Review Article

Hydrogel ionotronics

Published:

Abstract

An ionotronic device functions by a hybrid circuit of mobile ions and mobile electrons. Hydrogels are stretchable, transparent, ionic conductors that can transmit electrical signals of high frequency over long distance, enabling ionotronic devices such as artificial muscles, skins and axons. Moreover, ionotronic luminescent devices, ionotronic liquid crystal devices, touchpads, triboelectric generators, artificial eels and gel–elastomer–oil devices can be designed based on hydrogels. In this Review, we discuss first-generation hydrogel ionotronic devices and the challenges associated with the mechanical properties and the chemistry of the materials. We examine how strong and stretchable adhesion between hydrophilic and hydrophobic polymer networks can be achieved, how water can be retained in hydrogels and how to design hydrogels that resist fatigue under cyclic loads. Finally, we highlight applications of hydrogel ionotronic devices and discuss the future of the field.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

  2. 2.

    Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379 (2016).

  3. 3.

    Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2015).

  4. 4.

    Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

  5. 5.

    Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2017).

  6. 6.

    Jeong, J.-W. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015).

  7. 7.

    Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

  8. 8.

    Mohtadi, R. & Orimo, S.-i. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 16091 (2017).

  9. 9.

    El-Kady, M. F., Shao, Y. & Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016).

  10. 10.

    Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220 (2017).

  11. 11.

    Irvine, J. T. et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014 (2016).

  12. 12.

    Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 16080 (2017).

  13. 13.

    Yang, C. H. et al. Ionic cable. Extreme Mechan. Lett. 3, 59–65 (2015).

  14. 14.

    Chun, H. & Chung, T. D. Iontronics. Ann. Rev. Anal. Chem. 8, 441–462 (2015).

  15. 15.

    Leger, J., Berggren, M. & Carter, S. Iontronics: Ionic Carriers in Organic Electronic Materials and Devices. (CRC Press, 2016).

  16. 16.

    Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. (2017).

  17. 17.

    Stokes, R. H. & Robinson, R. A. Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948).

  18. 18.

    Bard, A. J., Inzelt, G. & Scholz, F. Electrochemical Dictionary. (Springer Science & Business Media, 2008).

  19. 19.

    Devlin, P. H. et al. Electrode array system for measuring electrophysiological signals. US Patent US6394953B1 (2002).

  20. 20.

    Goding, J. A., Gilmour, A. D., Aregueta-Robles, U. A., Hasan, E. A. & Green, R. A. Living bioelectronics: strategies for developing an effective long-term implant with functional neural connections. Adv. Funct. Mater. 28, 1702969 (2018).

  21. 21.

    Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

  22. 22.

    Suo, Z. Journal Club Theme of September 2013: Stretchable Ionics. iMechanica http://imechanica.org/node/15218 (2013).

  23. 23.

    Bai, Y. et al. Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Appl. Phys. Lett. 104, 062902 (2014).

  24. 24.

    Chen, B. et al. Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J. Polym. Sci. B Polym. Phys. 52, 1055–1060 (2014).

  25. 25.

    Li, T. et al. Fast-moving soft electronic fish. Sci. Adv. 3, e1602045 (2017).

  26. 26.

    Zhang, C. et al. Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes. J. Appl. Phys. 119, 094108 (2016).

  27. 27.

    Xu, C., Li, B., Xu, C. & Zheng, J. A novel dielectric elastomer actuator based on compliant polyvinyl alcohol hydrogel electrodes. J. Mater. Sci. Mater. Electron. 26, 9213–9218 (2015).

  28. 28.

    Haghiashtiani, G., Habtour, E., Park, S.-H., Gardea, F. & McAlpine, M. C. 3D printed unimorph dielectric elastomer actuators. Extreme Mechan. Lett. 21, 1–8 (2018).

  29. 29.

    Sun, J. Y., Keplinger, C., Whitesides, G. M. & Suo, Z. Ionic skin. Adv. Mater. 26, 7608–7614 (2014).

  30. 30.

    Sarwar, M. S. et al. Bend, stretch, and touch: locating a finger on an actively deformed transparent sensor array. Sci. Adv. 3, e1602200 (2017).

  31. 31.

    Lei, Z., Wang, Q., Sun, S., Zhu, W. & Wu, P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29, 1700321 (2017).

  32. 32.

    Lei, Z., Wang, Q. & Wu, P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater. Horiz. 4, 694–700 (2017).

  33. 33.

    Lei, Z. & Wu, P. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 9, 1134 (2018).

  34. 34.

    Yang, C. H., Chen, B., Zhou, J., Chen, Y. M. & Suo, Z. Electroluminescence of giant stretchability. Adv. Mater. 28, 4480–4484 (2016).

  35. 35.

    Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

  36. 36.

    Yang, C. H., Zhou, S., Shian, S., Clarke, D. R. & Suo, Z. Organic liquid-crystal devices based on ionic conductors. Mater. Horiz. 4, 1102–1109 (2017).

  37. 37.

    Kim, C.-C., Lee, H.-H., Oh, K. H. & Sun, J.-Y. Highly stretchable, transparent ionic touch panel. Science 353, 682–687 (2016).

  38. 38.

    Pu, X. et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3, e1700015 (2017).

  39. 39.

    Parida, K. et al. Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 29, 1702181 (2017).

  40. 40.

    Xu, W. et al. Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv. Energy Mater. 7, 1601529 (2017).

  41. 41.

    Schroeder, T. B. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214 (2017).

  42. 42.

    Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

  43. 43.

    Kellaris, N., Venkata, V. G., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3, eaar3276 (2018).

  44. 44.

    Keplinger, C. Journal Club for February 2018: HASEL artificial muscles for high-speed, electrically powered, self-healing soft robots. iMechanica http://imechanica.org/node/22096 (2018).

  45. 45.

    Wichterle, O. & Lim, D. Hydrophilic gels for biological use. Nature 185, 117 (1960).

  46. 46.

    Wichterle, O., Lim, D. & Dreifus, M. On the problem of contact lenses. Ceskoslovenska Oftalmol. 17, 70 (1961).

  47. 47.

    Dubrovskii, S., Afanas’ eva, M., Lagutina, M. & Kazanskii, K. Comprehensive characterization of superabsorbent polymer hydrogels. Polym. Bull. 24, 107–113 (1990).

  48. 48.

    Thiele, J., Ma, Y., Bruekers, S., Ma, S. & Huck, W. T. 25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 26, 125–148 (2014).

  49. 49.

    Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001).

  50. 50.

    Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012).

  51. 51.

    Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

  52. 52.

    Wirthl, D. et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3, e1700053 (2017).

  53. 53.

    Liu, Q., Nian, G., Yang, C., Qu, S. & Suo, Z. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 9, 846 (2018).

  54. 54.

    Bai, Y. et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 105, 151903 (2014).

  55. 55.

    Le Floch, P. et al. Wearable and washable conductors for active textiles. ACS Appl. Mater. Interfaces 9, 25542–25552 (2017).

  56. 56.

    Tang, J., Li, J., Vlassak, J. J. & Suo, Z. Fatigue fracture of hydrogels. Extreme Mechan. Lett. 10, 24–31 (2017).

  57. 57.

    Bai, R. et al. Fatigue fracture of tough hydrogels. Extreme Mechan. Lett. 15, 91–96 (2017).

  58. 58.

    Zhang, W. et al. Fatigue of double-network hydrogels. Eng. Fract. Mech. 187, 74–93 (2018).

  59. 59.

    Hu, X., Vatankhah-Varnoosfaderani, M., Zhou, J., Li, Q. & Sheiko, S. S. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater. 27, 6899–6905 (2015).

  60. 60.

    Yang, Y., Wang, X., Yang, F., Shen, H. & Wu, D. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv. Mater. 28, 7178–7184 (2016).

  61. 61.

    Jeon, I., Cui, J., Illeperuma, W. R., Aizenberg, J. & Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 28, 4678–4683 (2016).

  62. 62.

    Haque, M. A., Kurokawa, T., Kamita, G. & Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44, 8916–8924 (2011).

  63. 63.

    Haque, M. A., Kurokawa, T. & Gong, J. P. Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance. Soft Matter 8, 8008–8016 (2012).

  64. 64.

    Bai, T. et al. Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole–dipole interaction. Soft Matter 7, 2825–2831 (2011).

  65. 65.

    Du, G. et al. Tough and fatigue resistant biomimetic hydrogels of interlaced self-assembled conjugated polymer belts with a polyelectrolyte network. Chem. Mater. 26, 3522–3529 (2014).

  66. 66.

    Lin, P., Ma, S., Wang, X. & Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 27, 2054–2059 (2015).

  67. 67.

    Bai, R., Yang, J., Morelle, X. P., Yang, C. & Suo, Z. Fatigue fracture of self-recovery hydrogels. ACS Macro Lett. 7, 312–317 (2018).

  68. 68.

    Dayan, P. & Abbott, L. F. Theoretical Neuroscience. Vol. 806 (MIT Press, Cambridge, MA, 2001).

  69. 69.

    Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

  70. 70.

    Pelrine, R. E., Kornbluh, R. D. & Joseph, J. P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A Phys. 64, 77–85 (1998).

  71. 71.

    O’Halloran, A., O’malley, F. & McHugh, P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 9 (2008).

  72. 72.

    Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R. E. & Sommer-Larsen, P. Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. (Elsevier, 2011).

  73. 73.

    Anderson, I. A., Gisby, T. A., McKay, T. G., O’Brien, B. M. & Calius, E. P. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112, 041101 (2012).

  74. 74.

    Brochu, P. & Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010).

  75. 75.

    Suo, Z. Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010).

  76. 76.

    Zhao, X. & Wang, Q. Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application. Appl. Phys. Rev. 1, 021304 (2014).

  77. 77.

    Poulin, A., Rosset, S. & Shea, H. R. Printing low-voltage dielectric elastomer actuators. Appl. Phys. Lett. 107, 244104 (2015).

  78. 78.

    Duduta, M., Wood, R. J. & Clarke, D. R. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Adv. Mater. 28, 8058–8063 (2016).

  79. 79.

    Madsen, F. B., Yu, L., Daugaard, A. E., Hvilsted, S. & Skov, A. L. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers. Polymer 55, 6212–6219 (2014).

  80. 80.

    Zhang, Q. et al. An all-organic composite actuator material with a high dielectric constant. Nature 419, 284 (2002).

  81. 81.

    Molberg, M. et al. High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv. Funct. Mater. 20, 3280–3291 (2010).

  82. 82.

    Madsen, F. B., Daugaard, A. E., Hvilsted, S. & Skov, A. L. The current state of silicone-based dielectric elastomer transducers. Macromol. Rapid Commun. 37, 378–413 (2016).

  83. 83.

    Opris, D. M. Polar elastomers as novel materials for electromechanical actuator applications. Adv. Mater. 30, 1703678 (2018).

  84. 84.

    Carpi, F., Frediani, G., Turco, S. & De Rossi, D. Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21, 4152–4158 (2011).

  85. 85.

    Rosset, S. & Shea, H. R. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110, 281–307 (2013).

  86. 86.

    Huang, J., Yang, J., Jin, L., Clarke, D. R. & Suo, Z. Pattern formation in plastic liquid films on elastomers by ratcheting. Soft Matter 12, 3820–3827 (2016).

  87. 87.

    Morelle, X. P., Bai, R. & Suo, Z. Localized deformation in plastic liquids on elastomers. J. Appl. Mech. 84, 101002 (2017).

  88. 88.

    McCoul, D., Hu, W., Gao, M., Mehta, V. & Pei, Q. Recent advances in stretchable and transparent electronic materials. Adv. Electron. Mater. 2, 1500407 (2016).

  89. 89.

    Carpi, F., Chiarelli, P., Mazzoldi, A. & De Rossi, D. Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens. Actuators A Phys. 107, 85–95 (2003).

  90. 90.

    Tavakol, B. & Holmes, D. P. Voltage-induced buckling of dielectric films using fluid electrodes. Appl. Phys. Lett. 108, 112901 (2016).

  91. 91.

    Christianson, C., Goldberg, N., Cai, S. & Tolley, M. T. in Electroactive Polymer Actuators and Devices (EAPAD) 2017 101631O (Portland, OR, USA, 2017).

  92. 92.

    Bard, A. J. & Faulkner, L. R. Fundamentals and applications. Electrochem. Methods 2, 482 (2001).

  93. 93.

    Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

  94. 94.

    Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

  95. 95.

    Bauer, S. et al. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2014).

  96. 96.

    Rogers, J. A. Wearable electronics: nanomesh on-skin electronics. Nat. Nanotechnol. 12, 839 (2017).

  97. 97.

    Lu, N. & Kim, D.-H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 1, 53–62 (2014).

  98. 98.

    Manandhar, P., Calvert, P. D. & Buck, J. R. Elastomeric ionic hydrogel sensor for large strains. IEEE Sens. J. 12, 2052–2061 (2012).

  99. 99.

    Tian, K. et al. 3D printing of transparent and conductive heterogeneous hydrogel–elastomer systems. Adv. Mater. 29, 1604827 (2017).

  100. 100.

    Yuan-Hui, L. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714 (1974).

  101. 101.

    Bear, M. F., Connors, B. W. & Paradiso, M. A. Neuroscience. Vol. 2 (Lippincott Williams & Wilkins, 2007).

  102. 102.

    Robinson, S. S. et al. Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mechan. Lett. 5, 47–53 (2015).

  103. 103.

    Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

  104. 104.

    Yang, S., Ng, E. & Lu, N. Indium Tin Oxide (ITO) serpentine ribbons on soft substrates stretched beyond 100%. Extreme Mechan. Lett. 2, 37–45 (2015).

  105. 105.

    Na, S. I., Kim, S. S., Jo, J. & Kim, D. Y. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20, 4061–4067 (2008).

  106. 106.

    Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411 (2016).

  107. 107.

    De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

  108. 108.

    Sun, H., Zhang, Y., Zhang, J., Sun, X. & Peng, H. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017).

  109. 109.

    Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817 (2013).

  110. 110.

    Langley, D. et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24, 452001 (2013).

  111. 111.

    Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907 (2008).

  112. 112.

    Lewis, J. Material challenge for flexible organic devices. Mater. Today 9, 38–45 (2006).

  113. 113.

    Denisin, A. K. & Pruitt, B. L. Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016).

  114. 114.

    Southan, A. et al. Toward controlling the formation, degradation behavior, and properties of hydrogels synthesized by Aza-Michael reactions. Macromol. Chem. Phys. 214, 1865–1873 (2013).

  115. 115.

    Martini, M. et al. Charged triazole cross-linkers for hyaluronan-based hybrid hydrogels. Materials 9, 810 (2016).

  116. 116.

    Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

  117. 117.

    Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133 (2012).

  118. 118.

    Kitai, A. Luminescent Materials and Applications. Vol. 25 (John Wiley & Sons, 2008).

  119. 119.

    Chopra, K. Dielectric properties of ZnS films. J. Appl. Phys. 36, 655–656 (1965).

  120. 120.

    Hirabayashi, K., Kozawaguchi, H. & Tsujiyama, B. Study on A-C powder EL phosphor deterioration factors. J. Electrochem. Soc. 130, 2259–2263 (1983).

  121. 121.

    Bender, J., Wager, J., Kissick, J., Clark, B. & Keszler, D. Zn2GeO4: Mn alternating-current thin-film electroluminescent devices. J. Lumin. 99, 311–324 (2002).

  122. 122.

    Lee, J. S. et al. Robust moisture and thermally stable phosphor glass plate for highly unstable sulfide phosphors in high-power white light-emitting diodes. Opt. Lett. 38, 3298–3300 (2013).

  123. 123.

    Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325 (2005).

  124. 124.

    Yang, D.-K. Fundamentals of Liquid Crystal Devices. (John Wiley & Sons, 2014).

  125. 125.

    Kleman, M. & Laverntovich, O. D. Soft Matter Physics: An Introduction. (Springer Science & Business Media, 2007).

  126. 126.

    Sutherland, R., Tondiglia, V., Natarajan, L., Bunning, T. & Adams, W. Electrically switchable volume gratings in polymer-dispersed liquid crystals. Appl. Phys. Lett. 64, 1074–1076 (1994).

  127. 127.

    Aguilar, R. & Meijer, G. in Proceedings of IEEE Sensors, 2002 1360–1363 (Orlando, FL, USA, 2002).

  128. 128.

    Krein, P. T. & Meadows, R. D. The electroquasistatics of the capacitive touch panel. IEEE Trans. Ind. Appl. 26, 529–534 (1990).

  129. 129.

    Adler, R. & Desmares, P. J. An economical touch panel using SAW absorption. IEEE Trans. Ultrason. Ferroelect., Freq. Control 34, 195–201 (1987).

  130. 130.

    Bhalla, M. R. & Bhalla, A. V. Comparative study of various touchscreen technologies. IJCA 6, 12–18 (2010).

  131. 131.

    Tian, H. et al. A novel flexible capacitive touch pad based on graphene oxide film. Nanoscale 5, 890–894 (2013).

  132. 132.

    Lai, Y. C. et al. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 28, 10024–10032 (2016).

  133. 133.

    Yi, F. et al. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 10, 6519–6525 (2016).

  134. 134.

    Niu, S. & Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015).

  135. 135.

    Gotter, A. L., Kaetzel, M. A. & Dedman, J. R. Electrophorus electricus as a model system for the study of membrane excitability. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 119, 225–241 (1998).

  136. 136.

    Xu, J. & Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 3, 666 (2008).

  137. 137.

    Carpi, F., Frediani, G. & De Rossi, D. Hydrostatically coupled dielectric elastomer actuators. IEEE/ASME Trans. Mechatron. 15, 308–315 (2010).

  138. 138.

    Pharr, M., Sun, J.-Y. & Suo, Z. Rupture of a highly stretchable acrylic dielectric elastomer. J. Appl. Phys. 111, 104114 (2012).

  139. 139.

    Chen, C., Wang, Z. & Suo, Z. Flaw sensitivity of highly stretchable materials. Extreme Mechan. Lett. 10, 50–57 (2017).

  140. 140.

    Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

  141. 141.

    Peak, C. W., Wilker, J. J. & Schmidt, G. A review on tough and sticky hydrogels. Colloid. Polym. Sci. 291, 2031–2047 (2013).

  142. 142.

    Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

  143. 143.

    Long, R. & Hui, C.-Y. Crack tip fields in soft elastic solids subjected to large quasi-static deformation — a review. Extreme Mechan. Lett. 4, 131–155 (2015).

  144. 144.

    Creton, C. 50th anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules 50, 8297–8316 (2017).

  145. 145.

    Wang, W., Zhang, Y. & Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 71, 1–25 (2017).

  146. 146.

    Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

  147. 147.

    Buwalda, S. J. et al. Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 190, 254–273 (2014).

  148. 148.

    Griffith, A. The phenomena of flow and rupture in solids. Philos. Trans. R. Soc. A 221, 163–198 (1920).

  149. 149.

    Lake, G. & Thomas, A. The strength of highly elastic materials. Proc. R. Soc. Lond. A 300, 108–119 (1967).

  150. 150.

    Andrews, E. Rupture propagation in hysteresial materials: stress at a notch. J. Mech. Phys. Solids 11, 231–242 (1963).

  151. 151.

    Evans, A. G. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 73, 187–206 (1990).

  152. 152.

    Tvergaard, V. & Hutchinson, J. W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992).

  153. 153.

    Bao, G. & Suo, Z. Remarks on crack-bridging concepts. Appl. Mech. Rev. 45, 355–366 (1992).

  154. 154.

    Du, J., Thouless, M. & Yee, A. Effects of rate on crack growth in a rubber-modified epoxy. Acta Mater. 48, 3581–3592 (2000).

  155. 155.

    Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

  156. 156.

    Tang, J., Li, J., Vlassak, J. J. & Suo, Z. Adhesion between highly stretchable materials. Soft Matter 12, 1093–1099 (2016).

  157. 157.

    Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190 (2016).

  158. 158.

    Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).

  159. 159.

    Ebnesajjad, S. & Landrock, A. H. Adhesives Technology Handbook (William Andrew, 2014).

  160. 160.

    Yang, J., Bai, R. & Suo, Z. Topological adhesion of wet materials. Adv. Mater. https://doi.org/10.1002/adma.201800671 (2018).

  161. 161.

    Efimenko, K., Wallace, W. E. & Genzer, J. Surface modification of Sylgard-184 poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254, 306–315 (2002).

  162. 162.

    Hegemann, D., Brunner, H. & Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods Phys. Res. B 208, 281–286 (2003).

  163. 163.

    Bodas, D. & Khan-Malek, C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment — an SEM investigation. Sens. Actuators B 123, 368–373 (2007).

  164. 164.

    Dissado, L. A. & Fothergill, J. C. Electrical Degradation and Breakdown in Polymers. Vol. 9 (IET, 1992).

  165. 165.

    Barry, R. A. et al. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 21, 2407–2410 (2009).

  166. 166.

    Levinson, P., Cazabat, A., Stuart, M. C., Heslot, F. & Nicolet, S. The spreading of macroscopic droplets. Rev. Phys. Appl. 23, 1009–1016 (1988).

  167. 167.

    Wu, H. et al. Transfer printing of metallic microstructures on adhesion-promoting hydrogel substrates. Adv. Mater. 27, 3398–3404 (2015).

  168. 168.

    Kusaka, I. & Suëtaka, W. Infrared spectrum of α-cyanoacrylate adhesive in the first monolayer on a bulk aluminum surface. Spectrochim. Acta A 36, 647–648 (1980).

  169. 169.

    Schneider, M. H., Tran, Y. & Tabeling, P. Benzophenone absorption and diffusion in poly (dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir 27, 1232–1240 (2011).

  170. 170.

    Wang, Y. et al. Covalent micropatterning of poly (dimethylsiloxane) by photografting through a mask. Anal. Chem. 77, 7539–7546 (2005).

  171. 171.

    Simmons, C. S., Ribeiro, A. J. & Pruitt, B. L. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain. Lab Chip 13, 646–649 (2013).

  172. 172.

    Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382 (2014).

  173. 173.

    Young, J. F. Humidity control in the laboratory using salt solutions — a review. J. Chem. Technol. Biotechnol. 17, 241–245 (1967).

  174. 174.

    Root, S. E. et al. Ionotactile stimulation: nonvolatile ionic gels for human–machine interfaces. ACS Omega 3, 662–666 (2018).

  175. 175.

    Chen, B. et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces 6, 7840–7845 (2014).

  176. 176.

    Le Bideau, J., Viau, L. & Vioux, A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011).

  177. 177.

    Suresh, S. Fatigue of Materials (Cambridge Univ Press, 1998).

  178. 178.

    Ritchie, R. O. Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fracture 100, 55–83 (1999).

  179. 179.

    Li, J., Suo, Z. & Vlassak, J. J. Stiff, strong, and tough hydrogels with good chemical stability. J. Mater. Chem. B 2, 6708–6713 (2014).

  180. 180.

    Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932 (2013).

  181. 181.

    Lin, S. et al. Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497–4505 (2016).

  182. 182.

    Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).

  183. 183.

    Guiseppi-Elie, A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31, 2701–2716 (2010).

  184. 184.

    Cheong, G. M. et al. Conductive hydrogels with tailored bioactivity for implantable electrode coatings. Acta Biomaterialia 10, 1216–1226 (2014).

  185. 185.

    Overvelde, J. T. et al. Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mechan. Lett. 1, 42–46 (2014).

  186. 186.

    Alirezaei, H., Nagakubo, A. & Kuniyoshi, Y. in 2007 7th IEEE-RAS International Conference on Humanoid Robots 167–173 (Pittsburgh, PA, USA, 2007).

  187. 187.

    Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015).

  188. 188.

    Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. https://doi.org/10.1002/adma.201706383 (2018).

  189. 189.

    Frutiger, A. et al. Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 27, 2440–2446 (2015).

  190. 190.

    Xiong, W. et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Adv. Mater. 28, 7167–7172 (2016).

  191. 191.

    Kim, D., Lee, G., Kim, D. & Ha, J. S. Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte. ACS Appl. Mater. Interfaces 7, 4608–4615 (2015).

  192. 192.

    Zhang, S., Wang, F., Peng, H., Yan, J. & Pan, G. Flexible highly sensitive pressure sensor based on ionic liquid gel film. ACS Omega 3, 3014–3021 (2018).

  193. 193.

    Kamio, E., Yasui, T., Iida, Y., Gong, J. P. & Matsuyama, H. Inorganic/organic double-network gels containing ionic liquids. Adv. Mater. 29, 1704118 (2017).

  194. 194.

    Chen, N., Zhang, H., Li, L., Chen, R. & Guo, S. Ionogel electrolytes for high-performance lithium batteries: a review. Adv. Energy Mater. https://doi.org/10.1002/aenm.201702675 (2018).

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation Materials Research Science and Engineering Centers (DMR-1420570). The authors thank collaborators at Harvard University and Xi’an Jiaotong University for much of the work reviewed here. In particular, the co-authors of reference 21, C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund and G. Whitesides, helped shape a long view of hydrogel ionotronics.

Author information

Affiliations

  1. John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA

    • Canhui Yang
    •  & Zhigang Suo

Authors

  1. Search for Canhui Yang in:

  2. Search for Zhigang Suo in:

Contributions

All authors contributed equally to the preparation of this manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Zhigang Suo.