Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into acute pancreatitis

Abstract

The incidence of acute pancreatitis continues to increase worldwide, and it is one of the most common gastrointestinal causes for hospital admission in the USA. In the past decade, substantial advancements have been made in our understanding of the pathophysiological mechanisms of acute pancreatitis. Studies have elucidated mechanisms of calcium-mediated acinar cell injury and death and the importance of store-operated calcium entry channels and mitochondrial permeability transition pores. The cytoprotective role of the unfolded protein response and autophagy in preventing sustained endoplasmic reticulum stress, apoptosis and necrosis has also been characterized, as has the central role of unsaturated fatty acids in causing pancreatic organ failure. Characterization of these pathways has led to the identification of potential molecular targets for future therapeutic trials. At the patient level, two classification systems have been developed to classify the severity of acute pancreatitis into prognostically meaningful groups, and several landmark clinical trials have informed management strategies in areas of nutritional support and interventions for infected pancreatic necrosis that have resulted in important changes to acute pancreatitis management paradigms. In this Review, we provide a summary of recent advances in acute pancreatitis with a special emphasis on pathophysiological mechanisms and clinical management of the disorder.

Key points

  • The incidence of acute pancreatitis is 34 per 100,000 people in the general population, and it is rising worldwide.

  • In addition to premature trypsinogen activation, dysfunctional calcium signalling, impaired autophagy, endoplasmic reticulum stress, the unfolded protein response and mitochondrial dysfunction are key cellular processes in the pathogenesis of acute pancreatitis.

  • Well-designed, adequately powered trials are needed to define and examine the efficacy of aggressive fluid resuscitation.

  • Infected walled-off pancreatic necrosis should be managed with an endoscopic step-up strategy.

  • Diabetes and exocrine pancreatic insufficiency are common complications after an episode of acute pancreatitis, occurring in up to one in five patients following acute pancreatitis.

  • Acute pancreatitis impairs long-term quality of life, and many patients experience repeated hospitalizations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Calcium-mediated mitochondrial dysfunction and cell death in acute pancreatitis.
Fig. 2: Premature trypsinogen activation in acute pancreatitis.
Fig. 3: Endoplasmic reticulum stress, the unfolded protein response and autophagy in acute pancreatitis.
Fig. 4: Immune response to acinar cell injury and necrosis in acute pancreatitis.
Fig. 5: Acute pancreatitis management algorithm.

Similar content being viewed by others

References

  1. Lugea, A. et al. Human pancreatic acinar cells: proteomic characterization, physiologic responses, and organellar disorders in ex vivo pancreatitis. Am. J. Pathol. 187, 2726–2743 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gukovskaya, A. S., Pandol, S. J. & Gukovsky, I. New insights into the pathways initiating and driving pancreatitis. Curr. Opin. Gastroenterol. 32, 429–435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Banks, P. A. et al. Classification of acute pancreatitis —2012: revision of the Atlanta classification and definitions by international consensus. Gut 62, 102–111 (2013).

    PubMed  Google Scholar 

  4. Petrov, M. S. & Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 175–184 (2018).

    Google Scholar 

  5. Peery, A. F. et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology 149, 1731–1741 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Munigala, S. et al. Predictors for early readmission in acute pancreatitis (AP) in the United States (US) — a nationwide population based study. Pancreatology 17, 534–542 (2017).

    PubMed  Google Scholar 

  7. Wadhwa, V. et al. Health care utilization and costs associated with acute pancreatitis. Pancreas 46, 410–415 (2017).

    PubMed  Google Scholar 

  8. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Google Scholar 

  9. Khatua, B., El-Kurdi, B. & Singh, V. P. Obesity and pancreatitis. Curr. Opin. Gastroenterol. 33, 374–382 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Camilleri, M., Malhi, H. & Acosta, A. Gastrointestinal complications of obesity. Gastroenterology 152, 1656–1670 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Krishna, S. G., Kamboj, A. K., Hart, P. A., Hinton, A. & Conwell, D. L. The changing epidemiology of acute pancreatitis hospitalizations: a decade of trends and the impact of chronic pancreatitis. Pancreas 46, 482–488 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Umapathy, C. et al. Natural history after acute necrotizing pancreatitis: a large US tertiary care experience. J. Gastrointest. Surg. 20, 1844–1853 (2016).

    PubMed  Google Scholar 

  13. Yadav, D., O’Connell, M. & Papachristou, G. I. Natural history following the first attack of acute pancreatitis. Am. J. Gastroenterol. 107, 1096–1103 (2012).

    PubMed  Google Scholar 

  14. Machicado, J. D. et al. Acute pancreatitis has a long-term deleterious effect on physical health related quality of life. Clin. Gastroenterol. Hepatol. 15, 1435–1443 (2017).

    PubMed  Google Scholar 

  15. Das, S. L. et al. Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut 63, 818–831 (2014).

    PubMed  Google Scholar 

  16. Hollemans, R. A. et al. Pancreatic exocrine insufficiency following acute pancreatitis: systematic review and study level meta-analysis. Pancreatology 18, 253–262 (2018).

    PubMed  Google Scholar 

  17. Vipperla, K. et al. Risk of and factors associated with readmission after a sentinel attack of acute pancreatitis. Clin. Gastroenterol. Hepatol. 12, 1911–1919 (2014).

    PubMed  Google Scholar 

  18. Ali, U. A. et al. Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis. Clin. Gastroenterol. Hepatol. 14, 738–746 (2016).

    Google Scholar 

  19. Javed, M. A. et al. TRO40303 ameliorates alcohol-induced pancreatitis through reduction of fatty acid ethyl ester-induced mitochondrial injury and necrotic cell death. Pancreas 47, 18–24 (2018).

    CAS  PubMed  Google Scholar 

  20. Wen, L. et al. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 149, 481–492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Criddle, D. N., McLaughlin, E., Murphy, J. A., Petersen, O. H. & Sutton, R. The pancreas misled: signals to pancreatitis. Pancreatology 7, 436–446 (2007).

    PubMed  Google Scholar 

  22. Marta, K. et al. High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): protocol of a multicentre randomised double-blind clinical trial. BMJ Open 7, e015874 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Noel, P. et al. Peripancreatic fat necrosis worsens acute pancreatitis independent of pancreatic necrosis via unsaturated fatty acids increased in human pancreatic necrosis collections. Gut 65, 100–111 (2016).

    CAS  PubMed  Google Scholar 

  24. Bradbury, K. E. et al. Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute pancreatitis to severe pancreatitis independent of necrosis and inflammation. Gastroenterology 15, 100–111 (2017).

    Google Scholar 

  25. Acharya, C. et al. Fibrosis reduces severity of acute-on-chronic pancreatitis in humans. Gastroenterology 145, 466–475 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Al-Bahrani, A. Z. & Ammori, B. J. Clinical laboratory assessment of acute pancreatitis. Clin. Chim. Acta 362, 26–48 (2005).

    CAS  PubMed  Google Scholar 

  27. Tenner, S., Baillie, J., DeWitt, J. & Vege, S. S. & of Gastroenterology, A. C. American College of Gastroenterology guideline: management of acute pancreatitis. Am. J. Gastroenterol. 108, 1400–1415 (2013).

    CAS  PubMed  Google Scholar 

  28. Crockett, S. D., Wani, S., Gardner, T. B., Falck-Ytter, Y. & Barkun, A. N. American Gastroenterological Association Institute Guideline on Initial Management of Acute Pancreatitis. Gastroenterology 154, 1096–1101 (2018).

    PubMed  Google Scholar 

  29. Isaji, S. et al. Revised Japanese guidelines for the management of acute pancreatitis 2015: revised concepts and updated points. J. Hepatobiliary Pancreat. Sci. 22, 433–445 (2015).

    PubMed  Google Scholar 

  30. Working Group IAP/APA Acute Pancreatitis Guidelines. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 13, e1–e15 (2013).

    Google Scholar 

  31. Gerasimenko, J. V. et al. Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc. Natl Acad. Sci. USA 110, 13186–13191 (2013).

    CAS  PubMed  Google Scholar 

  32. Murphy, J. A. et al. Direct activation of cytosolic Ca2+ signaling and enzyme secretion by cholecystokinin in human pancreatic acinar cells. Gastroenterology 135, 632–641 (2008).

    CAS  PubMed  Google Scholar 

  33. Biczo, G. et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology 154, 689–703 (2018).

    CAS  PubMed  Google Scholar 

  34. Mukherjee, R. et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut 65, 1333–1346 (2016).

    CAS  PubMed  Google Scholar 

  35. Aghdassi, A. A. et al. Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis. J. Biol. Chem. 293, 1018–1029 (2018).

    CAS  PubMed  Google Scholar 

  36. Talukdar, R. et al. Release of cathepsin B in cytosol causes cell death in acute pancreatitis. Gastroenterology 151, 747–758 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dawra, R. et al. Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology 141, 2210–2217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wartmann, T. et al. Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology 138, 726–737 (2010).

    CAS  PubMed  Google Scholar 

  39. Gukovskaya, A. S. et al. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 122, 974–984 (2002).

    CAS  PubMed  Google Scholar 

  40. Halangk, W. et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest. 106, 773–781 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sendler, M. et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology 154, 704–718 (2018).

    CAS  PubMed  Google Scholar 

  42. Zeng, Y., Wang, X., Zhang, W., Wu, K. & Ma, J. Hypertriglyceridemia aggravates ER stress and pathogenesis of acute pancreatitis. Hepatogastroenterology 59, 2318–2326 (2012).

    CAS  PubMed  Google Scholar 

  43. Wu, J. S., Li, W. M., Chen, Y. N., Zhao, Q. & Chen, Q. F. Endoplasmic reticulum stress is activated in acute pancreatitis. J. Dig. Dis. 17, 295–303 (2016).

    PubMed  Google Scholar 

  44. Lugea, A. et al. Adaptive unfolded protein response attenuates alcohol-induced pancreatic damage. Gastroenterology 140, 987–997 (2011).

    CAS  PubMed  Google Scholar 

  45. Antonucci, L. et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc. Natl Acad. Sci. USA 112, 6166 (2015).

    Google Scholar 

  46. Sendler, M. et al. Tumour necrosis factor alpha secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 62, 430–439 (2013).

    CAS  PubMed  Google Scholar 

  47. Merza, M. et al. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 149, 1931 (2015).

    Google Scholar 

  48. Jakkampudi, A. et al. NF-kappaB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 16, 477–488 (2016).

    CAS  PubMed  Google Scholar 

  49. Shanbhag, S. T. et al. Acute pancreatitis conditioned mesenteric lymph causes cardiac dysfunction in rats independent of hypotension. Surgery 163, 1097–1105 (2018).

    PubMed  Google Scholar 

  50. Mole, D. J. et al. Tryptophan catabolites in mesenteric lymph may contribute to pancreatitis-associated organ failure. Br. J. Surg. 95, 855–867 (2008).

    CAS  PubMed  Google Scholar 

  51. Mittal, A. et al. The proteome of mesenteric lymph during acute pancreatitis and implications for treatment. JOP 10, 130–142 (2009).

    PubMed  Google Scholar 

  52. Flint, R. S. et al. Acute pancreatitis severity is exacerbated by intestinal ischemia-reperfusion conditioned mesenteric lymph. Surgery 143, 404–413 (2008).

    PubMed  Google Scholar 

  53. Gorelick, F. S. & Lerch, M. M. Do animal models of acute pancreatitis reproduce human disease? Cell. Mol. Gastroenterol. Hepatol. 4, 251–262 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Gukovskaya, A. S., Gukovsky, I., Algul, H. & Habtezion, A. Autophagy, inflammation, and immune dysfunction in the pathogenesis of pancreatitis. Gastroenterology 153, 1212–1226 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lampel, M. & Kern, H. F. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch. A 373, 97–117 (1977).

    CAS  Google Scholar 

  56. Pandol, S. J., Gukovsky, I., Satoh, A., Lugea, A. & Gukovskaya, A. S. Animal and in vitro models of alcoholic pancreatitis: role of cholecystokinin. Pancreas 27, 297–300 (2003).

    CAS  PubMed  Google Scholar 

  57. Criddle, D. N. The role of fat and alcohol in acute pancreatitis: a dangerous liaison. Pancreatology 15, S6–S12 (2015).

    CAS  PubMed  Google Scholar 

  58. Huang, W. et al. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis. Gut 63, 1313–1324 (2014).

    CAS  PubMed  Google Scholar 

  59. Hegyi, P., Pandol, S., Venglovecz, V. & Rakonczay, Z. J. The acinar-ductal tango in the pathogenesis of acute pancreatitis. Gut 60, 544–552 (2011).

    PubMed  Google Scholar 

  60. Noble, M. D., Romac, J., Vigna, S. R. & Liddle, R. A. A. pH-sensitive, neurogenic pathway mediates disease severity in a model of post-ERCP pancreatitis. Gut 57, 1566–1571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lerch, M. M. et al. Acute necrotizing pancreatitis in the opossum: earliest morphological changes involve acinar cells. Gastroenterology 103, 205–213 (1992).

    CAS  PubMed  Google Scholar 

  62. Senninger, N., Moody, F. G., Coelho, J. C. & Van Buren, D. H. The role of biliary obstruction in the pathogenesis of acute pancreatitis in the opossum. Surgery 99, 688–693 (1986).

    CAS  PubMed  Google Scholar 

  63. Runkel, N. S., Rodriguez, L. F., Moody, F. G., LaRocco, M. T. & Blasdel, T. Salmonella infection of the biliary and intestinal tract of wild opossums. Lab. Anim. Sci. 41, 54–56 (1991).

    CAS  PubMed  Google Scholar 

  64. Senninger, N. & Runkel, N. in Essentials of Experimental Surgery: Gastroenterology Ch. 23 (eds Gregerson, H. et al.) (Gordon and Breach Publishing Group, 1995).

  65. Dolai, S. et al. Pancreatitis-induced depletion of syntaxin 2 promotes autophagy and increases basolateral exocytosis. Gastroenterology 154, 1805–1821 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kruger, B., Albrecht, E. & Lerch, M. M. The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am. J. Pathol. 157, 43–50 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Maleth, J. & Hegyi, P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Phil. Trans. R. Soc. B 371, 20150425 (2016).

    PubMed  Google Scholar 

  68. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lur, G. et al. InsP(3)receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences. Biochem. J. 436, 231–239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Romac, J. M.-J., Shahid, R. A., Swain, S. M., Vigna, S. R. & Liddle, R. A. Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis. Nat. Commun. 9, 1715 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Elmunzer, B. J. et al. Rectal indomethacin alone versus indomethacin and prophylactic pancreatic stent placement for preventing pancreatitis after ERCP: study protocol for a randomized controlled trial. Trials 17, 2 (2016).

    Google Scholar 

  72. Atar, D. et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur. Heart J. 36, 112–119 (2015).

    CAS  PubMed  Google Scholar 

  73. Le Lamer, S. et al. Translation of TRO40303 from myocardial infarction models to demonstration of safety and tolerance in a randomized phase I trial. J. Transl Med. 12, 38 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Saluja, A. K. et al. Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am. J. Physiol. 276, G835–G842 (1999).

    CAS  PubMed  Google Scholar 

  75. Wilson, J. S. et al. Both ethanol consumption and protein deficiency increase the fragility of pancreatic lysosomes. J. Lab. Clin. Med. 115, 749–755 (1990).

    CAS  PubMed  Google Scholar 

  76. Haber, P. S., Wilson, J. S., Apte, M. V., Korsten, M. A. & Pirola, R. C. Chronic ethanol consumption increases the fragility of rat pancreatic zymogen granules. Gut 35, 1474–1478 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Louhimo, J., Steer, M. L. & Perides, G. Necroptosis is an important severity determinant and potential therapeutic target in experimental severe pancreatitis. Cell. Mol. Gastroenterol. Hepatol. 2, 519–535 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Han, J., Zhong, C.-Q. & Zhang, D.-W. Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat. Immunol. 12, 1143–1149 (2011).

    CAS  PubMed  Google Scholar 

  79. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).

    CAS  PubMed  Google Scholar 

  80. Wang, G., Qu, F.-Z., Li, L., Lv, J.-C. & Sun, B. Necroptosis: a potential, promising target and switch in acute pancreatitis. Apoptosis 21, 121–129 (2016).

    CAS  PubMed  Google Scholar 

  81. Diakopoulos, K. N. et al. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology 148, 626–638 (2015).

    PubMed  Google Scholar 

  82. Mareninova, O. A. et al. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J. Clin. Invest. 119, 3340–3355 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lugea, A. et al. The combination of alcohol and cigarette smoke induces endoplasmic reticulum stress and cell death in pancreatic acinar cells. Gastroenterology 153, 1674–1686 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zelic, M. et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J. Clin. Invest. 128, 2064–2075 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Lee, H.-J., Yoon, Y.-S. & Lee, S.-J. Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis. 9, 712 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  87. Kim, I., Xu, W. & Reed, J. C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7, 1013–1030 (2008).

    CAS  PubMed  Google Scholar 

  88. Seyhun, E. et al. Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, acinar cell damage, and systemic inflammation in acute pancreatitis. Am. J. Physiol. Liver Physiol. 301, 773 (2011).

    Google Scholar 

  89. Pandol, S. J., Gorelick, F. S. & Lugea, A. Environmental and genetic stressors and the unfolded protein response in exocrine pancreatic function — a hypothesis. Front. Physiol. 2, 8 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Richardson, C. E., Kooistra, T. & Kim, D. H. An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463, 1092–1095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, J. C., Wu, M. L., Huang, K. C. & Lin, W. W. HMG-CoA reductase inhibitors activate the unfolded protein response and induce cytoprotective GRP78 expression. Cardiovasc. Res. 80, 138–150 (2008).

    CAS  PubMed  Google Scholar 

  93. Morck, C. et al. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode. Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 106, 18285–18290 (2009).

    PubMed  Google Scholar 

  94. Wu, B. U., Pandol, S. J. & Liu, I. L. Simvastatin is associated with reduced risk of acute pancreatitis: findings from a regional integrated healthcare system. Gut 64, 133–138 (2015).

    CAS  PubMed  Google Scholar 

  95. Gornik, I., Gasparovic, V., Vrdoljak, N. G., Haxiu, A. & Vucelic, B. Prior statin therapy is associated with milder course and better outcome in acute pancreatitis—a cohort study. Pancreatology 13, 196–200 (2013).

    CAS  PubMed  Google Scholar 

  96. Lee, P. J. et al. Association of statins with decreased acute pancreatitis severity: a propensity score analysis. J. Clin. Gastroenterol. 52, 742–746 (2017).

    Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02743364 (2019).

  98. Venglovecz, V. et al. The importance of aquaporin 1 in pancreatitis and its relation to the CFTR Cl(-) channel. Front. Physiol. 9, 854 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Pallagi, P., Hegyi, P. & Rakonczay, Z. J. The physiology and pathophysiology of pancreatic ductal secretion: the background for clinicians. Pancreas 44, 1211–1233 (2015).

    CAS  PubMed  Google Scholar 

  100. Hegyi, P. et al. CFTR: a new horizon in the pathomechanism and treatment of pancreatitis. Rev. Physiol. Biochem. Pharmacol. 170, 37–66 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hegyi, P. & Petersen, O. H. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology. Rev. Physiol. Biochem. Pharmacol. 165, 1–30 (2013).

    CAS  PubMed  Google Scholar 

  102. Maleth, J. et al. Alcohol disrupts levels and function of the cystic fibrosis transmembrane conductance regulator to promote development of pancreatitis. Gastroenterology 148, 427–439 (2015).

    CAS  PubMed  Google Scholar 

  103. Venglovecz, V. et al. Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut 57, 1102–1112 (2008).

    CAS  PubMed  Google Scholar 

  104. Vigna, S. R., Shahid, R. A., Nathan, J. D., McVey, D. C. & Liddle, R. A. Leukotriene B4 mediates inflammation via TRPV1 in duct obstruction-induced pancreatitis in rats. Pancreas 40, 708–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wen, L. et al. Transient high pressure in pancreatic ducts promotes inflammation and alters tight junctions via calcineurin signaling in mice. Gastroenterology 155, 1250–1263 (2018).

    CAS  PubMed  Google Scholar 

  106. Orabi, A. I. et al. Targeted inhibition of pancreatic acinar cell calcineurin is a novel strategy to prevent post-ERCP pancreatitis. Cell. Mol. Gastroenterol. Hepatol. 3, 119–128 (2017).

    PubMed  Google Scholar 

  107. Maleth, J. et al. Non-conjugated chenodeoxycholate induces severe mitochondrial damage and inhibits bicarbonate transport in pancreatic duct cells. Gut 60, 136–138 (2011).

    CAS  PubMed  Google Scholar 

  108. Perides, G., Laukkarinen, J. M., Vassileva, G. & Steer, M. L. Biliary acute pancreatitis in mice is mediated by the G-protein-coupled cell surface bile acid receptor Gpbar1. Gastroenterology 138, 715–725 (2010).

    CAS  PubMed  Google Scholar 

  109. Elliot, D. W., Williams, R. D. & Zollinger, R. M. Alterations in the pancreatic resistance to bile in the pathogenesis of acute pancreatitis. Ann. Surg. 146, 662–669 (1957).

    Google Scholar 

  110. Lerch, M. M. & Aghdassi, A. A. The role of bile acids in gallstone-induced pancreatitis. Gastroenterology 138, 429–433 (2010).

    CAS  PubMed  Google Scholar 

  111. Rakonczay, Z. J., Hegyi, P., Takacs, T., McCarroll, J. & Saluja, A. K. The role of NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut 57, 259–267 (2008).

    CAS  PubMed  Google Scholar 

  112. Watanabe, T., Kudo, M. & Strober, W. Immunopathogenesis of pancreatitis. Mucosal Immunol. 10, 283–298 (2017).

    CAS  PubMed  Google Scholar 

  113. Griffith, J. W., Sokol, C. L. & Luster, A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).

    CAS  PubMed  Google Scholar 

  114. Zhou, G.-X. et al. Protective effects of MCP-1 inhibitor on a rat model of severe acute pancreatitis. Hepatobiliary Pancreat. Dis. Int. 9, 201–207 (2010).

    CAS  PubMed  Google Scholar 

  115. Bhatia, M. et al. Treatment with neutralising antibody against cytokine induced neutrophil chemoattractant (CINC) protects rats against acute pancreatitis associated lung injury. Gut 47, 838–844 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Malla, S. R. et al. Effect of oral administration of AZD8309, a CXCR2 antagonist, on the severity of experimental pancreatitis. Pancreatology 16, 761–769 (2016).

    CAS  PubMed  Google Scholar 

  117. Saeki, K. et al. CCL2-induced migration and SOCS3-mediated activation of macrophages are involved in cerulein-induced pancreatitis in mice. Gastroenterology 142, 1010–1020 (2012).

    CAS  PubMed  Google Scholar 

  118. Bhatia, M. & Hegde, A. Treatment with antileukinate, a CXCR2 chemokine receptor antagonist, protects mice against acute pancreatitis and associated lung injury. Regul. Pept. 138, 40–48 (2007).

    CAS  PubMed  Google Scholar 

  119. Pastor, C. M. et al. Role of macrophage inflammatory peptide-2 in cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. Lab. Invest. 83, 471–478 (2003).

    CAS  PubMed  Google Scholar 

  120. Frossard, J. L. et al. Role of CCL-2, CCR-2 and CCR-4 in cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. J. Clin. Pathol. 64, 387–393 (2011).

    PubMed  Google Scholar 

  121. Gerard, C. et al. Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. J. Clin. Invest. 100, 2022–2027 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. He, M., Horuk, R. & Bhatia, M. Treatment with BX471, a nonpeptide CCR1 antagonist, protects mice against acute pancreatitis-associated lung injury by modulating neutrophil recruitment. Pancreas 34, 233–241 (2007).

    PubMed  Google Scholar 

  123. Papachristou, G. I. Prediction of severe acute pancreatitis: current knowledge and novel insights. World J. Gastroenterol. 14, 6273–6275 (2008).

    PubMed  PubMed Central  Google Scholar 

  124. Jakkampudi, A. et al. Acinar injury and early cytokine response in human acute biliary pancreatitis. Sci. Rep. 7, 2 (2017).

    Google Scholar 

  125. Gu, H. et al. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis. Cell Death Dis. 4, e816 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ushio-Fukai, M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal. 11, 1289–1299 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Eppensteiner, J., Davis, R. P., Barbas, A. S., Kwun, J. & Lee, J. Immunothrombotic activity of damage-associated molecular patterns and extracellular vesicles in secondary organ failure induced by trauma and sterile insults. Front. Immunol. 9, 190 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Yasuda, T. et al. Significant increase of serum high-mobility group box chromosomal protein 1 levels in patients with severe acute pancreatitis. Pancreas 33, 359–363 (2006).

    CAS  PubMed  Google Scholar 

  129. Sharif, R. et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut 58, 813–819 (2009).

    CAS  PubMed  Google Scholar 

  130. Hoque, R. et al. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology 141, 358–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee, B., Zhao, Q. & Habtezion, A. Immunology of pancreatitis and environmental factors. Curr. Opin. Gastroenterol. 33, 383–389 (2017).

    PubMed  Google Scholar 

  132. Hoque, R. Update on innate immunity and perspectives on metabolite regulation in acute pancreatitis. Curr. Opin. Gastroenterol. 32, 507–512 (2016).

    CAS  PubMed  Google Scholar 

  133. Hoque, R., Farooq, A., Ghani, A., Gorelick, F. & Mehal, W. Z. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 146, 1763–1774 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Primiano, M. J. et al. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J. Immunol. 197, 2421–2433 (2016).

    CAS  PubMed  Google Scholar 

  135. Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Gao, L. et al. NLRP3 inflammasome: a promising target in ischemic stroke. Inflamm. Res. 66, 17–24 (2017).

    CAS  PubMed  Google Scholar 

  137. Li, G. et al. TLR4-mediated NF-kappaB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int. J. Mol. Med. 37, 99–107 (2016).

    PubMed  Google Scholar 

  138. Wu, B. U. et al. Lactated Ringer’s solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin. Gastroenterol. Hepatol. 9, 717 (2011).

    Google Scholar 

  139. Choi, J. H., Kim, H. J., Lee, B. U., Kim, T. H. & Song, I. H. Vigorous periprocedural hydration with lactated Ringer’s solution reduces the risk of pancreatitis after retrograde cholangiopancreatography in hospitalized patients. Clin. Gastroenterol. Hepatol. 15, 92 (2017).

    Google Scholar 

  140. Aoun, E. et al. Diagnostic accuracy of interleukin-6 and interleukin-8 in predicting severe acute pancreatitis: a meta-analysis. Pancreatology 9, 777–785 (2009).

    CAS  PubMed  Google Scholar 

  141. Zhang, H. et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J. Clin. Invest. 123, 1019–1031 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Sathyanarayan, G., Garg, P. K., Prasad, H. & Tandon, R. K. Elevated level of interleukin-6 predicts organ failure and severe disease in patients with acute pancreatitis. J. Gastroenterol. Hepatol. 22, 550–554 (2007).

    CAS  PubMed  Google Scholar 

  143. Dianliang, Z., Jieshou, L., Zhiwei, J. & Baojun, Y. Association of plasma levels of tumor necrosis factor (TNF)-alpha and its soluble receptors, two polymorphisms of the TNF gene, with acute severe pancreatitis and early septic shock due to it. Pancreas 26, 339–343 (2003).

    PubMed  Google Scholar 

  144. Vege, S. S. et al. Pentoxifylline treatment in severe acute pancreatitis: a pilot, double-blind, placebo-controlled, randomized trial. Gastroenterology 149, 318–320 (2015).

    CAS  PubMed  Google Scholar 

  145. Stone, J. H. et al. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377, 317–328 (2017).

    CAS  PubMed  Google Scholar 

  146. Schirmer, M., Muratore, F. & Salvarani, C. Tocilizumab for the treatment of giant cell arteritis. Expert Rev. Clin. Immunol. 14, 339–349 (2018).

    CAS  PubMed  Google Scholar 

  147. Chen, K.-L. et al. Effects of tocilizumab on experimental severe acute pancreatitis and associated acute lung injury. Crit. Care Med. 44, e664–e677 (2016).

    CAS  PubMed  Google Scholar 

  148. Yucebay, F. et al. Tocilizumab as first-line therapy for steroid-refractory acute graft-versus-host-disease: analysis of a single-center experience. Leuk. Lymphoma 15, 1–7 (2019).

    Google Scholar 

  149. Pablos, J. L. et al. Efficacy of tocilizumab monotherapy after response to combined tocilizumab and methotrexate in patients with rheumatoid arthritis: the randomised JUST-ACT study. Clin. Exp. Rheumatol. (in the press).

  150. Friess, H. et al. Enhanced expression of TGF-betas and their receptors in human acute pancreatitis. Ann. Surg. 227, 95–104 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Deviere, J. et al. Interleukin 10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology 120, 498–505 (2001).

    CAS  PubMed  Google Scholar 

  152. Hutchins, A. P., Diez, D. & Miranda-Saavedra, D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief. Funct. Genomics 12, 489–498 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lin, R. et al. Interleukin-10 attenuates impairment of the blood-brain barrier in a severe acute pancreatitis rat model. J. Inflamm. 15, 4 (2018).

    Google Scholar 

  154. Warzecha, Z. et al. IGF-1 stimulates production of interleukin-10 and inhibits development of caerulein-induced pancreatitis. J. Physiol. Pharmacol. 54, 575–590 (2003).

    CAS  PubMed  Google Scholar 

  155. Sharma, D. et al. Association of systemic inflammatory and anti-inflammatory responses with adverse outcomes in acute pancreatitis: preliminary results of an ongoing study. Dig. Dis. Sci. 62, 3468–3478 (2017).

    CAS  PubMed  Google Scholar 

  156. Hasan, A., Moscoso, D. I. & Kastrinos, F. The role of genetics in pancreatitis. Gastrointest. Endosc. Clin. N. Am. 28, 587–603 (2018).

    PubMed  Google Scholar 

  157. Zator, Z. & Whitcomb, D. C. Insights into the genetic risk factors for the development of pancreatic disease. Therap. Adv. Gastroenterol. 10, 323–336 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Krishna, S. G. et al. Morbid obesity is associated with adverse clinical outcomes in acute pancreatitis: a propensity-matched study. Am. J. Gastroenterol. 110, 1608–1619 (2015).

    CAS  PubMed  Google Scholar 

  159. Navina, S. et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci. Transl Med. 3, 107ra110 (2011).

    PubMed  PubMed Central  Google Scholar 

  160. Fallon, M. B. et al. Effect of cerulein hyperstimulation on the paracellular barrier of rat exocrine pancreas. Gastroenterology 108, 1863–1872 (1995).

    CAS  PubMed  Google Scholar 

  161. Gaisano, H. Y. et al. Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane. J. Clin. Invest. 108, 1597–1611 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Durgampudi, C. et al. Acute lipotoxicity regulates severity of biliary acute pancreatitis without affecting its initiation. Am. J. Pathol. 184, 1773–1784 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Umpaichitra, V., Banerji, M. A. & Castells, S. Postprandial hyperlipidemia after a fat loading test in minority adolescents with type 2 diabetes mellitus and obesity. J. Pediatr. Endocrinol. Metab. 17, 853–864 (2004).

    PubMed  Google Scholar 

  164. Natu, A. et al. Visceral adiposity predicts severity of acute pancreatitis. Pancreas 46, 776–781 (2017).

    PubMed  Google Scholar 

  165. Halleux, C. M. et al. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem. Biophys. Res. Commun. 288, 1102–1107 (2001).

    CAS  PubMed  Google Scholar 

  166. Nawaz, H. et al. Elevated serum triglycerides are independently associated with persistent organ failure in acute pancreatitis. Am. J. Gastroenterol. 110, 1497–1503 (2015).

    CAS  PubMed  Google Scholar 

  167. Patel, K. et al. Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute pancreatitis to severe pancreatitis independent of necrosis and inflammation. Am. J. Pathol. 185, 808–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Ammori, B. J. et al. Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. J. Gastrointest. Surg. 3, 252–262 (1999).

    CAS  PubMed  Google Scholar 

  169. Blenkiron, C. et al. MicroRNAs in mesenteric lymph and plasma during acute pancreatitis. Ann. Surg. 260, 341–347 (2014).

    PubMed  Google Scholar 

  170. Landahl, P., Ansari, D. & Andersson, R. Severe acute pancreatitis: gut barrier failure, systemic inflammatory response, acute lung injury, and the role of the mesenteric lymph. Surg. Infect. 16, 651–656 (2015).

    Google Scholar 

  171. Peng, H. et al. Blocking abdominal lymphatic flow attenuates acute hemorrhagic necrotizing pancreatitis -associated lung injury in rats. J. Inflamm. 10, 9 (2013).

    Google Scholar 

  172. Zhang, D., Tsui, N., Li, Y. & Wang, F. Thoracic duct ligation in the rat attenuates lung injuries in acute pancreatitis. Lymphology 46, 144–149 (2013).

    CAS  PubMed  Google Scholar 

  173. Toliyat, M. et al. Interventional radiology in the management of thoracic duct injuries: anatomy, techniques and results. Clin. Imaging 42, 183–192 (2017).

    PubMed  Google Scholar 

  174. Girotra, M., Horwhat, J. D., Settle, T. L. & Parasher, V. K. Endoscopic ultrasound-guided transesophageal thoracic duct puncture in a Swine model: a survival study. J. Laparoendosc. Adv. Surg. Tech. A 23, 588–591 (2013).

    PubMed  Google Scholar 

  175. Parasher, V. K. et al. Lymph sampling and lymphangiography via EUS-guided transesophageal thoracic duct puncture in a swine model. Gastrointest. Endosc. 59, 564–567 (2004).

    PubMed  Google Scholar 

  176. Choi, J.-H. et al. Revised Atlanta classification and determinant-based classification: Which one better at stratifying outcomes of patients with acute pancreatitis? Pancreatology 17, 194–200 (2017).

    PubMed  Google Scholar 

  177. Zubia-Olaskoaga, F. et al. Comparison between revised Atlanta classification and determinant-based classification for acute pancreatitis in intensive care medicine. Why do not use a modified determinant-based classification? Crit. Care Med. 44, 910–917 (2016).

    PubMed  Google Scholar 

  178. Talukdar, R., Clemens, M. & Vege, S. S. Moderately severe acute pancreatitis: prospective validation of this new subgroup of acute pancreatitis. Pancreas 41, 306–309 (2012).

    PubMed  Google Scholar 

  179. Vege, S. S. et al. Low mortality and high morbidity in severe acute pancreatitis without organ failure: a case for revising the Atlanta classification to include ‘moderately severe acute pancreatitis’. Am. J. Gastroenterol. 104, 710–715 (2009).

    PubMed  Google Scholar 

  180. Schepers, N. J. et al. Impact of characteristics of organ failure and infected necrosis on mortality in necrotising pancreatitis. Gut. https://doi.org/10.1136/gutjnl-2017-314657 (2018).

    Article  PubMed  Google Scholar 

  181. Petrov, M. S., Shanbhag, S., Chakraborty, M., Phillips, A. R. J. & Windsor, J. A. Organ failure and infection of pancreatic necrosis as determinants of mortality in patients with acute pancreatitis. Gastroenterology 139, 813–820 (2010).

    PubMed  Google Scholar 

  182. Wu, B. U. et al. Blood urea nitrogen in the early assessment of acute pancreatitis: an international validation study. Arch. Intern. Med. 171, 669–676 (2011).

    PubMed  Google Scholar 

  183. Brown, A., Orav, J. & Banks, P. A. Hemoconcentration is an early marker for organ failure and necrotizing pancreatitis. Pancreas 20, 367–372 (2000).

    CAS  PubMed  Google Scholar 

  184. Koutroumpakis, E. et al. Admission hematocrit and rise in blood urea nitrogen at 24h outperform other laboratory markers in predicting persistent organ failure and pancreatic necrosis in acute pancreatitis: a post hoc analysis of three large prospective databases. Am. J. Gastroenterol. 110, 1707–1716 (2015).

    PubMed  Google Scholar 

  185. Karpavicius, A., Dambrauskas, Z., Sileikis, A., Vitkus, D. & Strupas, K. Value of adipokines in predicting the severity of acute pancreatitis: comprehensive review. World J. Gastroenterol. 18, 6620–6627 (2012).

    PubMed  PubMed Central  Google Scholar 

  186. Deng, L. H. et al. Plasma cytokines can help to identify the development of severe acute pancreatitis on admission. Medicine 96, e7312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Mentula, P. et al. Early prediction of organ failure by combined markers in patients with acute pancreatitis. Br. J. Surg. 92, 68–75 (2005).

    CAS  PubMed  Google Scholar 

  188. Zhang, Y.-P. et al. Early prediction of persistent organ failure by serum angiopoietin-2 in patients with acute pancreatitis. Dig. Dis. Sci. 61, 3584–3591 (2016).

    CAS  PubMed  Google Scholar 

  189. Di, M.-Y. et al. Prediction models of mortality in acute pancreatitis in adults: a systematic review. Ann. Intern. Med. 165, 482–490 (2016).

    PubMed  Google Scholar 

  190. Mounzer, R. et al. Comparison of existing clinical scoring systems to predict persistent organ failure in patients with acute pancreatitis. Gastroenterology 142, 1476 (2012).

    PubMed  Google Scholar 

  191. Forsmark, C. E. & Yadav, D. Predicting the prognosis of acute pancreatitis. Ann. Intern. Med. 165, 523–524 (2016).

    PubMed  PubMed Central  Google Scholar 

  192. Mofidi, R. et al. Association between early systemic inflammatory response, severity of multiorgan dysfunction and death in acute pancreatitis. Br. J. Surg. 93, 738–744 (2006).

    CAS  PubMed  Google Scholar 

  193. Lankisch, P. G. et al. Hemoconcentration: an early marker of severe and/or necrotizing pancreatitis? A critical appraisal. Am. J. Gastroenterol. 96, 2081–2085 (2001).

    CAS  PubMed  Google Scholar 

  194. Singh, V. K. et al. Early systemic inflammatory response syndrome is associated with severe acute pancreatitis. Clin. Gastroenterol. Hepatol. 7, 1247–1251 (2009).

    PubMed  Google Scholar 

  195. Buxbaum, J. L. et al. Early aggressive hydration hastens clinical improvement in mild acute pancreatitis. Am. J. Gastroenterol. 112, 797–803 (2017).

    PubMed  Google Scholar 

  196. Mao, E. Q. et al. Rapid hemodilution is associated with increased sepsis and mortality among patients with severe acute pancreatitis. Chin. Med. J. 123, 1639–1644 (2010).

    CAS  PubMed  Google Scholar 

  197. Wall, I. et al. Decreased mortality in acute pancreatitis related to early aggressive hydration. Pancreas 40, 547–550 (2011).

    PubMed  Google Scholar 

  198. Singh, V. K. et al. An international multicenter study of early intravenous fluid administration and outcome in acute pancreatitis. United European Gastroenterol. J. 5, 491–498 (2017).

    PubMed  Google Scholar 

  199. Yamashita, T. et al. Large volume fluid resuscitation for severe acute pancreatitis is associated with reduced mortality: a multicenter retrospective study. J. Clin. Gastroenterol. 53, 385–391 (2018).

    Google Scholar 

  200. Haydock, M. D. et al. Fluid therapy in acute pancreatitis: anybody’s guess. Ann. Surg. 257, 182–188 (2013).

    PubMed  Google Scholar 

  201. de-Madaria, E. et al. Fluid resuscitation with lactated Ringer’s solution versus normal saline in acute pancreatitis: a triple-blind, randomized, controlled trial. United European Gastroenterol. J. 6, 63–72 (2018).

    PubMed  Google Scholar 

  202. van Brunschot, S. et al. Abdominal compartment syndrome in acute pancreatitis: a systematic review. Pancreas 43, 665–674 (2014).

    PubMed  Google Scholar 

  203. Larino-Noia, J. et al. Early and/or immediately full caloric diet versus standard refeeding in mild acute pancreatitis: a randomized open-label trial. Pancreatology 14, 167–173 (2014).

    CAS  PubMed  Google Scholar 

  204. Zhao, X. L. et al. Early oral refeeding based on hunger in moderate and severe acute pancreatitis: a prospective controlled, randomized clinical trial. Nutrition 31, 171–175 (2015).

    CAS  PubMed  Google Scholar 

  205. Vaughn, V. M. et al. Early versus delayed feeding in patients with acute pancreatitis: a systematic review. Ann. Intern. Med. 166, 883–892 (2017).

    PubMed  Google Scholar 

  206. Machicado, J. D. et al. Practice patterns and utilization of tube feedings in acute pancreatitis patients at a large US referral center. Pancreas 47, 1150–1155 (2018).

    PubMed  Google Scholar 

  207. Eatock, F. C. et al. A randomized study of early nasogastric versus nasojejunal feeding in severe acute pancreatitis. Am. J. Gastroenterol. 100, 432–439 (2005).

    CAS  PubMed  Google Scholar 

  208. Petrov, M. S., Correia, M. I. T. D. & Windsor, J. A. Nasogastric tube feeding in predicted severe acute pancreatitis. A systematic review of the literature to determine safety and tolerance. JOP 9, 440–448 (2008).

    PubMed  Google Scholar 

  209. Bakker, O. J. et al. Early versus on-demand nasoenteric tube feeding in acute pancreatitis. N. Engl. J. Med. 371, 1983–1993 (2014).

    CAS  PubMed  Google Scholar 

  210. Al-Omran, M., Albalawi, Z. H., Tashkandi, M. F. & Al-Ansary, L. A. Enteral versus parenteral nutrition for acute pancreatitis. Cochrane Database Syst. Rev. 1, CD002837 (2010).

    Google Scholar 

  211. Yao, H., He, C., Deng, L. & Liao, G. Enteral versus parenteral nutrition in critically ill patients with severe pancreatitis: a meta-analysis. Eur. J. Clin. Nutr. 72, 66–68 (2018).

    CAS  PubMed  Google Scholar 

  212. Basurto Ona, X., Rigau Comas, D. & Urrutia, G. Opioids for acute pancreatitis pain. Cochrane Database Syst. Rev. 7, CD009179 (2013).

    Google Scholar 

  213. Barlass, U. et al. Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut 67, 600–602 (2018).

    PubMed  Google Scholar 

  214. Jabaudon, M. et al. Thoracic epidural analgesia and mortality in acute pancreatitis: a multicenter propensity analysis. Crit. Care Med. 46, e198–e205 (2018).

    PubMed  Google Scholar 

  215. Bachmann, K. A. et al. Effects of thoracic epidural anesthesia on survival and microcirculation in severe acute pancreatitis: a randomized experimental trial. Crit. Care 17, R281 (2013).

    PubMed  PubMed Central  Google Scholar 

  216. Richards, E. R., Kabir, S. I., McNaught, C.-E. & MacFie, J. Effect of thoracic epidural anaesthesia on splanchnic blood flow. Br. J. Surg. 100, 316–321 (2013).

    CAS  PubMed  Google Scholar 

  217. Bulyez, S. et al. Epidural analgesia in critically ill patients with acute pancreatitis: the multicentre randomised controlled EPIPAN study protocol. BMJ Open 7, e015280 (2017).

    PubMed  PubMed Central  Google Scholar 

  218. da Costa, D. W. et al. Same-admission versus interval cholecystectomy for mild gallstone pancreatitis (PONCHO): a multicentre randomised controlled trial. Lancet 386, 1261–1268 (2015).

    PubMed  Google Scholar 

  219. da Costa, D. W. et al. Cost-effectiveness of same-admission versus interval cholecystectomy after mild gallstone pancreatitis in the PONCHO trial. Br. J. Surg. 103, 1695–1703 (2016).

    PubMed  Google Scholar 

  220. Young, S.-H. et al. Cholecystectomy reduces recurrent pancreatitis and improves survival after endoscopic sphincterotomy. J. Gastrointest. Surg. 21, 294–301 (2017).

    PubMed  Google Scholar 

  221. Noel, R. et al. Index versus delayed cholecystectomy in mild gallstone pancreatitis: results of a randomized controlled trial. HPB 20, 932–938 (2018).

    PubMed  Google Scholar 

  222. Nealon, W. H., Bawduniak, J. & Walser, E. M. Appropriate timing of cholecystectomy in patients who present with moderate to severe gallstone-associated acute pancreatitis with peripancreatic fluid collections. Ann. Surg. 239, 741–751 (2004).

    PubMed  PubMed Central  Google Scholar 

  223. van Dijk, S. M. et al. Acute pancreatitis: recent advances through randomised trials. Gut 66, 2024–2032 (2017).

    PubMed  Google Scholar 

  224. Tang, E., Stain, S. C., Tang, G., Froes, E. & Berne, T. V. Timing of laparoscopic surgery in gallstone pancreatitis. Arch. Surg. 130, 496–500 (1995).

    CAS  PubMed  Google Scholar 

  225. Nikkola, J., Laukkarinen, J., Huhtala, H. & Sand, J. The intensity of brief interventions in patients with acute alcoholic pancreatitis should be increased, especially in young patients with heavy alcohol consumption. Alcohol Alcohol. 52, 453–459 (2017).

    PubMed  Google Scholar 

  226. Xiang, J.-X. et al. Impact of cigarette smoking on recurrence of hyperlipidemic acute pancreatitis. World J. Gastroenterol. 23, 8387–8394 (2017).

    PubMed  PubMed Central  Google Scholar 

  227. Nordback, I. et al. The recurrence of acute alcohol-associated pancreatitis can be reduced: a randomized controlled trial. Gastroenterology 136, 848–855 (2009).

    PubMed  Google Scholar 

  228. Pedersen, S. B., Langsted, A. & Nordestgaard, B. G. Nonfasting mild-to-moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern. Med. 176, 1834–1842 (2016).

    PubMed  Google Scholar 

  229. Munigala, S., Kanwal, F., Xian, H., Scherrer, J. F. & Agarwal, B. Increased risk of pancreatic adenocarcinoma after acute pancreatitis. Clin. Gastroenterol. Hepatol. 12, 1143–1150 (2014).

    PubMed  Google Scholar 

  230. Schepers, N. J. et al. Early biliary decompression versus conservative treatment in acute biliary pancreatitis (APEC trial): study protocol for a randomized controlled trial. Trials 17, 5 (2016).

    PubMed  PubMed Central  Google Scholar 

  231. Bradley, E. L. 3rd & Dexter, N. D. Management of severe acute pancreatitis: a surgical odyssey. Ann. Surg. 251, 6–17 (2010).

    PubMed  Google Scholar 

  232. Gosnell, F. E., O’Neill, B. B. & Harris, H. W. Necrotizing pancreatitis during pregnancy: a rare cause and review of the literature. J. Gastrointest. Surg. 5, 371–376 (2001).

    CAS  PubMed  Google Scholar 

  233. Sun, J. et al. Conservative treatment and percutaneous catheter drainage improve outcome of necrotizing pancreatitis. Hepatogastroenterology 62, 195–199 (2015).

    PubMed  Google Scholar 

  234. Mouli, V. P., Sreenivas, V. & Garg, P. K. Efficacy of conservative treatment, without necrosectomy, for infected pancreatic necrosis: a systematic review and meta-analysis. Gastroenterology 144, 333–340 (2013).

    PubMed  Google Scholar 

  235. van Santvoort, H. C. et al. A conservative and minimally invasive approach to necrotizing pancreatitis improves outcome. Gastroenterology 141, 1254–1263 (2011).

    PubMed  Google Scholar 

  236. Mier, J., Leon, E. L., Castillo, A., Robledo, F. & Blanco, R. Early versus late necrosectomy in severe necrotizing pancreatitis. Am. J. Surg. 173, 71–75 (1997).

    CAS  PubMed  Google Scholar 

  237. Arvanitakis, M. et al. Endoscopic management of acute necrotizing pancreatitis: European Society of Gastrointestinal Endoscopy (ESGE) evidence-based multidisciplinary guidelines. Endoscopy 50, 524–546 (2018).

    PubMed  Google Scholar 

  238. van Santvoort, H. C. et al. A step-up approach or open necrosectomy for necrotizing pancreatitis. N. Engl. J. Med. 362, 1491–1502 (2010).

    PubMed  Google Scholar 

  239. Bakker, O. J. et al. Endoscopic transgastric versus surgical necrosectomy for infected necrotizing pancreatitis: a randomized trial. JAMA 307, 1053–1061 (2012).

    CAS  PubMed  Google Scholar 

  240. van Brunschot, S. et al. Endoscopic or surgical step-up approach for infected necrotising pancreatitis: a multicentre randomised trial. Lancet 391, 51–58 (2018).

    PubMed  Google Scholar 

  241. Kumar, N., Conwell, D. L. & Thompson, C. C. Direct endoscopic necrosectomy versus step-up approach for walled-off pancreatic necrosis: comparison of clinical outcome and health care utilization. Pancreas 43, 1334–1339 (2014).

    PubMed  PubMed Central  Google Scholar 

  242. Guo, J. et al. A multi-institutional consensus on how to perform endoscopic ultrasound-guided peri-pancreatic fluid collection drainage and endoscopic necrosectomy. Endosc. Ultrasound 6, 285–291 (2017).

    PubMed  PubMed Central  Google Scholar 

  243. Gurusamy, K. S., Pallari, E., Hawkins, N., Pereira, S. P. & Davidson, B. R. Management strategies for pancreatic pseudocysts. Cochrane Database Syst. Rev. 4, CD011392 (2016).

    PubMed  Google Scholar 

  244. Hammad, T. et al. Efficacy and safety of lumen-apposing metal stents in management of pancreatic fluid collections: are they better than plastic stents? A systematic review and meta-analysis. Dig. Dis. Sci. 63, 289–301 (2018).

    CAS  PubMed  Google Scholar 

  245. Siddiqui, A. A. et al. Fully covered self-expanding metal stents versus lumen-apposing fully covered self-expanding metal stent versus plastic stents for endoscopic drainage of pancreatic walled-off necrosis: clinical outcomes and success. Gastrointest. Endosc. 85, 758–765 (2017).

    PubMed  Google Scholar 

  246. Sharaiha, R. Z. et al. Endoscopic therapy with lumen-apposing metal stents is safe and effective for patients with pancreatic walled-off necrosis. Clin. Gastroenterol. Hepatol. 14, 1797–1803 (2016).

    PubMed  Google Scholar 

  247. Siddiqui, A. A. et al. EUS-guided drainage of peripancreatic fluid collections and necrosis by using a novel lumen-apposing stent: a large retrospective, multicenter U.S. experience (with videos). Gastrointest. Endosc. 83, 699–707 (2016).

    PubMed  Google Scholar 

  248. Stecher, S. S. et al. Delayed severe bleeding complications after treatment of pancreatic fluid collections with lumen-apposing metal stents. Gut 66, 1871–1872 (2017).

    CAS  PubMed  Google Scholar 

  249. Bang, J. Y., Hasan, M., Navaneethan, U., Hawes, R. & Varadarajulu, S. Lumen-apposing metal stents (LAMS) for pancreatic fluid collection (PFC) drainage: may not be business as usual. Gut 66, 2054–2056 (2017).

    PubMed  Google Scholar 

  250. Brimhall, B. et al. Increased incidence of pseudoaneurysm bleeding with lumen-apposing metal stents compared to double-pigtail plastic stents in patients with peripancreatic fluid collections. Clin. Gastroenterol. Hepatol. 16, 1521–1528 (2018).

    PubMed  PubMed Central  Google Scholar 

  251. Larsen, M. & Kozarek, R. A. Management of disconnected pancreatic duct syndrome. Curr. Treat. Opt. Gastroenterol. 14, 348–359 (2016).

    Google Scholar 

  252. Rana, S. S. et al. Prevention of recurrence of fluid collections in walled off pancreatic necrosis and disconnected pancreatic duct syndrome: Comparative study of one versus two long term transmural stents. Pancreatology 16, 687–688 (2016).

    PubMed  Google Scholar 

  253. Bang, J. Y. et al. Impact of disconnected pancreatic duct syndrome on the endoscopic management of pancreatic fluid collections. Ann. Surg. 267, 561–568 (2018).

    PubMed  Google Scholar 

  254. Tellez-Avina, F. I. et al. Permanent indwelling transmural stents for endoscopic treatment of patients with disconnected pancreatic duct syndrome: long-term results. J. Clin. Gastroenterol. 52, 85–90 (2018).

    PubMed  Google Scholar 

  255. Rana, S. S., Bhasin, D. K., Rao, C., Sharma, R. & Gupta, R. Consequences of long term indwelling transmural stents in patients with walled off pancreatic necrosis & disconnected pancreatic duct syndrome. Pancreatology 13, 486–490 (2013).

    PubMed  Google Scholar 

  256. Ahmed, M., Aziz, M. U., Mansoor, M. A. & Anwar, S. Vascular complications in cases of acute pancreatitis — CT scan based study. J. Pak. Med. Assoc. 66, 977–989 (2016).

    PubMed  Google Scholar 

  257. Harris, S., Nadkarni, N. A., Naina, H. V. & Vege, S. S. Splanchnic vein thrombosis in acute pancreatitis: a single-center experience. Pancreas 42, 1251–1254 (2013).

    PubMed  Google Scholar 

  258. Gonzelez, H. J., Sahay, S. J., Samadi, B., Davidson, B. R. & Rahman, S. H. Splanchnic vein thrombosis in severe acute pancreatitis: a 2-year, single-institution experience. HPB 13, 860–864 (2011).

    PubMed  PubMed Central  Google Scholar 

  259. Easler, J. et al. Portosplenomesenteric venous thrombosis in patients with acute pancreatitis is associated with pancreatic necrosis and usually has a benign course. Clin. Gastroenterol. Hepatol. 12, 854–862 (2014).

    PubMed  Google Scholar 

  260. Xu, W., Qi, X., Chen, J., Su, C. & Guo, X. Prevalence of splanchnic vein thrombosis in pancreatitis: a systematic review and meta-analysis of observational studies. Gastroenterol. Res. Pract. 2015, 245460 (2015).

    PubMed  PubMed Central  Google Scholar 

  261. Toque, L. et al. Predictive factors of splanchnic vein thrombosis in acute pancreatitis: a 6-year single-center experience. J. Dig. Dis. 16, 734–740 (2015).

    CAS  PubMed  Google Scholar 

  262. Machicado, J. D. & Yadav, D. Epidemiology of recurrent acute and chronic pancreatitis: similarities and differences. Dig. Dis. Sci. 62, 1683–1691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Cote, G. A. et al. Recurrent acute pancreatitis significantly reduces quality of life even in the absence of overt chronic pancreatitis. Am. J. Gastroenterol. 113, 906–912 (2018).

    PubMed  PubMed Central  Google Scholar 

  264. Sankaran, S. J. et al. Frequency of progression from acute to chronic pancreatitis and risk factors: a meta-analysis. Gastroenterology 149, 1490–1500 (2015).

    PubMed  Google Scholar 

  265. Sliwinska-Mosson, M. et al. The effect of smoking on expression of IL-6 and antioxidants in pancreatic fluids and tissues in patients with chronic pancreatitis. Pancreatology 12, 295–304 (2012).

    CAS  PubMed  Google Scholar 

  266. Kirkegard, J., Cronin-Fenton, D., Heide-Jorgensen, U. & Mortensen, F. V. Acute pancreatitis and pancreatic cancer risk: a nationwide matched-cohort study in Denmark. Gastroenterology 154, 1729–1736 (2018).

    PubMed  Google Scholar 

  267. Shinzeki, M. et al. Serum immunosuppressive acidic protein levels in patients with severe acute pancreatitis. Pancreas 35, 327–333 (2007).

    CAS  PubMed  Google Scholar 

  268. Chung, S.-D., Chen, K.-Y., Xirasagar, S., Tsai, M.-C. & Lin, H.-C. More than 9-times increased risk for pancreatic cancer among patients with acute pancreatitis in Chinese population. Pancreas 41, 142–146 (2012).

    PubMed  Google Scholar 

  269. Rijkers, A. P. et al. Risk of pancreatic cancer after a primary episode of acute pancreatitis. Pancreas 46, 1018–1022 (2017).

    PubMed  Google Scholar 

  270. Nikkola, J. et al. The long-term prospective follow-up of pancreatic function after the first episode of acute alcoholic pancreatitis: recurrence predisposes one to pancreatic dysfunction and pancreatogenic diabetes. J. Clin. Gastroenterol. 51, 183–190 (2017).

    PubMed  Google Scholar 

  271. Das, S. L. M. et al. Relationship between the exocrine and endocrine pancreas after acute pancreatitis. World J. Gastroenterol. 20, 17196–17205 (2014).

    PubMed  PubMed Central  Google Scholar 

  272. Shimosegawa, T. et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas 40, 352–358 (2011).

    PubMed  Google Scholar 

  273. Badalov, N. et al. Drug-induced acute pancreatitis: an evidence-based review. Clin. Gastroenterol. Hepatol. 5, 648–661 (2007).

    PubMed  Google Scholar 

  274. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03401190 (2019).

  275. Bae, S.-C. & Lee, Y. H. Comparison of the efficacy and tolerability of tocilizumab, sarilumab, and sirukumab in patients with active rheumatoid arthritis: a Bayesian network meta-analysis of randomized controlled trials. Clin. Rheumatol. 37, 1471–1479 (2018).

    PubMed  Google Scholar 

  276. Dellinger, E. P. et al. Determinant-based classification of acute pancreatitis severity: an international multidisciplinary consultation. Ann. Surg. 256, 875–880 (2012).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.J.L. researched data for the article. Both authors contributed equally to all other aspects of the manuscript.

Corresponding author

Correspondence to Georgios I. Papachristou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mitochondrial permeability transition pores

Proteins located in the inner membrane of the mitochondrion, which when open can cause rapid mitochondrial depolarization and dysfunction.

Calcium release-activated channels

Calcium ion channels that are activated when calcium stores are depleted from the endoplasmic reticulum.

Local complications

A collective term to denote collections that form within and/or around pancreatic parenchyma as a result of acute pancreatitis.

Unfolded protein response

(UPR). A collective term to denote a set of compensatory cellular responses to endoplasmic reticulum stress

Autophagy

An orderly mechanism that processes, degrades and recycles various unwanted cellular components.

ER stress

A state in which the demand of cellular machinery overwhelms the capacity of the endoplasmic reticulum (ER), leading to accumulation of misfolded proteins.

Cholecystokinin

A hormone that causes gallbladder contraction and pancreatic enzyme secretion.

Nuclear factor-κB

(NF-κB). A transcription factor that can cause production of pro-inflammatory cytokines and chemokines.

Inositol 1,4,5-trisphosphate receptor

(Ins(1,4,5,)P3R). A glycoprotein complex located in the endoplasmic reticulum that can operate as a calcium channel.

Zymogen granules

Vesicles that contain various pancreatic enzyme precursors.

Cathepsin B

A lysosomal protease.

Necroptosis

A regulated form of cell death.

Receptor-interacting protein kinase

(RIP). A type of protein kinase that is implicated in regulation of cell death.

Cystic fibrosis transmembrane regulator

(CFTR). A chloride channel located in pancreatic duct cells that enables passage of anions and water.

Monocyte chemoattractant protein 1

(MCP1). A chemokine that is involved in facilitating migration and recruitment of monocytes.

Damage-associated molecular patterns

(DAMPs). A variety of substances released by damaged cells that can activate an immune response.

Systemic inflammatory response syndrome

(SIRS). A host immune response to an inflammatory or infectious insult that is often characterized by fevers, leukocytosis, tachycardia, tachypnea and hypotension.

Cystenterostomy

The creation of a connection between a cyst wall and the wall of the gastrointestinal tract.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P.J., Papachristou, G.I. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol 16, 479–496 (2019). https://doi.org/10.1038/s41575-019-0158-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0158-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing