Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging role of ADAM metalloproteinases in immunity

Abstract

Proteolysis is an irreversible physiological process that can result in the termination or activation of protein function. Many transmembrane proteins that are involved in the cellular communication between immune cells and structural cells — for example, Notch, CD23, CD44, and membrane-anchored cytokines and their receptors — are cleaved by the ADAM (a disintegrin and metalloproteinase) family of enzymes. Here, we review recent insights into the molecular activation, substrate specificity and function of ADAM proteins in the development and regulation of the immune system, with a particular focus on the roles of ADAM10 and ADAM17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of human proteolytically active ADAM and ADAMTS proteins.
Fig. 2: Regulation of ADAM proteins.
Fig. 3: Notch activation by ADAM proteins.
Fig. 4: Role of ADAM10 in T cells.
Fig. 5: Role of ADAM10 in marginal zone B cell development.

Similar content being viewed by others

References

  1. Wolfsberg, T. G. et al. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc. Natl Acad. Sci. USA 90, 10783–10787 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolfsberg, T. G., Primakoff, P., Myles, D. G. & White, J. M. ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 131, 275–278 (1995).After the identification of a new metalloproteinase in fertility research, this is the first description of the family of ADAM proteins.

    CAS  PubMed  Google Scholar 

  3. Black, R. A. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729–733 (1997).

    CAS  PubMed  Google Scholar 

  4. Liu, J., Qian, C. & Cao, X. Post-translational modification control of innate immunity. Immunity 45, 15–30 (2016).

    PubMed  Google Scholar 

  5. Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Heng, T. S., Painter, M. W. & Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    CAS  PubMed  Google Scholar 

  7. Prox, J. et al. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell. Mol. Life Sci. 69, 2919–2932 (2012).

    CAS  PubMed  Google Scholar 

  8. Saraceno, C. et al. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation. Cell Death Dis. 5, e1547 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Marcello, E., Gardoni, F., Di Luca, M. & Perez-Otano, I. An arginine stretch limits ADAM10 exit from the endoplasmic reticulum. J. Biol. Chem. 285, 10376–10384 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ebsen, H., Lettau, M., Kabelitz, D. & Janssen, O. Identification of SH3 domain proteins interacting with the cytoplasmic tail of the a disintegrin and metalloprotease 10 (ADAM10). PLOS ONE 9, e102899 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Lorenzen, I. et al. Control of ADAM17 activity by regulation of its cellular localisation. Sci. Rep. 6, 35067 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dusterhoft, S. et al. Extracellular juxtamembrane segment of ADAM17 interacts with membranes and is essential for its shedding activity. Biochemistry 54, 5791–5801 (2015).

    PubMed  Google Scholar 

  13. Seegar, T. C. M. et al. Structural basis for regulated proteolysis by the alpha-secretase ADAM10. Cell 171, 1638–1648 (2017). Here, the X-ray crystal structure of ADAM10 is described, revealing how a conformational change is required for full activity of the metalloproteinase domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Grotzinger, J., Lorenzen, I. & Dusterhoft, S. Molecular insights into the multilayered regulation of ADAM17: the role of the extracellular region. Biochim. Biophys. Acta 1864, 2088–2095 (2017).

    Google Scholar 

  15. Sommer, A. et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat. Commun. 7, 11523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fischer, K. et al. Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8 + T cells. Blood 108, 4094–4101 (2006).

    CAS  PubMed  Google Scholar 

  17. Cisse, M. et al. The extracellular regulated kinase-1 (ERK1) controls regulated alpha-secretase-mediated processing, promoter transactivation, and mRNA levels of the cellular prion protein. J. Biol. Chem. 286, 29192–29206 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Diaz-Rodriguez, E., Montero, J. C., Esparis-Ogando, A., Yuste, L. & Pandiella, A. Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol. Biol. Cell 13, 2031–2044 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Soond, S. M., Everson, B., Riches, D. W. & Murphy, G. ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. J. Cell Sci. 118, 2371–2380 (2005).

    CAS  PubMed  Google Scholar 

  20. Wisniewska, M. et al. Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J. Mol. Biol. 381, 1307–1319 (2008).

    CAS  PubMed  Google Scholar 

  21. Xu, P., Liu, J., Sakaki-Yumoto, M. & Derynck, R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci. Signal 5, ra34 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Deng, W., Cho, S., Su, P. C., Berger, B. W. & Li, R. Membrane-enabled dimerization of the intrinsically disordered cytoplasmic domain of ADAM10. Proc. Natl Acad. Sci. USA 111, 15987–15992 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwarz, J. et al. Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor alpha ectodomain shedding. J. Biol. Chem. 289, 3080–3093 (2014).

    CAS  PubMed  Google Scholar 

  24. Reyat, J. S. et al. ADAM10-interacting tetraspanins Tspan5 and Tspan17 regulate VE-cadherin expression and promote T lymphocyte transmigration. J. Immunol. 99, 666–676 (2017).

    Google Scholar 

  25. Matthews, A. L., Szyroka, J., Collier, R., Noy, P. J. & Tomlinson, M. G. Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochem. Soc. Trans. 45, 719–730 (2017).This review summarizes how tetraspanin C8 family members interact with ADAM10 and regulate its localization and substrate-specific activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Adrain, C., Zettl, M., Christova, Y., Taylor, N. & Freeman, M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225–228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McIlwain, D. R. et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229–232 (2012).References 26 and 27 show the importance of the inactive rhomboid protein RHBDF2 for ADAM17-mediated TNF shedding.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, X. et al. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl Acad. Sci. USA 112, 6080–6085 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maretzky, T. et al. iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc. Natl Acad. Sci. USA 110, 11433–11438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Matthews, A. L., Noy, P. J., Reyat, J. S. & Tomlinson, M. G. Regulation of a disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: the emerging role of tetraspanins and rhomboids. Platelets 28, 333–341 (2017).

    CAS  PubMed  Google Scholar 

  31. Hartmann, D. et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615–2624 (2002).

    CAS  PubMed  Google Scholar 

  32. Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

    CAS  PubMed  Google Scholar 

  33. Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    CAS  PubMed  Google Scholar 

  34. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of notch. Dev. Cell 33, 729–736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Musse, A. A., Meloty-Kapella, L. & Weinmaster, G. Notch ligand endocytosis: mechanistic basis of signaling activity. Semin. Cell Dev. Biol. 23, 429–436 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Langridge, P. D. & Struhl, G. Epsin-dependent ligand endocytosis activates Notch by force. Cell 171, 1383–1396 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. De Strooper, B. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    PubMed  Google Scholar 

  38. Chastagner, P., Rubinstein, E. & Brou, C. Ligand-activated Notch undergoes DTX4-mediated ubiquitylation and bilateral endocytosis before ADAM10 processing. Sci. Signal. 10, eaag2989 (2017).

    PubMed  Google Scholar 

  39. Kueh, H. Y. et al. Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nat. Immunol. 17, 956–965 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

    CAS  PubMed  Google Scholar 

  41. Washburn, T. et al. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 88, 833–843 (1997).

    CAS  PubMed  Google Scholar 

  42. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R. N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T cell lineage fate. Nature 404, 506–510 (2000).

    CAS  PubMed  Google Scholar 

  43. Tian, L. et al. ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int. Immunol. 20, 1181–1187 (2008).This paper demonstrates a cell-intrinsic role for ADAM10 in Notch 1 cleavage during thymocyte development and it describes the first study of conditional deletion of ADAM10 in a mouse model.

    CAS  PubMed  Google Scholar 

  44. Manilay, J. O., Anderson, A. C., Kang, C. & Robey, E. A. Impairment of thymocyte development by dominant-negative Kuzbanian (ADAM-10) is rescued by the Notch ligand, delta-1. J. Immunol. 174, 6732–6741 (2005).

    CAS  PubMed  Google Scholar 

  45. Gravano, D. M., McLelland, B. T., Horiuchi, K. & Manilay, J. O. ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression. PLOS ONE 5, e13528 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Gossens, K., Naus, S., Hollander, G. A. & Ziltener, H. J. Deficiency of the metalloproteinase-disintegrin ADAM8 is associated with thymic hyper-cellularity. PLOS ONE 5, e12766 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    CAS  PubMed  Google Scholar 

  48. Helbig, C. et al. Notch controls the magnitude of T helper cell responses by promoting cellular longevity. Proc. Natl Acad. Sci. USA 109, 9041–9046 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Guy, C. S. et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat. Immunol. 14, 262–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Maekawa, Y. et al. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat. Med. 21, 55–61 (2015).

    CAS  PubMed  Google Scholar 

  51. Laky, K., Evans, S., Perez-Diez, A. & Fowlkes, B. J. Notch signaling regulates antigen sensitivity of naive CD4+ T cells by tuning co-stimulation. Immunity 42, 80–94 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Luty, W. H., Rodeberg, D., Parness, J. & Vyas, Y. M. Antiparallel segregation of notch components in the immunological synapse directs reciprocal signaling in allogeneic Th:DC conjugates. J. Immunol. 179, 819–829 (2007).

    Google Scholar 

  53. Anderson, A. C. et al. The Notch regulator Numb links the Notch and TCR signaling pathways. J. Immunol. 174, 890–897 (2005).

    CAS  PubMed  Google Scholar 

  54. Palmer, W. H. & Deng, W. M. Ligand-independent mechanisms of Notch activity. Trends Cell Biol. 25, 697–707 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Britton, G. J. et al. PKCtheta links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton. Elife 6, e20003 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Li, N. et al. Metalloproteases regulate T cell proliferation and effector function via LAG-3. EMBO J. 26, 494–504 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    CAS  PubMed  Google Scholar 

  58. Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276, 80–96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Clayton, K. L. et al. Soluble T cell immunoglobulin mucin domain 3 is shed from CD8+ T cells by the sheddase ADAM10, is increased in plasma during untreated HIV infection, and correlates with HIV disease progression. J. Virol. 89, 3723–3736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schulte, M. et al. ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ. 14, 1040–1049 (2007).

    CAS  PubMed  Google Scholar 

  61. Ebsen, H., Lettau, M., Kabelitz, D. & Janssen, O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol. Immunol. 65, 416–428 (2015).

    CAS  PubMed  Google Scholar 

  62. Yacoub, D. et al. CD154 is released from T cells by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and ADAM17 in a CD40 protein-dependent manner. J. Biol. Chem. 288, 36083–36093 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jenabian, M. A. et al. Soluble CD40-ligand (sCD40L, sCD154) plays an immunosuppressive role via regulatory T cell expansion in HIV infection. Clin. Exp. Immunol. 178, 102–111 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Eichenauer, D. A. et al. ADAM10 inhibition of human CD30 shedding increases specificity of targeted immunotherapy in vitro. Cancer Res. 67, 332–338 (2007).

    CAS  PubMed  Google Scholar 

  65. Velasquez, S. Y., Garcia, L. F., Opelz, G., Alvarez, C. M. & Susal, C. Release of soluble CD30 after allogeneic stimulation is mediated by memory T cells and regulated by IFN-gamma and IL-2. Transplantation 96, 154–161 (2013).

    CAS  PubMed  Google Scholar 

  66. Nagano, O. & Saya, H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 95, 930–935 (2004).

    CAS  PubMed  Google Scholar 

  67. Miletti-Gonzalez, K. E. et al. Identification of function for CD44 intracytoplasmic domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J. Biol. Chem. 287, 18995–19007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schulz, B. et al. ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ. Res. 102, 1192–1201 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hundhausen, C. et al. Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. J. Immunol. 178, 8064–8072 (2007).

    CAS  PubMed  Google Scholar 

  70. Amsen, D., Antov, A. & Flavell, R. A. The different faces of Notch in T-helper-cell differentiation. Nat. Rev. Immunol. 9, 116–124 (2009).

    CAS  PubMed  Google Scholar 

  71. Tanigaki, K. et al. Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    CAS  PubMed  Google Scholar 

  72. Franke, M. et al. Human and murine interleukin 23 receptors are novel substrates for a disintegrin and metalloproteases ADAM10 and ADAM17. J. Biol. Chem. 291, 10551–10561 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kanzaki, H. et al. A-disintegrin and metalloproteinase (ADAM) 17 enzymatically degrades interferon-gamma. Sci. Rep. 6, 32259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat. Immunol. 1, 31–36 (2000).

    CAS  PubMed  Google Scholar 

  75. Cerutti, A., Cols, M. & Puga, I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13, 118–132 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9, 767–777 (2009).

    CAS  PubMed  Google Scholar 

  77. Tanigaki, K. et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol. 3, 443–450 (2002).

    CAS  PubMed  Google Scholar 

  78. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    CAS  PubMed  Google Scholar 

  79. Hozumi, K. et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat. Immunol 5, 638–644 (2004).

    CAS  PubMed  Google Scholar 

  80. Fasnacht, N. et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. J. Exp. Med. 211, 2265–2279 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Gibb, D. R. et al. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J. Exp. Med. 207, 623–635 (2010).This is the first study to describe the crucial role of ADAM10 in the development of MZB cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hammad, H. et al. Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. Nat. Immunol. 18, 313–320 (2017).

    CAS  PubMed  Google Scholar 

  83. Simonetti, G. et al. IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity. J. Exp. Med. 210, 2887–2902 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117, 787–800 (2004).

    CAS  PubMed  Google Scholar 

  85. Arnon, T. I., Horton, R. M., Grigorova, I. L. & Cyster, J. G. Visualization of splenic marginal zone B cell shuttling and follicular B cell egress. Nature 493, 684–688 (2013).

    CAS  PubMed  Google Scholar 

  86. Weskamp, G. et al. ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat. Immunol. 7, 1293–1298 (2006).

    CAS  PubMed  Google Scholar 

  87. Mathews, J. A., Gibb, D. R., Chen, B. H., Scherle, P. & Conrad, D. H. CD23 sheddase a disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23 sorting into B cell-derived exosomes. J. Biol. Chem. 285, 37531–37541 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chaimowitz, N. S. et al. A disintegrin and metalloproteinase 10 regulates antibody production and maintenance of lymphoid architecture. J. Immunol. 187, 5114–5122 (2011).

    CAS  PubMed  Google Scholar 

  89. Folgosa, L., Zellner, H. B., El Shikh, M. E. & Conrad, D. H. Disturbed follicular architecture in B cell a disintegrin and metalloproteinase (ADAM)10 knockouts is mediated by compensatory increases in ADAM17 and TNF-alpha shedding. J. Immunol. 191, 5951–5958 (2013).

    CAS  PubMed  Google Scholar 

  90. Lownik, J. C. et al. ADAM10-mediated ICOS ligand shedding on B cells is necessary for proper T cell ICOS regulation and T follicular helper responses. J. Immunol. 199, 2305–2315 (2017).

    CAS  PubMed  Google Scholar 

  91. Chaimowitz, N. S., Kang, D. J., Dean, L. M. & Conrad, D. H. ADAM10 regulates transcription factor expression required for plasma cell function. PLOS ONE 7, e42694 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Smulski, C. R. et al. BAFF- and TACI-dependent processing of BAFFR by ADAM proteases regulates the survival of B cells. Cell Rep. 18, 2189–2202 (2017).

    CAS  PubMed  Google Scholar 

  93. Possot, C. et al. Notch signaling is necessary for adult, but not fetal, development of RORgammat+ innate lymphoid cells. Nat. Immunol. 12, 949–958 (2011).

    CAS  PubMed  Google Scholar 

  94. Pham, D. H. et al. Effects of ADAM10 and ADAM17 inhibitors on natural killer cell expansion and antibody-dependent cellular cytotoxicity against breast cancer cells in vitro. Anticancer Res. 37, 5507–5513 (2017).

    PubMed  Google Scholar 

  95. Chitadze, G. et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int. J. Cancer 133, 1557–1566 (2013).

    CAS  PubMed  Google Scholar 

  96. Kohga, K. et al. Anticancer chemotherapy inhibits MHC class I-related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res. 69, 8050–8057 (2009).

    CAS  PubMed  Google Scholar 

  97. Matusali, G. et al. Soluble ligands for the NKG2D receptor are released during HIV-1 infection and impair NKG2D expression and cytotoxicity of NK cells. FASEB J. 27, 2440–2450 (2013).

    CAS  PubMed  Google Scholar 

  98. Nuckel, H. et al. The prognostic significance of soluble NKG2D ligands in B cell chronic lymphocytic leukemia. Leukemia 24, 1152–1159 (2010).

    CAS  PubMed  Google Scholar 

  99. Zocchi, M. R. et al. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing. Oncoimmunology 5, e1123367 (2016).

    PubMed  Google Scholar 

  100. Camodeca, C. et al. Discovery of a new selective inhibitor of a disintegrin and metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin’s lymphoma cell models. Eur. J. Med. Chem. 111, 193–201 (2016).

    CAS  PubMed  Google Scholar 

  101. Weber, S. et al. Regulation of adult hematopoiesis by the a disintegrin and metalloproteinase 10 (ADAM10). Biochem. Biophys. Res. Commun. 442, 234–241 (2013).

    CAS  PubMed  Google Scholar 

  102. Yoda, M. et al. Dual functions of cell-autonomous and non-cell-autonomous ADAM10 activity in granulopoiesis. Blood 118, 6939–6942 (2011).

    CAS  PubMed  Google Scholar 

  103. Maney, S. K. et al. Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17. Sci. Signal 8, ra109 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. Wong, E. et al. Harnessing the natural inhibitory domain to control TNFalpha converting enzyme (TACE) activity in vivo. Sci. Rep 6, 35598 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Menghini, R., Fiorentino, L., Casagrande, V., Lauro, R. & Federici, M. The role of ADAM17 in metabolic inflammation. Atherosclerosis 228, 12–17 (2013).

    CAS  PubMed  Google Scholar 

  106. Schumacher, N. et al. Shedding of endogenous interleukin-6 receptor (IL-6R) is governed by a disintegrin and metalloproteinase (ADAM) proteases while a full-length IL-6R isoform localizes to circulating microvesicles. J. Biol. Chem. 290, 26059–26071 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tang, J. et al. Adam17-dependent shedding limits early neutrophil influx but does not alter early monocyte recruitment to inflammatory sites. Blood 118, 786–794 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pruessmeyer, J. et al. Leukocytes require ADAM10 but not ADAM17 for their migration and inflammatory recruitment into the alveolar space. Blood 123, 4077–4088 (2014).

    CAS  PubMed  Google Scholar 

  109. Driscoll, W. S., Vaisar, T., Tang, J., Wilson, C. L. & Raines, E. W. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ. Res. 113, 52–61 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Moller-Hackbarth, K. et al. A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are major sheddases of T cell immunoglobulin and mucin domain 3 (Tim-3). J. Biol. Chem. 288, 34529–34544 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. Zhao, D. et al. Frontline science: Tim-3-mediated dysfunctional engulfment of apoptotic cells in SLE. J. Leukoc. Biol. 102, 1313–1322 (2017).

    CAS  PubMed  Google Scholar 

  112. Londino, J. D., Gulick, D., Isenberg, J. S. & Mallampalli, R. K. Cleavage of signal regulatory protein alpha (SIRPalpha) enhances inflammatory signaling. J. Biol. Chem. 290, 31113–31125 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. van der Vorst, E. P. et al. Myeloid a disintegrin and metalloproteinase domain 10 deficiency modulates atherosclerotic plaque composition by shifting the balance from inflammation toward fibrosis. Am. J. Pathol. 185, 1145–1155 (2015).

    PubMed  Google Scholar 

  114. Thornton, P. et al. TREM2 shedding by cleavage at the H157-S158 bond is accelerated for the Alzheimer’s disease-associated H157Y variant. EMBO Mol. Med. 9, 1366–1378 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl Med. 6, 243ra286 (2014).

    Google Scholar 

  116. Damle, S. R. et al. ADAM10 and Notch1 on murine dendritic cells control the development of type 2 immunity and IgE production. Allergy 73, 125–136 (2018).

    CAS  PubMed  Google Scholar 

  117. Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kirkling, M. E. et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep. 23, 3658–3672 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Nishida-Fukuda, H. et al. Ectodomain shedding of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) is induced by vascular endothelial growth factor A (VEGF-A). J. Biol. Chem. 291, 10490–10500 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zimmerman, B. et al. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zuidscherwoude, M. et al. The tetraspanin web revisited by super-resolution microscopy. Sci. Rep. 5, 12201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Yanez-Mo, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdes, M. & Sanchez-Madrid, F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 19, 434–446 (2009).

    CAS  PubMed  Google Scholar 

  123. Hemler, M. E. Tetraspanin proteins promote multiple cancer stages. Nat. Rev. Cancer 14, 49–60 (2014).

    CAS  PubMed  Google Scholar 

  124. Levy, S. Function of the tetraspanin molecule CD81 in B and T cells. Immunol. Res. 58, 179–185 (2014).

    CAS  PubMed  Google Scholar 

  125. Dornier, E. et al. TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J. Cell Biol. 199, 481–496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Haining, E. J. et al. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J. Biol. Chem. 287, 39753–39765 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Saint-Pol, J. et al. Regulation of the trafficking and the function of the metalloprotease ADAM10 by tetraspanins. Biochem. Soc. Trans. 45, 937–944 (2017).

    CAS  PubMed  Google Scholar 

  128. Jouannet, S. et al. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell. Mol. Life Sci. 73, 1895–1915 (2016).

    CAS  PubMed  Google Scholar 

  129. Noy, P. J. et al. TspanC8 tetraspanins and a disintegrin and metalloprotease 10 (ADAM10) interact via their extracellular regions: evidence for distinct binding mechanisms for different TspanC8 proteins. J. Biol. Chem. 291, 3145–3157 (2016).

    CAS  PubMed  Google Scholar 

  130. Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002).

    PubMed  Google Scholar 

  131. Koppelman, G. H. & Sayers, I. Evidence of a genetic contribution to lung function decline in asthma. J. Allergy Clin. Immunol. 128, 479–484 (2011).

    CAS  PubMed  Google Scholar 

  132. Jie, Z. et al. The effects of Th2 cytokines on the expression of ADAM33 in allergen-induced chronic airway inflammation. Respir. Physiol. Neurobiol. 168, 289–294 (2009).

    CAS  PubMed  Google Scholar 

  133. Davies, E. R. et al. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight 1, e87632 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. King, N. E. et al. Expression and regulation of a disintegrin and metalloproteinase (ADAM)8 in experimental asthma. Am. J. Respir. Cell. Mol. Biol. 31, 257–265 (2004).

    CAS  PubMed  Google Scholar 

  135. Oreo, K. M. et al. Sputum ADAM8 expression is increased in severe asthma and COPD. Clin. Exp. Allergy 44, 342–352 (2014).

    CAS  PubMed  Google Scholar 

  136. Knolle, M. D. et al. Adam8 limits the development of allergic airway inflammation in mice. J. Immunol. 190, 6434–6449 (2013).

    CAS  PubMed  Google Scholar 

  137. Naus, S. et al. The metalloprotease-disintegrin ADAM8 is essential for the development of experimental asthma. Am. J. Respir. Crit. Care Med. 181, 1318–1328 (2010).

    CAS  PubMed  Google Scholar 

  138. Cooley, L. F. et al. Increased B cell ADAM10 in allergic patients and Th2 prone mice. PLOS ONE 10, e0124331 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. Dewitz, C. et al. T cell immunoglobulin and mucin domain 2 (TIM-2) is a target of ADAM10-mediated ectodomain shedding. FEBS J. 281, 157–174 (2014).

    CAS  PubMed  Google Scholar 

  140. Virreira Winter, S., Zychlinsky, A. & Bardoel, B. W. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity. Sci. Rep. 6, 24242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. von Hoven, G. et al. Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus alpha-toxin action. Biochem. J. 473, 1929–1940 (2016).

    Google Scholar 

  142. Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).This study shows that ADAM10 is the receptor for the staphylococcal toxin α-haemolysin in vivo and identifies ADAM10 activity as a novel therapeutic target for α-haemolysin-induced disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Seike, S. et al. Delta-toxin from Clostridium perfringens perturbs intestinal epithelial barrier function in Caco-2 cell monolayers. Biochim. Biophys. Acta 1860, 428–433 (2018).

    CAS  Google Scholar 

  144. Brauweiler, A. M., Goleva, E. & Leung, D. Y. Interferon-gamma protects from Staphylococcal alpha toxin-induced keratinocyte death through apolipoprotein L1. J. Invest. Dermatol. 136, 658–664 (2016).

    CAS  PubMed  Google Scholar 

  145. Takeda, S. ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins (Basel) 8, E155 (2016).

    Google Scholar 

  146. Wong, E., Maretzky, T., Peleg, Y., Blobel, C. P. & Sagi, I. The functional maturation of a disintegrin and metalloproteinase (ADAM) 9, 10, and 17 requires processing at a newly identified proprotein convertase (PC) cleavage site. J. Biol. Chem. 290, 12135–12146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Reviewer information

Nature Reviews Immunology thanks D. Conrad, M. Tomlinson and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussing its content and writing, reviewing and editing the manuscript.

Corresponding author

Correspondence to Bart N. Lambrecht.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Immunological Genome Project: https://www.immgen.org/

Supplementary information

Glossary

γ-Secretases

Large proteinase complexes that cleave substrates within their transmembrane domain.

Tetraspanins

A superfamily of widely expressed membrane proteins involved in membrane compartmentalization.

Rhomboid proteins

An evolutionarily conserved family of intramembrane serine proteases implicated in diverse cellular functions.

Thymic epithelial cells

(TECs). Antigen-presenting cells in the thymus that regulate the T cell repertoire and establish central tolerance.

Autoimmune regulator protein

(AIRE). A transcription factor expressed in the thymic medulla that drives negative selection of self-recognizing T cells.

T cell exhaustion

A state of T cell dysfunction arising during chronic infections and cancer.

Activation-induced cell death

Programmed cell death owing to FAS–FAS ligand (FASL) interactions.

Indoleamine 2-3-dioxygenase pathway

(IDO pathway). A pathway mediating immunosuppressive effects through the metabolism of tryptophan to kynurenine.

Type 1 immune responses

Immune responses against intracellular microorganisms characterized by the involvement of group 1 innate lymphoid cells, CD8+ cytotoxic T cells and CD4+ T helper 1 cells.

Somatic hypermutation

Enzymatic modification of immunoglobulin genes required for the generation of high-affinity antibodies.

Marginal zone reticular cells

(MRCs). A stromal cell type in secondary lymphoid tissues, primarily located in the outer edge of follicles.

Capping regions

Areas of surface cell membrane in B cells containing clusters of crosslinked B cell receptors.

Airway remodelling

Structural changes in the large and small airways that occur in various diseases such as asthma.

Innate lymphoid cells

(ILCs). Immune cells that belong to the lymphoid lineage but do not express antigen-specific receptors.

Antibody-dependent cytotoxicity

A mechanism through which crystallizable fragment (Fc) receptor-bearing effector cells can recognize and kill antibody-coated target cells.

IL-6R trans-signalling

The activation of membrane-bound gp130 by a complex of IL-6 with the soluble IL-6 receptor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrecht, B.N., Vanderkerken, M. & Hammad, H. The emerging role of ADAM metalloproteinases in immunity. Nat Rev Immunol 18, 745–758 (2018). https://doi.org/10.1038/s41577-018-0068-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0068-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing