deep levels in semi-insulating CdTe. Mater. Sci. Eng. B 16, 223–227 (1993).

  92. 92.

    Balcioglu, A., Ahrenkiel, R. K. & Hasoon, F. Deep-level impurities in CdTe/CdS thin-film solar cells. J. Appl. Phys. 88, 7175–7178 (2000).

  93. 93.

    Mathew, X. Photo-induced current transient spectroscopic study of the traps in CdTe. Sol. Energy Mater. Sol. Cells 76, 225–242 (2003).

  94. 94.

    Komin, V. et al. The effect of the CdCl2 treatment on CdTe/CdS thin film solar cells studied using deep level transient spectroscopy. Thin Solid Films 431, 143–147 (2003).

  95. 95.

    Elhadidy, H., Franc, J., Moravec, P., Höschl, P. & Fiederle, M. Deep level defects in CdTe materials studied by thermoelectric effect spectroscopy and photoinduced current transient spectroscopy. Semicond. Sci. Technol. 22, 537–542 (2007).

  96. 96.

    Castaldini, A., Cavallini, A., Fraboni, B., Fernandez, P. & Piqueras, J. Deep energy levels in CdTe and CdZnTe. J. Appl. Phys. 83, 2121–2126 (1998).

  97. 97.

    Kuciauskas, D. et al. Charge-carrier transport and recombination in heteroepitaxial CdTe. J. Appl. Phys. 116, 123108 (2014).

  98. 98.

    Li, C. et al. From atomic structure to photovoltaic properties in CdTe solar cells. Ultramicroscopy 134, 113–125 (2013).

  99. 99.

    Li, C. et al. Grain-boundary-enhanced carrier collection in CdTe solar cells. Phys. Rev. Lett. 112, 156103 (2014).

  100. 100.

    Park, J.-S., Yang, J.-H., Barnes, T. & Wei, S.-H. Effect of intermixing at CdS/CdTe interface on defect properties. Appl. Phys. Lett. 109, 14–18 (2016).

  101. 101.

    Moseley, J. et al. Recombination by grain-boundary type in CdTe. J. Appl. Phys. 118, 025702 (2015).

  102. 102.

    Visoly-Fisher, I., Cohen, S. R., Ruzin, A. & Cahen, D. How polycrystalline devices can outperform single-crystal ones: thin film CdTe/CdS solar cells. Adv. Mater. 16, 879–883 (2004).

  103. 103.

    Visoly-Fisher, I., Cohen, S. R., Gartsman, K., Ruzin, A. & Cahen, D. Understanding the beneficial role of grain boundaries in polycrystalline solar cells from single-grain-boundary scanning probe microscopy. Adv. Funct. Mater. 16, 649–660 (2006).

  104. 104.

    Major, J. D. Grain boundaries in CdTe thin film solar cells: a review. Semicond. Sci. Technol. 31, 093001 (2016).

  105. 105.

    Yan, Y., Al-Jassim, M. M. & Jones, K. M. Structure and effects of double-positioning twin boundaries in CdTe. J. Appl. Phys. 94, 2976–2979 (2003).

  106. 106.

    Zhang, L. et al. Effect of copassivation of Cl and Cu on CdTe grain boundaries. Phys. Rev. Lett. 101, 155501 (2008).

  107. 107.

    Yang, J.-H., Shi, L., Wang, L.-W. & Wei, S.-H. Non-radiative carrier recombination enhanced by two-level process: a first-principles study. Sci. Rep. 6, 21712 (2016).

  108. 108.

    Durose, K., Edwards, P. R. & Halliday, D. P. Materials aspects of CdTe/CdS solar cells. J. Cryst. Growth 197, 733–742 (1999).

  109. 109.

    Dharmadasa, I. Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding. Coatings 4, 282–307 (2014).

  110. 110.

    Yoo, S. et al. Identification of critical stacking faults in thin-film CdTe solar cells. Appl. Phys. Lett. 105, 062104 (2014).

  111. 111.

    Kranz, L. et al. Tailoring impurity distribution in polycrystalline CdTe solar cells for enhanced minority carrier lifetime. Adv. Energy Mater. 4, 1301400 (2014).

  112. 112.

    Jensen, S. A. et al. Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2. Appl. Phys. Lett. 108, 263903 (2016).

  113. 113.

    Ringel, S. A., Smith, A. W., MacDougal, M. H. & Rohatgi, A. The effects of CdCl2 on the electronic properties of molecular-beam epitaxially grown CdTe/CdS heterojunction solar cells. J. Appl. Phys. 70, 881–889 (1991).

  114. 114.

    Moutinho, H. R., Al-Jassim, M. M., Levi, D. H., Dippo, P. C. & Kazmerski, L. L. Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films. J. Vac. Sci. Technol. A 16, 1251–1257 (1998).

  115. 115.

    Abbas, A. et al. The effect of cadmium chloride treatment on close-spaced sublimated cadmium telluride thin-film solar cells. IEEE J. Photovolt. 3, 1361–1366 (2013).

  116. 116.

    McCandless, B. E., Moulton, L. V. & Birkmire, R. W. Recrystallization and sulfur diffusion in CdCl2-treated CdTe/CdS thin films. Prog. Photovolt. 5, 249–260 (1997).

  117. 117.

    Metzger, W. K., Albin, D., Romero, M. J., Dippo, P. & Young, M. CdCl2 treatment, S diffusion, and recombination in polycrystalline CdTe. J. Appl. Phys. 99, 103703 (2006).

  118. 118.

    Williams, B. L. et al. A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry. Adv. Energy Mater. 5, 1500554 (2015).

  119. 119.

    Major, J. D., Treharne, R. E., Phillips, L. J. & Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 511, 334–337 (2014).

  120. 120.

    Jaffe, J. E. & Zunger, A. Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2. Phys. Rev. B 28, 5822–5847 (1983).

  121. 121.

    Butler, D. Thin films: ready for their close-up? Nature 454, 558–559 (2008).

  122. 122.

    Noufi, R., Axton, R., Herrington, C. & Deb, S. K. Electronic properties versus composition of thin films of CuInSe2. Appl. Phys. Lett. 45, 668–670 (1984).

  123. 123.

    Wei, S.-H., Zhang, S. B. & Zunger, A. Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Appl. Phys. Lett. 72, 3199–3201 (1998).

  124. 124.

    Zhang, S. B., Wei, S.-H., Zunger, A. & Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642–9656 (1998).

  125. 125.

    Stephan, C., Schorr, S., Tovar, M. & Schock, H.-W. Comprehensive insights into point defect and defect cluster formation in CuInSe2. Appl. Phys. Lett. 98, 091906 (2011).

  126. 126.

    Malitckaya, M., Komsa, H. P., Havu, V. & Puska, M. J. First-principles modeling of point defects and complexes in thin-film solar-cell absorber CuInSe2. Adv. Electron. Mater. 3, 1600353 (2017).

  127. 127.

    Pohl, J. & Albe, K. Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory. Phys. Rev. B 87, 245203 (2013).

  128. 128.

    Fearheiley, M. L. The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals. Sol. Cells 16, 91–100 (1986).

  129. 129.

    Han, S.-H., Hasoon, F. S., Al-Thani, H. A., Hermann, A. M. & Levi, D. H. Effect of Cu deficiency on the defect levels of Cu0.86In1.09Se2.05 determined by spectroscopic ellipsometry. Appl. Phys. Lett. 86, 021903 (2005).

  130. 130.

    Schmid, D., Ruckh, M., Grunwald, F. & Schock, H. W. Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J. Appl. Phys. 73, 2902–2909 (1993).

  131. 131.

    Ruberto, M. N. & Rothwarf, A. Time-dependent open-circuit voltage in CuInSe2/CdS solar cells: theory and experiment. J. Appl. Phys. 61, 4662–4669 (1987).

  132. 132.

    Rau, U., Schmitt, M., Parisi, J., Riedl, W. & Karg, F. Persistent photoconductivity in Cu(In, Ga)Se2 heterojunctions and thin films prepared by sequential deposition. Appl. Phys. Lett. 73, 223–225 (1998).

  133. 133.

    Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

  134. 134.

    Harvey, S. P., Johnston, S. & Teeter, G. Effects of voltage-bias annealing on metastable defect populations in CIGS and CZTSe solar cells. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) https://doi.org/10.1109/PVSC.2016.7750018 (2016).

  135. 135.

    Teeter, G., Harvey, S. P. & Johnston, S. Controlling metastable native point-defect populations in Cu(In, Ga)Se2 and Cu2ZnSnSe4 materials and solar cells through voltage-bias annealing. J. Appl. Phys. 121, 043102 (2017).

  136. 136.

    Zabierowski, P., Rau, U. & Igalson, M. Classification of metastabilities in the electrical characteristics of ZnO/CdS/Cu(In, Ga)Se2 solar cells. Thin Solid Films 387, 147–150 (2001).

  137. 137.

    Lany, S. & Zunger, A. Light- and bias-induced metastabilities in Cu(In, Ga)Se2 based solar cells caused by the (V SeV Cu) vacancy complex. J. Appl. Phys. 100, 113715–113725 (2006).

  138. 138.

    Lang, D. V. & Logan, R. A. Large–lattice-relaxation model for persistent photoconductivity in compound semiconductors. Phys. Rev. Lett. 39, 635–639 (1977).

  139. 139.

    Chadi, D. J. & Chang, K. J. Theory of the atomic and electronic structure of DX centers in GaAs and AlxGa1−xAs alloys. Phys. Rev. Lett. 61, 873–876 (1988).

  140. 140.

    Thio, T., Bennett, J. W., Chadi, D. J., Linke, R. A. & Tamargo, M. C. DX centers in II-VI semiconductors and heterojunctions. J. Electron. Mater. 25, 229–233 (1996).

  141. 141.

    Lany, S. & Zunger, A. Intrinsic DX centers in ternary chalcopyrite semiconductors. Phys. Rev. Lett. 100, 016401 (2008).

  142. 142.

    Niles, D. W. et al. Na impurity chemistry in photovoltaic CIGS thin films: investigation with x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. 15, 3044–3049 (1997).

  143. 143.

    Kimura, R. et al. Effects of sodium on CuIn3Se5 thin films. Jpn. J. Appl. Phys. 38, L899–L901 (1999).

  144. 144.

    Pianezzi, F. et al. Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Phys. Chem. Chem. Phys. 16, 8843–8851 (2014).

  145. 145.

    Lammer, M., Klemm, U. & Powalla, M. Sodium co-evaporation for low temperature Cu(In, Ga)Se2 deposition. Thin Solid Films 387, 33–36 (2001).

  146. 146.

    Wei, S.-H., Zhang, S. B. & Zunger, A. Effects of Na on the electrical and structural properties of CuInSe2. J. Appl. Phys. 85, 7214–7218 (1999).

  147. 147.

    Oikkonen, L. E., Ganchenkova, M. G., Seitsonen, A. P. & Nieminen, R. M. Effect of sodium incorporation into CuInSe2 from first principles. J. Appl. Phys. 114, 083503 (2013).

  148. 148.

    Yuan, Z. K. et al. Na-diffusion enhanced p-type conductivity in Cu(In, Ga)Se2: a new mechanism for efficient doping in semiconductors. Adv. Energy Mater. 6, 1–7 (2016).

  149. 149.

    Forest, R. V., Eser, E., McCandless, B. E., Chen, J. G. & Birkmire, R. W. Reversibility of (Ag, Cu)(In, Ga)Se2 electrical properties with the addition and removal of Na: role of grain boundaries. J. Appl. Phys. 117, 115102 (2015).

  150. 150.

    Kronik, L., Cahen, D. & Schock, H. W. Effects of sodium on polycrystalline Cu(In, Ga)Se2 and its solar cell performance. Adv. Mater. 10, 31–36 (1998).

  151. 151.

    Persson, C. & Zunger, A. Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. Phys. Rev. Lett. 91, 266401 (2003).

  152. 152.

    Siebentritt, S., Igalson, M., Persson, C. & Lany, S. The electronic structure of chalcopyrites — bands, point defects and grain boundaries. Prog. Photovolt. 18, 390–410 (2010).

  153. 153.

    Abou-Ras, D. et al. Direct insight into grain boundary reconstruction in polycrystalline Cu(In, Ga)Se2 with atomic resolution. Phys. Rev. Lett. 108, 075502 (2012).

  154. 154.

    Yin, W.-J., Wu, Y., Noufi, R., Al-Jassim, M. & Yan, Y. Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe2. Appl. Phys. Lett. 102, 193905 (2013).

  155. 155.

    Keller, D. et al. Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy. Appl. Phys. Lett. 109, 153103 (2016).

  156. 156.

    Goodman, C. H. L. The prediction of semiconducting properties in inorganic compounds. J. Phys. Chem. Solids 6, 305–314 (1958).

  157. 157.

    Pamplin, B. R. A systematic method of deriving new semiconducting compounds by structural analogy. J. Phys. Chem. Solids 25, 675–684 (1964).

  158. 158.

    Pamplin, B. R. & Shah, J. S. Studies in the adamantine family of semiconductors. J. Electrochem. Soc. 116, 1565–1568 (1969).

  159. 159.

    Chen, S., Gong, X. G., Walsh, A. & Wei, S.-H. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys. Rev. B 79, 165211 (2009).

  160. 160.

    Walsh, A., Chen, S., Wei, S.-H. & Gong, X.-G. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400–409 (2012).

  161. 161.

    Chen, S. Y. et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells. Phys. Rev. B 83, 125201 (2011).

  162. 162.

    Wallace, S. K., Mitzi, D. B. & Walsh, A. The steady rise of kesterite solar cells. ACS Energy Lett. 2, 776–779 (2017).

  163. 163.

    Wang, W. et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014).

  164. 164.

    Bourdais, S. et al. Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6, 1502276 (2016).

  165. 165.

    Chen, S., Walsh, A., Gong, X.-G. & Wei, S.-H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013).

  166. 166.

    Chen, S. Y., Yang, J.-H., Gong, X. G., Walsh, A. & Wei, S.-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 81, 245204 (2010).

  167. 167.

    Chen, S., Gong, X. G., Walsh, A. & Wei, S.-H. H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010).

  168. 168.

    Yoo, H. & Fauchet, P. Dielectric constant reduction in silicon nanostructures. Phys. Rev. B 77, 115355 (2008).

  169. 169.

    Han, D. et al. Deep electron traps and origin of p-type conductivity in the earth-abundant solar-cell material Cu2ZnSnS4. Phys. Rev. B 87, 155206 (2013).

  170. 170.

    Zhai, Y. T. et al. Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): a first-principles investigation. Phys. Rev. B 84, 075213 (2011).

  171. 171.

    Burton, L. A., Kumagai, Y., Walsh, A. & Oba, F. DFT investigation into the underperformance of sulfide materials in photovoltaic applications. J. Mater. Chem. A 5, 9132–9140 (2017).

  172. 172.

    Schorr, S. The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 95, 1482–1488 (2011).

  173. 173.

    Paris, M., Choubrac, L., Lafond, A., Guillot-Deudon, C. & Jobic, S. Solid-state NMR and Raman spectroscopy to address the structure of defects and the tricky issue of the Cu/Zn disorder in Cu-poor, Zn-rich CZTS materials. Inorg. Chem. 53, 8646–8653 (2014).

  174. 174.

    Dimitrievska, M., Fairbrother, A., Saucedo, E., Pérez-Rodríguez, A. & Izquierdo-Roca, V. Influence of compositionally induced defects on the vibrational properties of device grade Cu2ZnSnSe4 absorbers for kesterite based solar cells. Appl. Phys. Lett. 106, 073903 (2015).

  175. 175.

    Schorr, S. Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films 515, 5985–5991 (2007).

  176. 176.

    Choubrac, L. et al. Multinuclear (67Zn, 119Sn and 65Cu) NMR spectroscopy — an ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials. Phys. Chem. Chem. Phys. 15, 10722–10725 (2013).

  177. 177.

    Scragg, J. J. S., Choubrac, L., Lafond, A., Ericson, T. & Platzer-Björkman, C. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films. Appl. Phys. Lett. 104, 041911 (2014).

  178. 178.

    Rey, G. et al. The band gap of Cu2ZnSnSe4: effect of order–disorder. Appl. Phys. Lett. 105, 112106 (2014).

  179. 179.

    Valentini, M. et al. Effect of the order–disorder transition on the optical properties of Cu2ZnSnS4. Appl. Phys. Lett. 108, 211909 (2016).

  180. 180.

    Rudisch, K., Ren, Y., Platzer-Björkman, C. & Scragg, J. Order–disorder transition in B-type Cu2ZnSnS4 and limitations of ordering through thermal treatments. Appl. Phys. Lett. 108, 231902 (2016).

  181. 181.

    Scragg, J. J. S. et al. Cu–Zn disorder and band gap fluctuations in Cu2ZnSn(S,Se)4: theoretical and experimental investigations. Phys. Status Solidi B 253, 247–254 (2016).

  182. 182.

    Zawadzki, P., Zakutayev, A. & Lany, S. Entropy-driven clustering in tetrahedrally bonded multinary materials. Phys. Rev. Appl. 3, 1–7 (2015).

  183. 183.

    Repins, I. L. et al. Indications of short minority-carrier lifetime in kesterite solar cells. J. Appl. Phys. 114, 1–5 (2013).

  184. 184.

    Liu, F. et al. Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells. Adv. Energy Mater. 6, 1600706 (2016).

  185. 185.

    Hages, C. J. et al. Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials. Adv. Energy Mater. 116, 1700167 (2017).

  186. 186.

    Kim, S., Park, J.-S. & Walsh, A. Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett 3, 496–500 (2018).

  187. 187.

    Møller, C. K. Crystal structure and photoconductivity of cæsium plumbohalides. Nature 182, 1436–1436 (1958).

  188. 188.

    Weber, D. CH3NH3PbX3, a Pb(ii)-system with cubic perovskite structure. Z. Naturforsch. B 33, 1443–1445 (1978).

  189. 189.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

  190. 190.

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

  191. 191.

    Walsh, A. Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C 119, 5755–5760 (2015).

  192. 192.

    Brivio, F., Butler, K. T., Walsh, A. & Van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

  193. 193.

    Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016).

  194. 194.

    Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

  195. 195.

    Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

  196. 196.

    Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 16, 964–967 (2017).

  197. 197.

    Stoddard, R. J., Eickemeyer, F. T., Katahara, J. K. & Hillhouse, H. W. Correlation between photoluminescence and carrier transport and a simple in situ passivation method for high-bandgap hybrid perovskites. J. Phys. Chem. Lett. 8, 3289–3298 (2017).

  198. 198.

    Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).

  199. 199.

    Baumann, A. et al. Identification of trap states in perovskite solar cells. J. Phys. Chem. Lett. 6, 2350–2354 (2015).

  200. 200.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

  201. 201.

    Kim, G. Y. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445–449 (2018).

  202. 202.

    Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).

  203. 203.

    Du, M.-H. Density functional calculations of native defects in CH3NH3PbI3: effects of spin–orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015).

  204. 204.

    Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid-halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

  205. 205.

    Mandel, G. Self-compensation limited conductivity in binary semiconductors. I. Theory. Phys. Rev. 134, A1073–A1079 (1964).

  206. 206.

    Whalley, L. D., Crespo-Otero, R. & Walsh, A. H-Center and V-center defects in hybrid halide perovskites. ACS Energy Lett 2, 2713–2714 (2017).

  207. 207.

    Tasker, P. W. & Stoneham, A. M. An appraisal of the molecular model for the V k centre. J. Phys. Chem. Solids 38, 1185–1189 (1977).

  208. 208.

    Shluger, A. L., Puchin, V. E., Suzuki, T., Tanimura, K. & Itoh, N. Optical transitions of the H centers in alkali halides. Phys. Rev. B 52, 4017–4028 (1995).

  209. 209.

    Zohar, A. et al. What is the mechanism of MAPbI3 p-doping by I2? Insights from optoelectronic properties. ACS Energy Lett. 2, 2408–2414 (2017).

  210. 210.

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

  211. 211.

    Mosconi, E. et al. Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy Environ. Sci. 9, 3180–3187 (2016).

  212. 212.

    Grancini, G. et al. Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites. Nat. Photonics 9, 695–702 (2015).

  213. 213.

    Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M. & Maier, J. Significance of ion conduction in a organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).

  214. 214.

    Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science 267, 1473–1476 (1995).

  215. 215.

    Savory, C. N., Walsh, A. & Scanlon, D. O. Can Pb-free halide double perovskites support high-effciency solar cells? ACS Energy Lett. 1, 949–955 (2016).

  216. 216.

    Zakutayev, A., Perry, N. H., Mason, T. O., Ginley, D. S. & Lany, S. Non-equilibrium origin of high electrical conductivity in gallium zinc oxide thin films. Appl. Phys. Lett. 103, 232106 (2013).

  217. 217.

    Zhang, S. B., Wei, S.-H. & Zunger, A. Microscopic origin of the phenomenological equilibrium “doping limit rule” in n-type III-V semiconductors. Phys. Rev. Lett. 84, 1232–1235 (2000).

  218. 218.

    Walukiewicz, W. Mechanism of Fermi-level stabilization in semiconductors. Phys. Rev. B 37, 4760–4763 (1988).

  219. 219.

    Zunger, A. Practical doping principles. Appl. Phys. Lett. 83, 57–59 (2003).

  220. 220.

    Wei, S.-H. Overcoming the doping bottleneck in semiconductors. Comput. Mater. Sci. 30, 337–348 (2004).

  221. 221.

    Zhang, S. B., Wei, S.-H. & Zunger, A. A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–V2 compounds. J. Appl. Phys. 83, 3192–3196 (1998).

  222. 222.

    Walsh, A. et al. Limits to doping of wide band gap semiconductors. Chem. Mater. 25, 2924–2926 (2013).

  223. 223.

    Buckeridge, J. et al. Polymorph engineering of TiO2: demonstrating how absolute reference potentials are determined by local coordination. Chem. Mater. 27, 3844–3851 (2015).

  224. 224.

    Shi, L. & Wang, L.-W. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys. Rev. Lett. 109, 245501 (2012).

  225. 225.

    Alkauskas, A., Yan, Q., de Walle, C. G. & Van De Walle, C. G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90, 17–27 (2014).

  226. 226.

    Mandelkorn, J. & Lamneck, J. H. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells. Sol. Cells 29, 121–130 (1990).

  227. 227.

    Lundberg, O., Bodegård, M., Malmström, J. & Stolt, L. Influence of the Cu(In, Ga)Se2 thickness and Ga grading on solar cell performance. Prog. Photovolt. 11, 77–88 (2003).

  228. 228.

    Lee, M., Ngan, L., Hayes, W., Sorensen, J. & Panchula, A. F. Understanding next generation cadmium telluride photovoltaic performance due to spectrum. 2015 IEEE 42nd Photovolt. Specialist Conference (PVSC) https://doi.org/10.1109/PVSC.2015.7356003 (2015).

  229. 229.

    Sinsermsuksakul, P. et al. Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1400496 (2014).

  230. 230.

    Polizzotti, A. et al. Improving the carrier lifetime of tin sulfide via prediction and mitigation of harmful point defects. J. Phys. Chem. Lett. 8, 3661–3667 (2017).

  231. 231.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

  232. 232.

    Yu, L. & Zunger, A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012).

  233. 233.

    Blank, B., Kirchartz, T., Lany, S. & Rau, U. Selection metric for photovoltaic materials screening based on detailed-balance analysis. Phys. Rev. Appl. 8, 024032 (2017).

  234. 234.

    Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

  235. 235.

    Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014).

  236. 236.

    Hendon, C. H. et al. Electroactive nanoporous metal oxides and chalcogenides by chemical design. Chem. Mater. 29, 3663–3670 (2017).

  237. 237.

    Ganose, A. M., Savory, C. N. & Scanlon, D. O. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem. Commun. 103, 15729–15735 (2016).

  238. 238.

    Tan, Y. P., Povolotskyi, M., Kubis, T., Boykin, T. B. & Klimeck, G. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution. Phys. Rev. B 92, 085301 (2015).

  239. 239.

    Menéndez-Proupin, E., Amézaga, A. & Cruz Hernández, N. Electronic structure of CdTe using GGA+USIC. Phys. B Condens. Matter 452, 119–123 (2014).

  240. 240.

    Park, J.-S., Yang, J.-H., Ramanathan, K. & Wei, S.-H. Defect properties of Sb- and Bi-doped CuInSe2: the effect of the deep lone-pair s states. Appl. Phys. Lett. 105, 243901 (2014).

  241. 241.

    Redinger, A. et al. Time resolved photoluminescence on Cu(In, Ga)Se2 absorbers: distinguishing degradation and trap states. Appl. Phys. Lett. 110, 122104 (2017).

  242. 242.

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

  243. 243.

    Yang, Y. et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688–4692 (2015).

  244. 244.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

  245. 245.

    deQuilettes, D. W. et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438–444 (2016).

  246. 246.

    Poindexter, E. H. et al. Electronic traps and P b centers at the Si/SiO2 interface: band-gap energy distribution. J. Appl. Phys. 56, 2844–2849 (1984).

  247. 247.

    Voronkov, V. V., Falster, R., Bothe, K., Lim, B. & Schmidt, J. Lifetime-degrading boron-oxygen centres in p-type and n-type compensated silicon. J. Appl. Phys. 110, 063515 (2011).

  248. 248.

    Niewelt, T., Schön, J., Broisch, J., Warta, W. & Schubert, M. Electrical characterization of the slow boron oxygen defect component in Czochralski silicon. Phys. Status Solidi RRL 9, 692–696 (2015).

  249. 249.

    Niewelt, T., Mägdefessel, S. & Schubert, M. C. Fast in-situ photoluminescence analysis for a recombination parameterization of the fast BO defect component in silicon. J. Appl. Phys. 120, 085705 (2016).

  250. 250.

    Huang, B. et al. Origin of reduced efficiency in Cu(In, Ga)Se2 solar cells with high ga concentration: alloy solubility versus intrinsic defects. IEEE J. Photovolt. 4, 477–482 (2014).

  251. 251.

    Krysztopa, A., Igalson, M., Gütay, L., Larsen, J. K. & Aida, Y. Defect level signatures in CuInSe2 by photocurrent and capacitance spectroscopy. Thin Solid Films 535, 366–370 (2013).

Download references

Acknowledgements

The authors thank S.-H. Wei, K.J. Chang, A. Zunger, A.A. Sokol, C.R.A. Catlow, and C.G. van de Walle for illuminating discussions regarding defects in semiconductors. This project has received funding from the European Horizon 2020 Framework Programme for research, technological development and demonstration (Grant No. 720907); see STARCELL for further information. A.W. is supported by a Royal Society University Research Fellowship and the Leverhulme Trust, and J.P. is supported by a Royal Society Shooter Fellowship.

Author information

Affiliations

  1. Thomas Young Centre and Department of Materials, Imperial College London, London, UK

    • Ji Sang Park
    • , Sunghyun Kim
    • , Zijuan Xie
    •  & Aron Walsh
  2. Department of Physics, Harbin Institute of Technology, Harbin, China

    • Zijuan Xie
  3. Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea

    • Aron Walsh

Authors

  1. Search for Ji Sang Park in:

  2. Search for Sunghyun Kim in:

  3. Search for Zijuan Xie in:

  4. Search for Aron Walsh in:

Contributions

All authors researched data for the article and contributed to the discussion of content. J.-S.P., S.K. and A.W. wrote the article, and Z.X. edited and reviewed the article prior to submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Aron Walsh.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41578-018-0026-7