Review Article

Majorana zero modes in superconductor–semiconductor heterostructures

  • Nature Reviews Materialsvolume 3pages5268 (2018)
  • doi:10.1038/s41578-018-0003-1
  • Download Citation
Published:

Abstract

Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor–superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Wilczek, F. Majorana returns. Nat. Phys. 5, 614–618 (2009).

  2. 2.

    Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).

  3. 3.

    Brouwer, P. W. Enter the Majorana Fermion. Science 336, 989–990 (2012).

  4. 4.

    Lee, P. A. Seeking out Majorana under the microscope. Science 346, 545–546 (2014).

  5. 5.

    Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim. 14, 171 (1937).

  6. 6.

    Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

  7. 7.

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

  8. 8.

    Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362–396 (1991).

  9. 9.

    Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum hall effect. Phys. Rev. B 61, 10267 (2000).

  10. 10.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  11. 11.

    Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

  12. 12.

    Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

  13. 13.

    Leijnse, M. & Flensberg, K. Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol. 27, 124003 (2012).

  14. 14.

    Stanescu, T. D. & Tewari, S. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment. J. Phys. Condens. Matter 25, 233201 (2013).

  15. 15.

    Elliott, S. R. & Franz, M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137–163 (2015).

  16. 16.

    Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. Quantum Inf. 1, 15001 (2015).

  17. 17.

    Sato, M. & Fujimoto, S. Majorana fermions and topology in superconductors. J. Phys. Soc. Jpn 85, 072001 (2016).

  18. 18.

    Aguado, R. Majorana quasiparticles in condensed matter. Riv. Nuovo Cimento. 40, 523–593 (2017).

  19. 19.

    Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

  20. 20.

    Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-hall-insulator/superconductor junction. Phys. Rev. B 79, 161408(R) (2009).

  21. 21.

    Cook, A. & Franz, M. Majorana fermions in a topological-insulator nanowire proximity-coupled to an s-wave superconductor. Phys. Rev. B 84, 201105 (2011).

  22. 22.

    Sun, H.-H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

  23. 23.

    Sau, J. D., Lutchyn, R. M., Tewari, S. & Sarma, S. D. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

  24. 24.

    Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).

  25. 25.

    Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

  26. 26.

    Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

  27. 27.

    Chung, S. B., Zhang, H.-J., Qi, X.-L. & Zhang, S.-C. Topological superconducting phase and Majorana fermions in half-metal/superconductor heterostructures. Phys. Rev. B 84, 060510 (2011).

  28. 28.

    Duckheim, M. & Brouwer, P. W. Andreev reflection from noncentrosymmetric superconductors and Majorana bound-state generation in half-metallic ferromagnets. Phys. Rev. B 83, 054513 (2011).

  29. 29.

    Potter, A. C. & Lee, P. A. Topological superconductivity and Majorana fermions in metallic surface states. Phys. Rev. B 85, 094516 (2012).

  30. 30.

    Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling. Phys. Rev. B 84, 195442 (2011).

  31. 31.

    Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

  32. 32.

    Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

  33. 33.

    Braunecker, B. & Simon, P. Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: toward a self-sustained topological Majorana phase. Phys. Rev. Lett. 111, 147202 (2013).

  34. 34.

    Vazifeh, M. M. & Franz, M. Self-organized topological state with Majorana fermions. Phys. Rev. Lett. 111, 206802 (2013).

  35. 35.

    Pientka, F., Glazman, L. I. & von Oppen, F. Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013).

  36. 36.

    Nakosai, S., Tanaka, Y. & Nagaosa, N. Two-dimensional p-wave superconducting states with magnetic moments on a conventional s-wave superconductor. Phys. Rev. B 88, 180503 (2013).

  37. 37.

    Kim, Y., Cheng, M., Bauer, B., Lutchyn, R. M. & Sarma, S. D. Helical order in one-dimensional magnetic atom chains and possible emergence of Majorana bound states. Phys. Rev. B 90, 060401 (2014).

  38. 38.

    Brydon, P. M. R., Sarma, S. D., Hui, H.-Y. & Sau, J. D. Topological Yu-Shiba-Rusinov chain from spin-orbit coupling. Phys. Rev. B 91, 064505 (2015).

  39. 39.

    Li, J. et al. Topological superconductivity induced by ferromagnetic metal chains. Phys. Rev. B 90, 235433 (2014).

  40. 40.

    Heimes, A., Kotetes, P. & Schön, G. Majorana fermions from Shiba states in an antiferromagnetic chain on top of a superconductor. Phys. Rev. B 90, 060507 (2014).

  41. 41.

    Röntynen, J. & Ojanen, T. Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices. Phys. Rev. Lett. 114, 236803 (2015).

  42. 42.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

  43. 43.

    Ruby, M. et al. End states and subgap structure in proximity-coupled chains of magnetic adatoms. Phys. Rev. Lett. 115, 197204 (2015).

  44. 44.

    Pawlak, R. et al. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. Quantum Inf. 2, 16035 (2016).

  45. 45.

    Zhang, J., Kim, Y., Rossi, E. & Lutchyn, R. M. Topological superconductivity in a multichannel Yu-Shiba-Rusinov chain. Phys. Rev. B 93, 024507 (2016).

  46. 46.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

  47. 47.

    Rokhinson, L. P., Liu, X. & Furdyna, J. K. The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012).

  48. 48.

    Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

  49. 49.

    Churchill, H. O. H. et al. Superconductor-nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87, 241401 (2013).

  50. 50.

    Das, A. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

  51. 51.

    Finck, A. D. K., Van Harlingen, D. J., Mohseni, P. K., Jung, K. & Li, X. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys. Rev. Lett. 110, 126406 (2013).

  52. 52.

    Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

  53. 53.

    Gül, Ö. et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 13, 192–197 (2018).

  54. 54.

    Chen, J. et al. Experimental phase diagram of a one-dimensional topological superconductor. Sci. Adv. 3, e1701476 (2017).

  55. 55.

    Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016).

  56. 56.

    Suominen, H. J. et al. Zero-energy modes from coalescing Andreev states in a two-dimensional semiconductor-superconductor hybrid platform. Phys. Rev. Lett. 119, 176805 (2017).

  57. 57.

    Nichele, F. et al. Scaling of Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119, 136803 (2017).

  58. 58.

    Zhang, H. et al. Quantized Majorana conductance. Nature https://doi.org/10.1038/nature26142 (2018).

  59. 59.

    Zhang, H. Ballistic superconductivity in semiconductor nanowires. Nat. Commun. 8, 16025 (2017).

  60. 60.

    Sestoft, J. E. et al. Hybrid epitaxial InAsSb/Al nanowires towards topological applications. Preprint in arXiv, 1711.06864 (2017).

  61. 61.

    Deng, M. T. et al. Majorana non-locality in hybrid nanowires. Preprint in arXiv, 1712.03536 (2017).

  62. 62.

    Laroche, D. et al. Observation of the 4π-periodic Josephson effect in InAs nanowires. Preprint in arXiv, 1712.08459 (2017).

  63. 63.

    Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).

  64. 64.

    Motrunich, O., Damle, K. & Huse, D. A. Griffiths effects and quantum critical points in dirty superconductors without spin-rotation invariance: one-dimensional examples. Phys. Rev. B 63, 224204 (2001).

  65. 65.

    Brouwer, P. W., Duckheim, M., Romito, A. & von Oppen, F. Topological superconducting phases in disordered quantum wires with strong spin-orbit coupling. Phys. Rev. B 84, 144526 (2011).

  66. 66.

    Stanescu, T. D., Lutchyn, R. M. & Sarma, S. D. Majorana fermions in semiconductor nanowires. Phys. Rev. B 84, 144522 (2011).

  67. 67.

    Akhmerov, A. R., Dahlhaus, J. P., Hassler, F., Wimmer, M. & Beenakker, C. W. J. Quantized conductance at the majorana phase transition in a disordered superconducting wire. Phys. Rev. Lett. 106, 057001 (2011).

  68. 68.

    Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).

  69. 69.

    Lobos, A. M., Lutchyn, R. M. & Sarma, S. D. Interplay of disorder and interaction in Majorana quantum wires. Phys. Rev. Lett. 109, 146403 (2012).

  70. 70.

    Potter, A. C. & Lee, P. A. Engineering a p + ip superconductor: comparison of topological insulator and Rashba spin-orbit-coupled materials. Phys. Rev. B 83, 184520 (2011).

  71. 71.

    Lutchyn, R. M., Stanescu, T. D. & Sarma, S. D. Momentum relaxation in a semiconductor proximity-coupled to a disordered s-wave superconductor: effect of scattering on topological superconductivity. Phys. Rev. B 85, 140513 (2012).

  72. 72.

    DeGottardi, W., Sen, D. & Vishveshwara, S. Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials. Phys. Rev. Lett. 110, 146404 (2013).

  73. 73.

    Takei, S., Fregoso, B. M., Hui, H.-Y., Lobos, A. M. & Sarma, S. D. Soft superconducting gap in semiconductor Majorana nanowires. Phys. Rev. Lett. 110, 186803 (2013).

  74. 74.

    Adagideli, I., Wimmer, M. & Teker, A. Effects of electron scattering on the topological properties of nanowires: Majorana fermions from disorder and superlattices. Phys. Rev. B 89, 144506 (2014).

  75. 75.

    Hui, H.-Y., Sau, J. D. & Sarma, S. D. Bulk disorder in the superconductor affects proximity-induced topological superconductivity. Phys. Rev. B. 92, 174512 (2015).

  76. 76.

    Cole, W. S., Sau, J. D. & Sarma, S. D. Proximity effect and Majorana bound states in clean semiconductor nanowires coupled to disordered superconductors. Phys. Rev. B. 94, 140505 (2016).

  77. 77.

    Hegde, S. S. & Vishveshwara, S. Majorana wave-function oscillations, fermion parity switches and disorder in Kitaev chains. Phys. Rev. B. 94, 115166 (2016).

  78. 78.

    Liu, D. E., Rossi, E. & Lutchyn, R. M. Impurity-induced states in superconducting heterostructures. Preprint in arXiv, 1711.04056 (2017).

  79. 79.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  80. 80.

    Murakami, S. Quantum spin hall systems and topological insulators. New J. Phys. 13, 105007 (2011).

  81. 81.

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

  82. 82.

    Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

  83. 83.

    Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

  84. 84.

    Shabani, J. et al. Two-dimensional epitaxial superconductor-semiconductor heterostructures: a platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).

  85. 85.

    Wagner, R. S. & Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

  86. 86.

    Caroff, P. et al. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch. Nanotechnology 20, 495606 (2009).

  87. 87.

    Lugani, L. et al. Faceting of InAs-InSb heterostructured nanowires. Cryst. Growth Des. 10, 4038–4042 (2010).

  88. 88.

    Nilsson, H. A. Temperature dependent properties of InSb and InAs nanowire field-effect transistors. Appl. Phys. Lett. 96, 153505 (2010).

  89. 89.

    Vogel, A. T. et al. Fabrication of high-quality InSb nanowire arrays by chemical beam epitaxy. Cryst. Growth Des. 11, 1896–1900 (2011).

  90. 90.

    Plissard, S. R. et al. From InSb nanowires to nanocubes: Looking for the sweet spot. Nano Lett. 12, 1794–1798 (2012).

  91. 91.

    Plissard, S. R. et al. Formation and electronic properties of InSb nanocrosses. Nat. Nanotechnol. 8, 859–864 (2013).

  92. 92.

    Jung-Hyun, K. et al. Crystal structure and transport in merged InAs nanowires MBE grown on (001) InAs. Nano Lett. 13, 5190–5196 (2013).

  93. 93.

    Car, D., Wang, J., Verheijen, M. A., Bakkers, E. P. A. M. & Plissard, S. R. Rationally designed single-crystalline nanowire networks. Adv. Mater. 26, 4875–4879 (2014).

  94. 94.

    Dalacu, D., Kam, A., Austing, D. G. & Poole, P. J. Droplet dynamics in controlled InAs nanowire interconnections. Nano Lett. 13, 2676–2681 (2013).

  95. 95.

    Heedt, S. et al. Electronic properties of complex self-assembled InAs nanowire networks. Adv. Electron. Mater. 2, 1500460 (2016).

  96. 96.

    Rieger, T. et al. Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates. Nano Lett. 16, 1933–1941 (2016).

  97. 97.

    Krizek, F. et al. Growth of InAs wurtzite nanocrosses from hexagonal and cubic basis. Nano Lett. 17, 6090–6096 (2017).

  98. 98.

    Gazibegovic, S. et al. Epitaxy of advanced nanowire quantum devices. Nature 548, 434–438 (2017).

  99. 99.

    Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015).

  100. 100.

    Chang, W. et al. Hard gap in epitaxial superconductor-semiconductor nanowires. Nat. Nanotechnol. 10, 232–236 (2015).

  101. 101.

    Kang, J.-H. et al. Robust epitaxial Al coating of reclined InAs nanowires. Nano Lett. 17, 7520–7527 (2017).

  102. 102.

    Gusken, N. A. et al. MBE growth of Al/InAs and Nb/InAs superconducting hybrid nanowire structures. Nanoscale 9, 16735–16741 (2017).

  103. 103.

    Kammhuber, J. Conductance quantization at zero magnetic field in InSb nanowires. Nano Lett. 16, 3482–3486 (2016).

  104. 104.

    Fadaly, E. M. T. et al. Observation of conductance quantization in InSb nanowire networks. Nano Lett. 17, 6511–6515 (2017).

  105. 105.

    Court, N. A., Ferguson, A. J. & Clark, R. G. Energy gap measurement of nanostructured aluminium thin films for single Cooper-pair devices. Semicond. Sci. Technol. 21, 015013 (2008).

  106. 106.

    Iordanskii, S. V., Lyanda-Geller, Y. B. & Pikus, G. E. Weak localization in quantum wells with spin-orbit interaction. J. Exp. Theor. Phys. 60, 206 (1994).

  107. 107.

    van Weperen, I. et al. Spin-orbit interaction in InSb nanowires. Phys. Rev. B 91, 201413 (2015).

  108. 108.

    Sengupta, K., Žutic, I., Kwon, H.-J., Yakovenko, V. M. & Sarma, S. D. Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors. Phys. Rev. B 63, 144531 (2001).

  109. 109.

    Nilsson, J., Akhmerov, A. R. & Beenakker, C. W. J. Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 101, 120403 (2008).

  110. 110.

    Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

  111. 111.

    Sau, J. D., Tewari, S., Lutchyn, R. M., Stanescu, T. D. & Sarma, S. D. Non-Abelian quantum order in spin-orbit-coupled semiconductors: search for topological Majorana particles in solid-state systems. Phys. Rev. B 82, 214509 (2010).

  112. 112.

    Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 82, 180516 (2010).

  113. 113.

    Wimmer, M., Akhmerov, A. R., Dahlhaus, J. P. & Beenakker, C. W. J. Quantum point contact as a probe of a topological superconductor. New J. Phys. 13, 053016 (2011).

  114. 114.

    Prada, E., San-Jose, P. & Aguado, R. Transport spectroscopy of NS nanowire junctions with Majorana fermions. Phys. Rev. B 86, 180503 (2012).

  115. 115.

    Rainis, D., Trifunovic, L., Klinovaja, J. & Loss, D. Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions. Phys. Rev. B 87, 024515 (2013).

  116. 116.

    Fidkowski, L., Alicea, J., Lindner, N. H., Lutchyn, R. M. & Fisher, M. P. A. Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions. Phys. Rev. B 85, 245121 (2012).

  117. 117.

    Lutchyn, R. M. & Skrabacz, J. H. Transport properties of topological superconductor-Luttinger liquid junctions: a real-time Keldysh approach. Phys. Rev. B 88, 024511 (2013).

  118. 118.

    Bolech, C. J. & Demler, E. Observing Majorana bound states in p-wave superconductors using noise measurements in tunneling experiments. Phys. Rev. Lett. 98, 237002 (2007).

  119. 119.

    Golub, A. & Horovitz, B. Shot noise in a Majorana fermion chain. Phys. Rev. B 83, 153415 (2011).

  120. 120.

    Haim, A., Berg, E., von Oppen, F. & Oreg, Y. Signatures of Majorana zero modes in spin-resolved current correlations. Phys. Rev. Lett. 114, 166406 (2015).

  121. 121.

    Haim, A., Berg, E., von Oppen, F. & Oreg, Y. Current correlations in a Majorana beam splitter. Phys. Rev. B 92, 245112 (2015).

  122. 122.

    Liu, D. E., Cheng, M. & Lutchyn, R. M. Probing Majorana physics in quantum-dot shot-noise experiments. Phys. Rev. B 91, 081405 (2015).

  123. 123.

    Liu, D. E., Levchenko, A. & Lutchyn, R. M. Majorana zero modes choose Euler numbers as revealed by full counting statistics. Phys. Rev. B 92, 205422 (2015).

  124. 124.

    Jiang, L. et al. Unconventional Josephson signatures of Majorana bound states. Phys. Rev. Lett. 107, 236401 (2011).

  125. 125.

    Pikulin, D. I., Dahlhaus, J. P., Wimmer, M., Schomerus, H. & Beenakker, C. W. J. A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire. New J. Phys. 14, 125011 (2012).

  126. 126.

    Houzet, M., Meyer, J. S., Badiane, D. M. & Glazman, L. I. Dynamics of Majorana states in a topological Josephson junction. Phys. Rev. Lett. 111, 046401 (2013).

  127. 127.

    San-Jose, P., Cayao, J., Prada, E. & Aguado, R. Multiple Andreev reflection and critical current in topological superconducting nanowire junctions. New J. Phys. 15, 075019 (2013).

  128. 128.

    Sau, J. D. & Setiawan, F. Detecting topological superconductivity using low-frequency doubled Shapiro steps. Phys. Rev. B 95, 060501 (2017).

  129. 129.

    Fu, L. Electron teleportation via Majorana bound states in a mesoscopic superconductor. Phys. Rev. Lett. 104, 056402 (2010).

  130. 130.

    Zazunov, A., Yeyati, A. L. & Egger, R. Coulomb blockade of Majorana-fermion-induced transport. Phys. Rev. B 84, 165440 (2011).

  131. 131.

    Hutzen, R., Zazunov, A., Braunecker, B., Yeyati, A. L. & Egger, R. Majorana single-charge transistor. Phys. Rev. Lett. 109, 166403 (2012).

  132. 132.

    Ulrich, J. & Hassler, F. Majorana-assisted nonlocal electron transport through a floating topological superconductor. Phys. Rev. B 92, 075443 (2015).

  133. 133.

    van Heck, B., Lutchyn, R. M. & Glazman, L. I. Conductance of a proximitized nanowire in the Coulomb blockade regime. Phys. Rev. B 93, 235431 (2016).

  134. 134.

    Lutchyn, R. M., Flensberg, K. & Glazman, L. I. Quantum charge fluctuations of a proximitized nanowire. Phys. Rev. B 94, 125407 (2016).

  135. 135.

    Lutchyn, R. M. & Glazman, L. I. Transport through a Majorana island in the strong tunneling regime. Phys. Rev. Lett. 119, 057002 (2017).

  136. 136.

    Aleiner, I. L., Brouwer, P. W. & Glazman, L. I. Quantum effects in Coulomb blockade. Phys. Rep. 358, 309–440 (2002).

  137. 137.

    Béri, B. & Cooper, N. R. Topological Kondo effect with Majorana fermions. Phys. Rev. Lett. 109, 156803 (2012).

  138. 138.

    Altland, A. & Egger, R. Multiterminal Coulomb-Majorana junction. Phys. Rev. Lett. 110, 196401 (2013).

  139. 139.

    Michaeli, K., Aviad Landau, L., Sela, E. & Fu, L. Electron teleportation and statistical transmutation in multiterminal Majorana islands. Phys. Rev. B 96, 205403 (2017).

  140. 140.

    Qu, C., Zhang, Y., Mao, L. & Zhang, C. Signature of Majorana fermions in charge transport in semiconductor nanowires. Preprint in arXiv, 1109.4108 (2011).

  141. 141.

    Liu, C.-X., Sau, J. D., Stanescu, T. D. & Sarma, S. D. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).

  142. 142.

    Bagrets, D. & Altland, A. Class D spectral peak in Majorana quantum wires. Phys. Rev. Lett. 109, 227005 (2012).

  143. 143.

    Lee, E. J. H., Jiang, X., Aguado, R., Katsaros, G., Lieber, C. M. & De Franceschi, S. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109, 186802 (2012).

  144. 144.

    Lee, E. J. H. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 9, 79–84 (2014).

  145. 145.

    Kells, G., Meidan, D. & Brouwer, P. W. Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B 86, 100503(R) (2012).

  146. 146.

    Vaitiekenas, S., Deng, M. T., Nygård, J., Krogstrup, P. & Marcus, C. M. Effective g-factor in Majorana wires. Preprint in arXiv, 1710.04300 (2017).

  147. 147.

    Leijnse, M. & Flensberg, K. Scheme to measure Majorana fermion lifetimes using a quantum dot. Phys. Rev. B 84, 140501 (2011).

  148. 148.

    Liu, D. E. & Baranger, H. U. Detecting a Majorana-fermion zero mode using a quantum dot. Phys. Rev. B 84, 201308 (2011).

  149. 149.

    Lee, M., Lim, J. S. & López, R. Kondo effect in a quantum dot side-coupled to a topological superconductor. Phys. Rev. B 87, 241402 (2013).

  150. 150.

    Cheng, M., Becker, M., Bauer, B. & Lutchyn, R. M. Interplay between Kondo and Majorana interactions in quantum dots. Phys. Rev. B 4, 031051 (2014).

  151. 151.

    Clarke, D. J. Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B 96, 201109 (2017).

  152. 152.

    Prada, E., Aguado, R. & San-Jose, P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 085418 (2017).

  153. 153.

    Higginbotham, A. P. et al. Parity lifetime of bound states in a proximitized semiconductor nanowire. Nat. Phys. 11, 1017–1021 (2015).

  154. 154.

    Averin, D. V. & Nazarov, Y. V. Single-electron charging of a superconducting island. Phys. Rev. Lett. 69, 1993–1996 (1992).

  155. 155.

    Chiu, C.-K., Sau, J. D. & Sarma, S. D. Conductance of a superconducting Coulomb-blockaded Majorana nanowire. Phys. Rev. B 96, 054504 (2017).

  156. 156.

    Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

  157. 157.

    Hyart, T. et al. Flux-controlled quantum computation with Majorana fermions. Phys. Rev. B 88, 035121 (2013).

  158. 158.

    Altland, A., Béri, B., Egger, R. & Tsvelik, A. M. Multichannel Kondo impurity dynamics in a Majorana device. Phys. Rev. Lett. 113, 076401 (2014).

  159. 159.

    Landau, L. A. et al. Towards realistic implementations of a Majorana surface code. Phys. Rev. Lett. 116, 050501 (2016).

  160. 160.

    Hoffman, S., Schrade, C., Klinovaja, J. & Loss, D. Universal quantum computation with hybrid spin-Majorana qubits. Phys. Rev. B 94, 045316 (2016).

  161. 161.

    Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).

  162. 162.

    Plugge, S. et al. Roadmap to Majorana surface codes. Phys. Rev. B 94, 174514 (2016).

  163. 163.

    Vijay, S. & Fu, L. Physical implementation of a Majorana fermion surface code for fault-tolerant quantum computation. Phys. Scr. T168, 014002 (2016).

  164. 164.

    Plugge, S., Rasmussen, A., Egger, R. & Flensberg, K. Majorana box qubits. New J. Phys. 19, 012001 (2016).

  165. 165.

    Karzig, T. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017).

  166. 166.

    Albrecht, S. M. et al. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett. 118, 137701 (2017).

  167. 167.

    Antipov, A. E. et al. Effects of gate-induced electric fields on semiconductor Majorana nanowires. Preprint in arXiv, 1801.02616 (2018).

  168. 168.

    Woods, B. D., Stanescu, T. D. Sarma, S. D. Effective theory approach to the Schrodinger-Poisson problem in semiconductor Majorana devices. Preprint in arXiv, 1801.02630 (2018).

  169. 169.

    Mikkelsen, A. E. G., Kotetes, P., Krogstrup, P. & Flensberg, K. Hybridization at superconductor-semiconductor interfaces. Preprint in arXiv, 1801.03439 (2018).

  170. 170.

    Reeg, C., Loss, D. & Klinovaja, J. Metallization of Rashba wire by superconducting layer in the strong-proximity regime. Preprint in arXiv, 1801.06509 (2018).

  171. 171.

    Bonderson, P. Measurement-only topological quantum computation via tunable interactions. Phys. Rev. B 87, 035113 (2013).

  172. 172.

    Barkeshli, M. & Sau, J. D. Physical architecture for a universal topological quantum computer based on a network of Majorana nanowires. Preprint in arXiv, 1509.07135 (2015).

  173. 173.

    Bonderson, P., Freedman, M. & Nayak, C. Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008).

  174. 174.

    Bonderson, P., Freedman, M. & Nayak, C. Measurement-only topological quantum computation via anyonic interferometry. Ann. Phys. 324, 787–826 (2009).

  175. 175.

    Litinski, D., Kesselring, M. S., Eisert, J. & von Oppen, F. Combining topological hardware and topological software: color-code quantum computing with topological superconductor networks. Phys. Rev. X 7, 031048 (2017).

  176. 176.

    Flensberg, K. Non-Abelian operations on Majorana fermions via single-charge control. Phys. Rev. Lett. 106, 090503 (2011).

  177. 177.

    Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

  178. 178.

    Bravyi, S. Universal quantum computation with the ν = 5/2 fractional quantum Hall state. Phys. Rev. A 73, 042313 (2006).

  179. 179.

    Sau, J. D., Tewari, S. & Sarma, S. D. Universal quantum computation in a semiconductor quantum wire network. Phys. Rev. A 82, 052322 (2010).

  180. 180.

    Jiang, L., Kane, C. L. & Preskill, J. Interface between topological and superconducting qubits. Phys. Rev. Lett. 106, 130504 (2011).

  181. 181.

    Bonderson, P. & Lutchyn, R. M. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits. Phys. Rev. Lett. 106, 130505 (2011).

  182. 182.

    Karzig, T., Oreg, Y. I., Refael, G. & Freedman, M. H. Universal geometric path to a robust Majorana magic gate. Phys. Rev. X 6, 031019 (2016).

  183. 183.

    Clarke, D. J., Sau, J. D. & Sarma, S. D. A practical phase gate for producing Bell violations in Majorana wires. Phys. Rev. X 6, 021005 (2016).

  184. 184.

    Knapp, C., Karzig, T., Lutchyn, R. M. & Nayak, C. Dephasing of Majorana-based qubits. Phys. Rev. B 97, 125404 (2018).

  185. 185.

    Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).

  186. 186.

    Levinshtein, M., Rumyantsev, S. & Shur, R. Handbook Series on Semiconductor Parameters (World Scientific, 2007).

  187. 187.

    Winkler, R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, Heidelberg, 2003).

  188. 188.

    Cochran, J. F. & Mapother, D. E. Superconducting transition in aluminum. Phys. Rev. 111, 132–142 (1958).

  189. 189.

    Kjaergaard, M. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure. Nat. Commun. 7, 12841 (2016).

Download references

Acknowledgements

Financial support from The Netherlands Organization for Scientific Research, Foundation for Fundamental Research on Matter, European Research Council (ERC), Danish National Research Foundation, The European Research Council (ERC) under the grant agreement No. 716655 (HEMs-DAM), Deutsche Forschungsgemeinschaft (CRC 183), the Israel Science Foundation (ISF), the Binational Science Foundation (BSF) and the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement No. 340210 and Microsoft Corporation is acknowledged. The authors thank B. van Heck, T. Karzig, M. Kjærgaard, C. Knapp, F. Nichele, E. Rossi and S. Vishveshwara for their help with the manuscript preparation. The authors acknowledge all their collaborators on the subject of topological superconductivity.

Author information

Affiliations

  1. Station Q, Microsoft Research, Santa Barbara, CA, USA

    • R. M. Lutchyn
  2. QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands

    • E. P. A. M. Bakkers
    •  & L. P. Kouwenhoven
  3. Department of Applied Physics, Eindhoven University of Technology, Eindhoven, Netherlands

    • E. P. A. M. Bakkers
  4. Microsoft Station Q at Delft University of Technology, Delft, Netherlands

    • L. P. Kouwenhoven
  5. Center for Quantum Devices and Station Q Copenhagen, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    • P. Krogstrup
    •  & C. M. Marcus
  6. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel

    • Y. Oreg

Authors

  1. Search for R. M. Lutchyn in:

  2. Search for E. P. A. M. Bakkers in:

  3. Search for L. P. Kouwenhoven in:

  4. Search for P. Krogstrup in:

  5. Search for C. M. Marcus in:

  6. Search for Y. Oreg in:

Contributions

All authors contributed to the discussion of content, researched data, wrote the article and assisted in editing the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to R. M. Lutchyn.