Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokine-mediated communication: a quantitative appraisal of immune complexity

Abstract

Intercellular communication mediated by cytokines is the main mechanism by which cells of the immune system talk to each other. Many aspects of cytokine signalling in the immune system have been explored in great detail at the structural, biophysical, biochemical and cellular levels. However, a systematic understanding of the quantitative rules that govern cytokine-mediated cell-to-cell communication is still lacking. Here, we discuss recent efforts in the field of systems immunology to bring about a quantitative understanding of cytokine-mediated communication between leukocytes and to provide novel insights into the orchestration of immune responses and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three modes of cytokine-mediated cell-to-cell communication.
Fig. 2: The rate of cytokine consumption affects the signalling mode during an immune response.
Fig. 3: Variable confinement of cytokine-mediated communication within the T cell immunological synapse.
Fig. 4: Homeostasis by cytokine competition.

Similar content being viewed by others

References

  1. Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. & Love, J. C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kidd, B. A., Peters, L. A., Schadt, E. E. & Dudley, J. T. Unifying immunology with informatics and multiscale biology. Nat. Immunol. 15, 118–127 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Hodgkin, P. D., Rush, J., Gett, A. V., Bartell, G. & Hasbold, J. The logic of intercellular communication in the immune system. Immunol. Cell Biol. 76, 448–448 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Shao, H., He, Y., Li, K. C. P. & Zhou, X. A system mathematical model of a cell — cell communication network in amyotrophic lateral sclerosis. Mol. Biosyst. 9, 398–406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thurley, K., Gerecht, D., Friedmann, E. & Höfer, T. Three-dimensional gradients of cytokine signaling between T cells. PLOS Comp. Biol. 11, e1004206 (2015). This is a comprehensive theoretical study of how cytokines communicate between cells at different length scales. The study proposes that the range at which cytokines continue functioning largely depends on the presence of consuming cells in the vicinity.

    Article  CAS  Google Scholar 

  9. Voisinne, G. et al. T cells integrate local and global cues to discriminate between structurally similar antigens. Cell Rep. 11, 1208–1219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frankenstein, Z., Alon, U. & Cohen, I. R. The immune-body cytokine network defines a social architecture of cell interactions. Biol. Direct 1, 32 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schulz, E. G., Mariani, L., Radbruch, A. & Höfer, T. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30, 673–683 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Busse, D. et al. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl Acad. Sci. USA 107, 3058–3063 (2010). In this paper, the spatiotemporal dynamics of IL-2 consumption are quantitatively modelled to reveal how the proliferation of T H cells can be modulated by T reg cells.

    Article  CAS  PubMed  Google Scholar 

  13. Feinerman, O. et al. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437–437 (2010). In this paper, the temporal dynamics of IL-2 consumption are quantitatively analysed to show how the heterogeneous activation of T H cells can be modulated by T reg cells, with functional consequences in terms of the antigen response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tkach, K. E. et al. T cells translate individual, quantal activation into collective, analog cytokine responses via time-integrated feedbacks. eLife 3, e01944 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Han, Q. et al. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl Acad. Sci. USA 109, 1607–1612 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Oyler-Yaniv, A. et al. A tunable diffusion–consumption mechanism of cytokine propagation enables plasticity in cell-to-cell communication in the immune system. Immunity 46, 609–620 (2017). This study provides in vivo and in vitro experimental validation of theoretical models proposed earlier and within the same study regarding the spatial range of cytokine-mediated communication. The study quantifies the length scales of cytokine propagation within dense tissues and shows that the signalling range of a cytokine depends on the number of consuming cells nearby.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ross, A. E. & Pompano, R. R. Diffusion of cytokines in live lymph node tissue using microfluidic integrated optical imaging. Anal. Chim. Acta 1000, 205–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Vaday, G. G. & Lider, O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J. Leukoc. Biol. 67, 149–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Vaday, G. G. et al. Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix. J. Leukoc. Biol. 69, 885–892 (2001).

    CAS  PubMed  Google Scholar 

  20. Assen, F. P. & Sixt, M. The dynamic cytokine niche. Immunity 46, 519–520 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Monneau, Y., Arenzana-Seisdedos, F. & Lortat-Jacob, H. The sweet spot: how GAGs help chemokines guide migrating cells. J. Leukoc. Biol. 99, 935–953 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Oyler-Yaniv, J. et al. Catch and release of cytokines mediated by tumor phosphatidylserine converts transient exposure into long-lived inflammation. Mol. Cell 66, 635–647 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Forsten, K. E. & Lauffenburger, D. A. Autocrine ligand binding to cell receptors. Mathematical analysis of competition by solution “decoys”. Biophys. J. 61, 518–529 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shvartsman, S. Y., Wiley, H. S., Deen, W. M. & Lauffenburger, D. A. Spatial range of autocrine signaling: modeling and computational analysis. Biophys. J. 81, 1854–1867 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coppey, M., Berezhkovskii, A. M., Sealfon, S. C. & Shvartsman, S. Y. Time and length scales of autocrine signals in three dimensions. Biophys. J. 93, 1917–1922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Youk, H. & Lim, W. A. Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science 343, 1242782 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Doganer, B. A., Yan, L. K. Q. & Youk, H. Autocrine signaling and quorum sensing: extreme ends of a common spectrum. Trends Cell Biol. 26, 262–271 (2016).

    Article  PubMed  Google Scholar 

  28. Maire, T. & Youk, H. Molecular-level tuning of cellular autonomy controls the collective behaviors of cell populations. Cell Syst. 1, 349–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Inaba, K., Witmer, M. D. & Steinman, R. M. Clustering of dendritic cells, helper T lymphocytes, and histocompatible B cells during primary antibody responses in vitro. J. Exp. Med. 160, 858–876 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Kupfer, A. & Singer, S. J. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu. Rev. Immunol. 7, 309–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Kupfer, A., Mosmann, T. R. & Kupfer, H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc. Natl Acad. Sci. USA 88, 775–779 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Kupfer, H., Monks, C. R. & Kupfer, A. Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J. Exp. Med. 179, 1507–1515 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Sancho, D. et al. Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunol. Rev. 189, 84–97 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Davis, S. J. & van der Merwe, P. A. The immunological synapse: required for T cell receptor signalling or directing T cell effector function? Curr. Biol. 11, R289–R291 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Sanderson, N. S. et al. Cytotoxic immunological synapses do not restrict the action of interferon-γ to antigenic target cells. Proc. Natl Acad. Sci. USA 109, 7835–7840 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Reefman, E. et al. Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J. Immunol. 184, 4852–4862 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Sabatos, C. A. et al. A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Immunity 29, 238–248 (2008). This study shows that synaptic delivery of cytokines between T cells within clusters leads to accelerated activation as compared with T cells in isolation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gérard, A. et al. Secondary T cell–T cell synaptic interactions drive the differentiation of protective CD8+ T cells. Nat. Immunol. 14, 356–363 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Huse, M., Lillemeier, B. F., Kuhns, M. S., Chen, D. S. & Davis, M. M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Perona-Wright, G., Mohrs, K. & Mohrs, M. Sustained signaling by canonical helper T cell cytokines throughout the reactive lymph node. Nat. Immunol. 11, 520–526 (2010). This study shows that, although cytokines are produced locally, their effects are not confined to the immediate vicinity of the producing cell; rather, they can distribute themselves throughout an entire tissue and activate cells more globally.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Furze, R. C. & Rankin, S. M. Neutrophil mobilization and clearance in the bone marrow. Immunology 125, 281–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chtanova, T. et al. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29, 487–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lämmermann, T. In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues. J. Leukoc. Biol. 100, 55–63 (2016).

    Article  PubMed  CAS  Google Scholar 

  44. Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Advani, M., Bunin, G. & Mehta, P. Environmental engineering is an emergent feature of diverse ecosystems and drives community structure. Preprint at bioRxiv https://www.biorxiv.org/content/early/2017/07/13/162966 (2017).

  46. Chesson, P. Mechanisms of maintenance of species diversity. Ann. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  47. Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757 (2018). In this paper, a simple two-cell system of macrophages and fibroblasts is quantitatively analysed to reveal a ‘spring-and-ceiling’ mechanism that enforces homeostatic stability in a heterogenous population of cells.

    Article  CAS  PubMed  Google Scholar 

  48. Adler, M. et al. Endocytosis as a stabilizing mechanism for tissue homeostasis. Proc. Natl Acad. Sci. USA 115, E1926–E1935 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Koury, M. J. & Bondurant, M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248, 378–381 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Birgegård, G. & Wide, L. Serum erythropoietin in the diagnosis of polycythaemia and after phlebotomy treatment. Br. J. Haematol. 81, 603–606 (1992).

    Article  PubMed  Google Scholar 

  51. Owen, W. E. & Roberts, W. L. Performance characteristics of a new Immulite® 2000 system erythropoietin assay. Clin. Chim. Acta 412, 480–482 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Storring, P. L. et al. Epoetin alfa and beta differ in their erythropoietin isoform compositions and biological properties. Br. J. Haematol. 100, 79–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Gobert, S. et al. Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STAT5 activation. EMBO J. 15, 2434–2441 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bachmann, J. et al. Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range. Mol. Syst. Biol. 7, 516 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kaushansky, K. Thrombopoietin: a tool for understanding thrombopoiesis. J. Thromb. Haemost. 1, 1587–1592 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Kaushansky, K. The molecular mechanisms that control thrombopoiesis. J. Clin. Invest. 115, 3339–3347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nagata, Y. et al. Serum thrombopoietin level is not regulated by transcription but by the total counts of both megakaryocytes and platelets during thrombocytopenia and thrombocytosis. Thromb. Haemost. 77, 808–814 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Kuter, D. J. & Rosenberg, R. D. The reciprocal relationship of thrombopoietin (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood 85, 2720–2730 (1995). In this paper, the inverse relationship between the accumulation of THPO and the disappearance of platelets from the circulation is analysed quantitatively to draw a general set of rules for cytokine-mediated homeostasis.

    CAS  PubMed  Google Scholar 

  59. Patel, S. R., Hartwig, J. H. & Italiano, J. E. The biogenesis of platelets from megakaryocyte proplatelets. J. Clin. Invest. 115, 3348–3354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuwaki, T. et al. Quantitative analysis of thrombopoietin receptors on human megakaryocytes. FEBS Lett. 427, 46–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Martin, C. E. et al. Interleukin-7 availability is maintained by a hematopoietic cytokine sink comprising innate lymphoid cells and T cells. Immunity 47, 171–182 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Park, J. H. et al. Suppression of IL7Rα transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Friedrich, C. & Gasteiger, G. ILCs and T cells competing for space: more than a numbers game. Immunity 47, 8–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Barthlott, T. et al. CD25+ CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int. Immunol. 17, 279–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M. J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Pace, L. et al. Regulatory T cells increase the avidity of primary CD8+ T cell responses and promote memory. Science 338, 532–536 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Almeida, A. R. et al. Quorum-Sensing in CD4+ T cell homeostasis: a hypothesis and a model. Front. Immunol. 3, 125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gett, A. V. & Hodgkin, P. D. A cellular calculus for signal integration by T cells. Nat. Immunol. 1, 239–244 (2000). This is a pioneering attempt to quantify how T cells integrate a multitude of signals (such as co-stimulation and cytokines) into a coordinated cellular response.

    Article  CAS  PubMed  Google Scholar 

  72. Marchingo, J. M. et al. T cell signaling. Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. Science 346, 1123–1127 (2014). This groundbreaking study reveals a simple arithmetic rule for signal integration in T cell activation. A new parameter for T cell fate (coined division destiny) is defined and quantitatively analysed to reveal how T cells control their proliferation response.

    Article  CAS  PubMed  Google Scholar 

  73. Eizenberg-Magar, I. et al. Diverse continuum of CD4+ T cell states is determined by hierarchical additive integration of cytokine signals. Proc. Natl Acad. Sci. USA 114, E6447–E6456 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Cappuccio, A. et al. Combinatorial code governing cellular responses to complex stimuli. Nat. Commun. 6, 6847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chatterjee, M. S., Purvis, J. E., Brass, L. F. & Diamond, S. L. Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli. Nat. Biotechnol. 28, 727–732 (2010). This study uses single-cell measurements of the calcium response and machine learning classification to predict how a combination of external stimuli elicits varied responses in human platelets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heaton, K. M. & Grimm, E. A. Cytokine combinations in immunotherapy for solid tumors: a review. Cancer Immunol. Immunother. 37, 213–219 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Opal, S. M. et al. Potential hazards of combination immunotherapy in the treatment of experimental septic shock. J. Infect. Dis. 173, 1415–1421 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Sun, X. et al. Cytokine combination therapy prediction for bone remodeling in tissue engineering based on the intracellular signaling pathway. Biomaterials 33, 8265–8276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wigginton, J. M. & Wiltrout, R. H. IL-12/IL-2 combination cytokine therapy for solid tumours: translation from bench to bedside. Expert Opin. Biol. Ther. 2, 513–524 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Allan, S. M., Tyrrell, P. J. & Rothwell, N. J. Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5, 629–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Dinarello, C. A. Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147 (1996).

    CAS  PubMed  Google Scholar 

  82. Kramer, F. et al. Interleukin-1β stimulates acute phase response and C-reactive protein synthesis by inducing an NFκB-and C/EBPβ-dependent autocrine interleukin-6 loop. Mol. Immunol. 45, 2678–2689 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Cai, B., Cai, J. P., Luo, Y. L., Chen, C. & Zhang, S. The specific roles of JAK/STAT signaling pathway in sepsis. Inflammation 38, 1599–1608 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Reddy, E. P., Korapati, A., Chaturvedi, P. & Rane, S. IL-3 signaling and the role of Src kinases, JAKs and STATs; a covert liaison unveiled. Oncogene 19, 2532–2547 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Corthay, A. A. Three-cell model for activation of naive T helper cells. Scand. J. Immunol. 64, 93–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Ikutani, M. et al. Identification of innate IL-5 — producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Heinrich, P. C., Behrmann, I., Müller-Newen, G., Schaper, F. & Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of T cells by γ c family cytokines. Nat. Rev. Immunol. 9, 480–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Payne, A. S. & Cornelius, L. A. The role of chemokines in melanoma tumor growth and metastasis. J. Invest. Dermatol. 118, 915–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Goswami, R. & Kaplan, M. H. A brief history of IL-9. J. Immunol. 186, 3283–3288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Couper, K. N., Blount, D. G. & Riley, E. M. IL-10: the master regulator of immunity to infection. J. Immunol. 180, 5771–5777 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Kawashima, I. & Takiguchi, Y. Interleukin-11: a novel stroma-derived cytokine. Prog. Growth Factor Res. 4, 191–206 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Sun, L., He, C., Nair, L., Yeung, J. & Egwuagu, C. E. Interleukin 12 (IL-12) family cytokines: role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine 75, 249–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wynn, T. A. IL-13 effector functions. Annu. Rev. Immunol. 21, 425–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Saeed, S. & Revell, P. A. Production and distribution of interleukin 15 and its receptors (IL-15Rα and IL-R2β) in the implant interface tissues obtained during revision of failed total joint replacement. Int. J. Exp. Pathol. 82, 201–209 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miossec, P., Korn, T. & Kuchroo, V. K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Okamura, H. et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378, 88–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Rutz, S., Wang, X. & Ouyang, W. The IL-20 subfamily of cytokines—from host defence to tissue homeostasis. Nat. Rev. Immunol. 14, 783–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Leonard, W. J., Zeng, R. & Spolski, R. Interleukin 21: a cytokine/cytokine receptor system that has come of age. J. Leukocyte Biol. 84, 348–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Parrish-Novak, J. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Parrish-Novak, J., Foster, D. C., Holly, R. D. & Clegg, C. H. Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J. Leukoc. Biol. 72, 856–863 (2002).

    CAS  PubMed  Google Scholar 

  102. Spolski, R. & Leonard, W. J. The yin and yang of interleukin-21 in allergy, autoimmunity and cancer. Curr. Opin. Immunol. 20, 295–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Demetri, G. D. & Griffin, J. D. Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791–2808 (1991).

    CAS  PubMed  Google Scholar 

  104. Srinivasa, S. P. & Doshi, P. D. Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line. Leukemia 16, 244–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. van Raam, B. J., Drewniak, A., Groenewold, V., van den Berg, T. K. & Kuijpers, T. W. Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. Blood 112, 2046–2054 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Guthridge, M. A. et al. Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 16, 301–313 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Sonoda, Y., Yang, Y.-C., Wong, G. G., Clark, S. C. & Ogawa, M. Analysis in serum-free culture of the targets of recombinant human hemopoietic growth factors: interleukin 3 and granulocyte/macrophage-colony-stimulating factor are specific for early developmental stages. Proc. Natl Acad. Sci. USA 85, 4360–4364 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Sonoda, Y., Yang, Y.-C., Wong, G. G., Clark, S. C. & Ogawa, M. Erythroid burst-promoting activity of purified recombinant human GM-CSF and interleukin-3: studies with anti-GM-CSF and anti-IL-3 sera and studies in serum-free cultures. Blood 72, 1381–1386 (1988).

    CAS  PubMed  Google Scholar 

  109. Curry, J. M. et al. M-CSF signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo. PLOS ONE 3, e3405 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Schoenborn, J. R. & Wilson, C. B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 96, 41–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukocyte Biol. 75, 163–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Lee, S. & Margolin, K. Cytokines in cancer immunotherapy. Cancers 3, 3856–3893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Because of a need for conciseness and owing to space constraints, the authors could not systematically cite all studies of relevance to this Review, and they apologize to the authors of those studies that were omitted. The authors thank A. Belmonte and A. Zilman for discussions about modelling in the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway. This work was supported by the Intramural Research Program of the National Cancer Institute (Bethesda, MD, USA).

Reviewer information

Nature Reviews Immunology thanks R. Medzhitov and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Grégoire Altan-Bonnet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

R&D Systems: https://www.rndsystems.com/

Glossary

Autocrine

A form of cell-to-cell communication in which a cell secretes a cytokine (or any other soluble molecule) that binds to receptors on its own surface and elicits a signalling response.

Paracrine

A form of cell-to-cell communication in which a cell secretes a cytokine that binds to receptors on the surface of neighbouring cells and triggers a signalling response in these neighbouring cells.

Endocrine

A form of cell-to-cell communication in which a cell secretes a cytokine that reaches the blood circulation (hence triggering a more global response). It can be considered as an extended version of paracrine communication, and it applies to hormones as well as cytokines.

Effective concentration for half-maximum response

(EC50). The concentration of a cytokine that yields a half-maximum response.

Diffusion

The spontaneous motion of molecules down their concentration gradient (a passive mode of transport that is driven by thermal fluctuations).

Advection

The active transport of molecules driven by the flow of a fluid (blood or lymphatic fluid).

Linear function

In regimes of low cytokine concentration, the consumption rate for a given cytokine can be approximated as being proportional to the concentration of cytokine (linear dependency). When the cytokine receptors on the surface of cells are saturated with cytokines, the consumption rate reaches a plateau, becomes independent of the cytokine concentration in the extracellular milieu and introduces nonlinearities to the equations that describe its behaviour.

International units per millilitre

An ad hoc unit that is the cytokine concentration for which 50% of a response can be elicited (signalling, differentiation, proliferation or survival): it practically relates to the effective concentration for half-maximum response (EC50) value or affinity of the cytokine for its receptor and is typically in the 10 pMol range.

Cytokine spring

A fundamental mechanism to achieve immune homeostasis. Cells of multiple lineages secrete and consume cytokines that drive their proliferation and death. When one of the cell populations is at carrying capacity (in other words, when its expansion has plateaued), the system behaves as a cytokine spring and achieves homeostatic stability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altan-Bonnet, G., Mukherjee, R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat Rev Immunol 19, 205–217 (2019). https://doi.org/10.1038/s41577-019-0131-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0131-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing