Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extreme heterogeneity of human mitochondrial DNA from organelles to populations

Abstract

Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human mitochondrial DNA.
Fig. 2: Nuclear–mitochondrial sequences and the paternal inheritance of mtDNA.
Fig. 3: How mitochondrial DNA heteroplasmy levels change.
Fig. 4: The role of mtDNA in human diseases.

Similar content being viewed by others

References

  1. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Holt, I., Harding, A. E. & Morgan-Hughes, J. A. Deletion of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Boulet, L., Karpati, G. & Shoubridge, E. A. Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am. J. Hum. Genet. 51, 1187–1200 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759 (2015). This is the most recent update on mitochondrial disease epidemiology, which has stood the test of time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bendall, K. E., Macaulay, V. A., Baker, J. R. & Sykes, B. C. Heteroplasmic point mutations in the human mtDNA control region. Am. J. Hum. Genet. 59, 1276–1287 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Parsons, T. J. et al. A high observed substitution rate in the human mitochondrial DNA control region. Nat. Genet. 15, 363–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Calvo, S. E. & Mootha, V. K. The mitochondrial proteome and human disease. Annu. Rev. Genomics Hum. Genet. 11, 25–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 15, 235–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Giorgi, C., Marchi, S. & Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Pfanner, N., Warscheid, B. & Wiedemann, N. Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018). This is an interesting new perspective on the origins of mitochondria that is being challenged in the literature.

    Article  CAS  PubMed  Google Scholar 

  13. Fan, L. Mitochondria branch within Alphaproteobacteria. Preprint at bioRxiv https://doi.org/10.1101/715870 (2019).

  14. Gray, M. W. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc. Natl Acad. Sci. USA 112, 10133–10138 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hazkani-Covo, E., Zeller, R. M. & Martin, W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 6, e1000834 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dayama, G., Emery, S. B., Kidd, J. M. & Mills, R. E. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res. 42, 12640–12649 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei, W. & Chinnery, P. F. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J. Intern. Med. 287, 634–644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kukat, C. et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl Acad. Sci. USA 112, 11288–11293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bogenhagen, D. F. Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 1819, 914–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ju, Y. S. et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife 3, e02935 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  22. Kennedy, S. R., Salk, J. J., Schmitt, M. W. & Loeb, L. A. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 9, e1003794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Birky, C. W. Relaxed and stringent genomes: why cytoplasmic genes don’t obey Mendel’s laws. J. Heredity 85, 355–365 (1994).

    Article  Google Scholar 

  24. Gross, N. J., Getz, G. S. & Rabinowitz, M. Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. Biol. Chem. 244, 1552–1562 (1969).

    Article  CAS  PubMed  Google Scholar 

  25. Krasich, R. & Copeland, W. C. DNA polymerases in the mitochondria: a critical review of the evidence. Front. Biosci. 22, 692–709 (2017).

    Article  CAS  Google Scholar 

  26. Zheng, W., Khrapko, K., Coller, H. A., Thilly, W. G. & Copeland, W. C. Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat. Res. 599, 11–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Yasukawa, T. & Kang, D. An overview of mammalian mitochondrial DNA replication mechanisms. J. Biochem. 164, 183–193 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Persson, O. et al. Copy-choice recombination during mitochondrial L-strand synthesis causes DNA deletions. Nat. Commun. 10, 759 (2019). The application of new technology to an old question has provided insights into the origin of pathogenic mtDNA deletions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faith, J. J. & Pollock, D. D. Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 165, 735–745 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fonseca, M. M., Harris, D. J. & Posada, D. The inversion of the control region in three mitogenomes provides further evidence for an asymmetric model of vertebrate mtDNA replication. PLoS ONE 9, e106654 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Holt, I. J. & Reyes, A. Human mitochondrial DNA replication. Cold Spring Harb. Perspect. Biol. 4, a012971 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Reyes, A., Yang, M. Y., Bowmaker, M. & Holt, I. J. Bidirectional replication initiates at sites throughout the mitochondrial genome of birds. J. Biol. Chem. 280, 3242–3250 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Reyes, A. et al. Mitochondrial DNA replication proceeds via a ‘bootlace’ mechanism involving the incorporation of processed transcripts. Nucleic Acids Res. 41, 5837–5850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chinnery, P. F. & Samuels, D. C. Relaxed replication of mtDNA: a model with implications for the expression of disease. Am. J. Hum. Genet. 64, 1158–1165 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Diaz, F. et al. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res. 30, 4626–4633 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, H. & O’Farrell, P. H. Selfish drive can trump function when animal mitochondrial genomes compete. Nat. Genet. 48, 798–802 (2016). This provides a fascinating insight into the competition between different mitochondrial genomes in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gitschlag, B. L. et al. Homeostatic responses regulate selfish mitochondrial genome dynamics in C. elegans. Cell Metab. 24, 91–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Phillips, W. S. et al. Selfish mitochondrial DNA proliferates and diversifies in small, but not large, experimental populations of Caenorhabditis briggsae. Genome Biol. Evol. 7, 2023–2037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davis, A. F. & Clayton, D. A. In situ localisation of mitochondrial DNA replication in intact mammalian cells. J. Cell Biol. 135, 883–893 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Wai, T., Teoli, D. & Shoubridge, E. A. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484–1488 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Chinnery, P. F., Samuels, D. C., Elson, J. & Turnbull, D. M. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 360, 1323–1325 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Hauswirth, W. M., Laipis, P. J. & Mitochondrial, D. N. A. polymorphism in a maternal lineage of Holstien cows. Proc. Natl Acad. Sci. USA 79, 4686–4690 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Olivo, P. D., Van de Walle, M. J., Laipis, P. J. & Hauswirth, W. W. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306, 400–402 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Hauswirth, W. W. & Laipis, P. J. in Achievements and Perspectives of Mitochondrial Research Vol. II (ed. Quagliariello, E.) 49–59 (Elsevier, 1985). Hauswirth and Laipis (1982), Olivo et al. (1983) and Hauswirth and Laipis (1985) are seminal articles underpinning the mitochondrial genetic bottleneck hypothesis in mammals.

  45. Cree, L. M. et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40, 249–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Otten, A. B. et al. Differences in strength and timing of the mtDNA bottleneck between zebrafish germline and non-germline cells. Cell Rep. 16, 622–630 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Chinnery, P. F. et al. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet. 16, 500–505 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wilson, I. J. et al. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Hum. Mol. Genet. 25, 1031–1041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hellebrekers, D. M. et al. PGD and heteroplasmic mitochondrial DNA point mutations: a systematic review estimating the chance of healthy offspring. Hum. Reprod. Update 18, 341–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Freyer, C. et al. Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nat. Genet. 44, 1282–1285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnston, I. G. et al. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. eLife 4, e07464 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Burr, S. P., Pezet, M. & Chinnery, P. F. Mitochondrial DNA heteroplasmy and purifying selection in the mammalian female germ line. Dev. Growth Differ. 60, 21–32 (2018).

    Article  PubMed  Google Scholar 

  53. Payne, B. A. et al. Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 22, 384–390 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He, Y. et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610–614 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, M., Schroder, R., Ni, S., Madea, B. & Stoneking, M. Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations. Proc. Natl Acad. Sci. USA 112, 2491–2496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, M. et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am. J. Hum. Genet. 87, 237–249 (2010). This is one of the first studies using deep resequencing to detect low-level mtDNA heteroplasmy in human tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Giuliani, C. et al. Transmission from centenarians to their offspring of mtDNA heteroplasmy revealed by ultra-deep sequencing. Aging 6, 454–467 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wei, W. et al. Germline selection shapes human mitochondrial DNA diversity. Science 364, eaau6520 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Wallace, D. C. Genetics: mitochondrial DNA in evolution and disease. Nature 535, 498–500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wallace, D. C. Mitochondrial DNA variation in human radiation and disease. Cell 163, 33–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).

    Article  PubMed  Google Scholar 

  65. Wei, W., Gomez-Duran, A., Hudson, G. & Chinnery, P. F. Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations. PLoS Genet. 13, e1007126 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yamamoto, K. et al. Genetic and phenotypic landscape of the mitochondrial genome in the Japanese population. Commun. Biol. 3, 104 (2020). This is one of the largest population studies showing that polymorphic variants of mtDNA influence quantitative phenotypic traits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cann, R. L., Brown, W. M. & Wilson, A. C. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106, 479–499 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Howell, N. et al. The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am. J. Hum. Genet. 72, 659–670 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Kivisild, T. et al. The role of selection in the evolution of human mitochondrial genomes. Genetics 172, 373–387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baudouin, S. V. et al. Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366, 2118–2121 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. Lorente, L. et al. Survival and mitochondrial function in septic patients according to mitochondrial DNA haplogroup. Crit. Care 16, R10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lorente, L. et al. Septic patients with mitochondrial DNA haplogroup JT have higher respiratory complex IV activity and survival rate. J. Crit. Care 33, 95–99 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, Y. et al. Mitochondrial DNA haplogroup R predicts survival advantage in severe sepsis in the Han population. Genet. Med. 10, 187–192 (2008).

    Article  PubMed  Google Scholar 

  75. Ji, F. et al. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc. Natl Acad. Sci. USA 109, 7391–7396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lahti, D. C. et al. Relaxed selection in the wild. Trends Ecol. Evol. 24, 487–496 (2009).

    Article  PubMed  Google Scholar 

  77. Gomez-Duran, A. et al. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber’s hereditary optic neuropathy. Biochim. Biophys. Acta 1822, 1216–1222 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Gomez-Duran, A. et al. Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum. Mol. Genet. 19, 3343–3353 (2010). Gomez-Duran et al. (2010, 2012) provide key evidence indicating that polymorphic variants of mtDNA in humans have functional consequences.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, H., Burr, S. P. & Chinnery, P. F. The mitochondrial DNA genetic bottleneck: inheritance and beyond. Essays Biochem. 62, 225–234 (2018).

    Article  PubMed  Google Scholar 

  80. Klucnika, A. & Ma, H. A battle for transmission: the cooperative and selfish animal mitochondrial genomes. Open. Biol. 9, 180267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, Y. et al. PINK1 inhibits local protein synthesis to limit transmission of deleterious mitochondrial DNA mutations. Mol. Cell 73, 1127–1137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lieber, T., Jeedigunta, S. P., Palozzi, J. M., Lehmann, R. & Hurd, T. R. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570, 380–384 (2019). Zhang et al. (2019) and Lieber et al. cast light on the mechanisms of selection in the Drosophila germ line.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Milot, E. et al. Mother’s curse neutralizes natural selection against a human genetic disease over three centuries. Nat. Ecol. Evol. 1, 1400–1406 (2017).

    Article  PubMed  Google Scholar 

  85. Beziat, F., Morel, F., Volz-Lingenhol, A., Saint Paul, N. & Alziari, S. Mitochondrial genome expression in a mutant strain of D. subobscura, an animal model for large scale mtDNA deletion. Nucleic Acids Res. 21, 387–392 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsang, W. Y. & Lemire, B. D. Stable heteroplasmy but differential inheritance of a large mitochondrial DNA deletion in nematodes. Biochem. Cell Biol. 80, 645–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Lin, Y. F. et al. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533, 416–419 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319, 958–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stewart, J. B. et al. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol. 6, e10 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kauppila, J. H. K. et al. A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep. 16, 2980–2990 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jenuth, J., Peterson, A. C., Fu, K. & Shoubridge, E. A. Random genetic drift in the female germ line explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Meirelles, F. & Smith, L. C. Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embyonic karyoplast transplantation. Genetics 145, 445–451 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, H. S. et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep. 1, 506–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kang, E. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540, 270–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Jokinen, R. et al. Gimap3 regulates tissue-specific mitochondrial DNA segregation. PLoS Genet. 6, e1001161 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Battersby, B. J., Loredo-Osti, J. C. & Shoubridge, E. A. Nuclear genetic control of mitochondrial DNA segregation. Nat. Genet. 33, 183–186 (2003). This is a critical article describing the early evidence that the nuclear genome can influence heteroplasmy segregation.

    Article  CAS  PubMed  Google Scholar 

  97. Sharpley, M. S. et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151, 333–343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Burgstaller, J. P. et al. MtDNA segregation in heteroplasmic tissues is common in vivo and modulated by haplotype differences and developmental stage. Cell Rep. 7, 2031–2041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Latorre-Pellicer, A. et al. Regulation of mother-to-offspring transmission of mtDNA heteroplasmy. Cell Metab. 30, 1120–1130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, M. et al. Transmission of human mtDNA heteroplasmy in the genome of the Netherlands families: support for a variable-size bottleneck. Genome Res. 26, 417–426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barrett, A. et al. Pronounced somatic bottleneck in mitochondrial DNA of human hair. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190175 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Zaidi, A. A. et al. Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. Proc. Natl Acad. Sci. USA 116, 25172–25178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Floros, V. I. et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 20, 144–151 (2018). The studies provides the first direct measurement of the mtDNA genetic bottleneck in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Niehuis, O., Judson, A. K. & Gadau, J. Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasonia giraulti and N. vitripennis. Genetics 178, 413–426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ellison, C. K., Niehuis, O. & Gadau, J. Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J. Evol. Biol. 21, 1844–1851 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Innocenti, P., Morrow, E. H. & Dowling, D. K. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332, 845–848 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Camus, M. F., Clancy, D. J. & Dowling, D. K. Mitochondria, maternal inheritance, and male aging. Curr. Biol. 22, 1717–1721 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. James, A. C. & Ballard, J. W. Mitochondrial genotype affects fitness in Drosophila simulans. Genetics 164, 187–194 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. De Stordeur, E. Nonrandom partition of mitochondria in heteroplasmic Drosophila. Heredity 79, 615–623 (1997).

    Article  PubMed  Google Scholar 

  110. Rand, D. M. & Mossman, J. A. Mitonuclear conflict and cooperation govern the integration of genotypes, phenotypes and environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190188 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Mossman, J. A., Ge, J. Y., Navarro, F. & Rand, D. M. Mitochondrial DNA fitness depends on nuclear genetic background in Drosophila. G3 9, 1175–1188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vaught, R. C. et al. Interactions between cytoplasmic and nuclear genomes confer sex-specific effects on lifespan in Drosophila melanogaster. J. Evol. Biol. 33, 694–713 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Nagarajan-Radha, V., Rapkin, J., Hunt, J. & Dowling, D. K. Interactions between mitochondrial haplotype and dietary macronutrient ratios confer sex-specific effects on longevity in Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci 74, 1573–1581 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Blier, P. U., Dufresne, F. & Burton, R. S. Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet. 17, 400–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. McManus, M. J. et al. Mitochondrial DNA Variation dictates expressivity and progression of nuclear DNA mutations causing cardiomyopathy. Cell Metab. 29, 78–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Purhonen, J. et al. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat. Commun. 11, 322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hyslop, L. A. et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534, 383–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Paull, D. et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493, 632–637 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Hudson, G., Takeda, Y. & Herbert, M. Reversion after replacement of mitochondrial DNA. Nature 574, E8–E11 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Zaidi, A. A. & Makova, K. D. Investigating mitonuclear interactions in human admixed populations. Nat. Ecol. Evol. 3, 213–222 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cai, N. et al. Genetic control over mtDNA and its relationship to major depressive disorder. Curr. Biol. 25, 3170–3177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guyatt, A. L. et al. A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts. Hum. Genomics 13, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Samuels, D. C., Carothers, A. D., Horton, R. & Chinnery, P. F. The power to detect disease associations with mitochondrial DNA haplogroups. Am. J. Hum. Genet. 78, 713–720 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chinnery, P. F., Elliott, H. R., Syed, A. & Rothwell, P. M. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: a genetic association study. Lancet Neurol. 9, 498–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hudson, G. et al. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology 80, 2042–2048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hudson, G., Gomez-Duran, A., Wilson, I. J. & Chinnery, P. F. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet. 10, e1004369 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kraja, A. T. et al. Associations of mitochondrial and nuclear mitochondrial variants and genes with seven metabolic traits. Am. J. Hum. Genet. 104, 112–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38, 515–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Simon, D. K. et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease. Neurobiol. Aging 25, 71–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Ross, J. M. et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501, 412–415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Payne, B. A. et al. Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations. Nat. Genet. 43, 806–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Samuels, D. C. et al. Recurrent tissue-specific mtDNA mutations are common in humans. PLoS Genet. 9, e1003929 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hubner, A. et al. Sharing of heteroplasmies between human liver lobes varies across the mtDNA genome. Sci. Rep. 9, 11219 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 52, 342–352 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stewart, J. B. et al. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. PLoS Genet. 11, e1005333 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Grandhi, S. et al. Heteroplasmic shifts in tumor mitochondrial genomes reveal tissue-specific signals of relaxed and positive selection. Hum. Mol. Genet. 26, 2912–2922 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kuhl, I. et al. POLRMT does not transcribe nuclear genes. Nature 514, E7–E11 (2014).

    Article  PubMed  CAS  Google Scholar 

  139. Albayrak, L. et al. The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome. BMC Genomics 17, 1017 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Maude, H. et al. NUMT confounding biases mitochondrial heteroplasmy calls in favor of the reference Allele. Front. Cell Dev. Biol. 7, 201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Luo, S. et al. Biparental inheritance of mitochondrial DNA in humans. Proc. Natl Acad. Sci. USA 115, 13039–13044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wei, W. et al. Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nat. Commun. 11, 1740 (2020). The largest study of mtDNA in the human population to date casts light on selection acting on low-level heteroplasmies under the influence of the nuclear genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. van den Ameele, J., Li, A. Y. Z., Ma, H. & Chinnery, P. F. Mitochondrial heteroplasmy beyond the oocyte bottleneck. Semin. Cell Dev. Biol. 97, 156–166 (2020).

    Article  PubMed  CAS  Google Scholar 

  144. Dou, X. et al. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res. 29, 1622–1634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Saini, S. K., Mangalhara, K. C., Prakasam, G. & Bamezai, R. N. K. DNA methyltransferase1 (DNMT1) isoform3 methylates mitochondrial genome and modulates its biology. Sci. Rep. 7, 1525 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. van der Wijst, M. G., van Tilburg, A. Y., Ruiters, M. H. & Rots, M. G. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci. Rep. 7, 177 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Rebelo, A. P., Williams, S. L. & Moraes, C. T. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res. 37, 6701–6715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Antonicka, H. et al. A high-density human mitochondrial proximity interaction network. Cell Metab. 32, 479–497 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Mechta, M., Ingerslev, L. R., Fabre, O., Picard, M. & Barrès, R. Evidence suggesting absence of mitochondrial DNA methylation. Front. Genet. 8, 166 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Ratel, D. et al. Undetectable levels of N6-methyl adenine in mouse DNA: cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett. 580, 3179–3184 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Douvlataniotis, K., Bensberg, M., Lentini, A., Gylemo, B. & Nestor, C. E. No evidence for DNA N6-methyladenine in mammals. Sci. Adv. 6, eaay3335 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hao, Z. et al. N6-Deoxyadenosine methylation in mammalian mitochondrial DNA. Mol. Cell 78, 382–395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ameur, A. et al. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet. 7, e1002028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kauppila, J. H. K. et al. Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. Nucleic Acids Res. 46, 6642–6669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Salas, A., Schonherr, S., Bandelt, H. J., Gomez-Carballa, A. & Weissensteiner, H. Extraordinary claims require extraordinary evidence in asserted mtDNA biparental inheritance. Forensic Sci. Int. Genet. 47, 102274 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Santibanez-Koref, M. et al. Assessing mitochondrial heteroplasmy using next generation sequencing: a note of caution. Mitochondrion 46, 302–306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Just, R. S., Irwin, J. A. & Parson, W. Questioning the prevalence and reliability of human mitochondrial DNA heteroplasmy from massively parallel sequencing data. Proc. Natl Acad. Sci. USA 111, E4546–E4547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, M., Schroeder, R., Ko, A. & Stoneking, M. Fidelity of capture-enrichment for mtDNA genome sequencing: influence of NUMTs. Nucleic Acids Res. 40, e137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Calvignac, S., Konecny, L., Malard, F. & Douady, C. J. Preventing the pollution of mitochondrial datasets with nuclear mitochondrial paralogs (numts). Mitochondrion 11, 246–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Fu, K. et al. A novel heteroplasmic tRNAleu(UUR) mtDNA point mutation in a sporadic patient with mitochondrial encephalomyopathy segregates rapidly in muscle and suggests an approach to therapy. Hum. Mol. Genet. 5, 1835–1840 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Clark, K. et al. Correction of a mitochondrial DNA defect in human skeletal muscle. Nat. Genet. 16, 222–224 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Gammage, P. A. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24, 1691–1695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24, 1696–1700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Steele, H. et al. Metabolic effects of bezafibrate in mitochondrial disease. EMBO Mol. Med. 12, e11589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pirinen, E. et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 31, 1078–1090.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.B.S. is supported by the Max Planck Society and a project grant from the United Mitochondrial Disease Foundation. P.F.C. is a Wellcome Trust Principal Research Fellow (212219/Z/18/Z) and a UK National Institute for Health Research (NIHR) Senior Investigator, who receives support from the UK Medical Research Council Mitochondrial Biology Unit (MC_UU_00015/9), the Medical Research Council International Centre for Genomic Medicine in Neuromuscular Disease, the Leverhulme Trust (RPG-2018-408) and the NIHR Biomedical Research Centre based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the UK Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Patrick F. Chinnery.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks G. Manfredi, D. Rand and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://www.clinicaltrials.gov/

Glossary

Heteroplasmy

A mixture of wild-type and mutant mitochondrial DNA. The proportion of mutant and wild-type molecules is often referred to as the heteroplasmy percentage, heteroplasmy frequency or heteroplasmy burden (see the glossary description for ‘allele frequency’).

Nuclear–mitochondrial sequences

Segments of mitochondrial DNA that have translocated into nuclear chromosomes of the cell.

Relaxed replication

Replication of mitochondrial DNA throughout the cell cycle and is independent of nuclear division.

D-loop

Approximately 1.1 kb of non-coding mitochondrial DNA in humans involved in the initiation of transcription and mitochondrial DNA replication. The D stands for ‘displacement’.

Selfish replication

When a genotype is preferentially propagated despite have a deleterious effect on the organism or population.

Allele frequency

Also known as variant allele frequency. The proportion of alleles carrying a specific variant. This term can be used to describe the proportion of individuals with a homoplasmic mitochondrial DNA variant in a population group, or the proportion of mitochondrial DNA molecules within an individual person, organ, cell or mitochondrion. The latter is the same as the heteroplasmy fraction, or heteroplasmy burden.

Vegetative segregation

Changes in heteroplasmy that occur through the unequal partitioning of different mitochondrial genotypes during cell division.

Homoplasmy

When all mitochondrial DNA molecules are identical.

Cybrid

A cellular model system usually used to study the effects of mitochondrial DNA variants or mutations on the same nuclear genetic background.

Mitophagy

A specific form of autophagy in which mitochondria are engulfed by a lysosome and destroyed.

Clonal expansion

When a mitochondrial DNA molecule containing a specific variant or haplotype increases in allele frequency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, J.B., Chinnery, P.F. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 22, 106–118 (2021). https://doi.org/10.1038/s41576-020-00284-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-00284-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer