Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

TIMELINE

Past, present and future perspectives in nonalcoholic fatty liver disease

Abstract

Nonalcoholic fatty liver disease (NAFLD) was first described as a distinct clinical entity four decades ago. However, the condition has become the centre of attention within hepatology owing to its high prevalence and growing contribution to the burden of end-stage liver disease in the general population. This Perspective provides an overview on the development of knowledge related to NAFLD with a focus on landmark findings that have influenced current paradigms and key knowledge gaps that need to be filled to make progress. Specifically, a timeline of scientific discovery of both basic disease mechanisms (with a focus on human data) and the evolution of knowledge about the clinical course of the disease is provided and related to current approaches to treat and eventually prevent NAFLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline of key developments in nonalcoholic steatohepatitis.
Fig. 2: A model of disease development for nonalcoholic steatohepatitis.
Fig. 3: Current therapeutic targets for nonalcoholic steatohepatitis.

Similar content being viewed by others

References

  1. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    PubMed  Google Scholar 

  2. Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123–133 (2018).

    CAS  PubMed  Google Scholar 

  3. Younossi, Z. M. et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64, 1577–1586 (2016).

    PubMed  Google Scholar 

  4. Farrell, G. C., Wong, V. W. & Chitturi, S. NAFLD in Asia—as common and important as in the West. Nat. Rev. Gastroenterol. Hepatol. 10, 307–318 (2013).

    CAS  PubMed  Google Scholar 

  5. Estes, C. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 69, 896–904 (2018).

    PubMed  Google Scholar 

  6. Thaler, H. The fatty liver and its pathogenetic relation to liver cirrhosis [German]. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 335, 180–210 (1962).

    CAS  PubMed  Google Scholar 

  7. Thaler, H. Editorial: fatty liver-steatonecrosis-cirrhosis. Acta Hepatogastroenterol. (Stuttg.) 22, 271–273 (1975).

    CAS  Google Scholar 

  8. Ludwig, J., Viggiano, T. R., McGill, D. B. & Oh, B. J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 55, 434–438 (1980).

    CAS  PubMed  Google Scholar 

  9. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    PubMed  Google Scholar 

  10. Powell, E. E. et al. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 11, 74–80 (1990).

    PubMed  Google Scholar 

  11. Crawford, D. H., Powell, E. E., Searle, J. & Powell, L. W. Steatohepatitis: comparison of alcoholic and non-alcoholic subjects with particular reference to portal hypertension and hepatic complications. J. Gastroenterol. Hepatol. 4 (Suppl. 1), 36–38 (1989).

    PubMed  Google Scholar 

  12. Powell, E. E., Searle, J. & Mortimer, R. Steatohepatitis associated with limb lipodystrophy. Gastroenterology 97, 1022–1024 (1989).

    CAS  PubMed  Google Scholar 

  13. Maheshwari, A. & Thuluvath, P. J. Cryptogenic cirrhosis and NAFLD: are they related? Am. J. Gastroenterol. 101, 664–668 (2006).

    PubMed  Google Scholar 

  14. Chitturi, S. et al. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology 36, 403–409 (2002).

    CAS  PubMed  Google Scholar 

  15. Yang, S. Q., Lin, H. Z., Lane, M. D., Clemens, M. & Diehl, A. M. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc. Natl Acad. Sci. USA 94, 2557–2562 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Day, C. P. & James, O. F. Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842–845 (1998).

    CAS  PubMed  Google Scholar 

  17. McPherson, S. et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62, 1148–1155 (2015).

    PubMed  Google Scholar 

  18. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanyal, A. J. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 1183–1192 (2001).

    CAS  PubMed  Google Scholar 

  20. Marchesini, G. et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am. J. Med. 107, 450–455 (1999).

    CAS  PubMed  Google Scholar 

  21. Pagano, G. et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology 35, 367–372 (2002).

    CAS  PubMed  Google Scholar 

  22. Caldwell, S. H. et al. Mitochondrial abnormalities in non-alcoholic steatohepatitis. J. Hepatol. 31, 430–434 (1999).

    CAS  PubMed  Google Scholar 

  23. Leclercq, I. A. et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Invest. 105, 1067–1075 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Valenti, L. et al. HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 138, 905–912 (2010).

    CAS  PubMed  Google Scholar 

  25. Feldstein, A. E. et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125, 437–443 (2003).

    PubMed  Google Scholar 

  26. Puri, P. et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134, 568–576 (2008).

    CAS  PubMed  Google Scholar 

  27. Henkel, A. & Green, R. M. The unfolded protein response in fatty liver disease. Semin. Liver Dis. 33, 321–329 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirsova, P., Ibrahim, S. H., Gores, G. J. & Malhi, H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J. Lipid Res. 57, 1758–1770 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Puri, P. et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081–1090 (2007).

    CAS  PubMed  Google Scholar 

  30. Araya, J. et al. Decreased liver fatty acid delta-6 and delta-5 desaturase activity in obese patients. Obesity (Silver Spring) 18, 1460–1463 (2009).

    Google Scholar 

  31. Min, H. K. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15, 665–674 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lima-Cabello, E. et al. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin. Sci. 120, 239–250 (2011).

    CAS  Google Scholar 

  33. Puri, P. et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67, 534–548 (2017).

    PubMed  Google Scholar 

  34. Brenner, D. A. et al. Non-alcoholic steatohepatitis-induced fibrosis: Toll-like receptors, reactive oxygen species and Jun N-terminal kinase. Hepatol. Res. 41, 683–686 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Roh, Y. S. & Seki, E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J. Gastroenterol. Hepatol. 28 (Suppl. 1), 38–42 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Miura, K. et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57, 577–589 (2013).

    CAS  PubMed  Google Scholar 

  37. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Miura, K., Seki, E., Ohnishi, H. & Brenner, D. A. Role of toll-like receptors and their downstream molecules in the development of nonalcoholic fatty liver disease. Gastroenterol. Res. Pract. 2010, 362847 (2010).

    PubMed  Google Scholar 

  39. Mridha, A. R. et al. TLR9 is up-regulated in human and murine NASH: pivotal role in inflammatory recruitment and cell survival. Clin. Sci. 131, 2145–2159 (2017).

    CAS  Google Scholar 

  40. Kisseleva, T. et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol. 45, 429–438 (2006).

    CAS  PubMed  Google Scholar 

  41. Miura, K., Yang, L., van Rooijen, N., Ohnishi, H. & Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1310–G1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Itoh, M. et al. CD11c+ resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of nonalcoholic steatohepatitis. JCI Insight 2, 92902 (2017).

    PubMed  Google Scholar 

  43. Brunt, E. M. et al. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD-Clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology 49, 809–820 (2009).

    PubMed  Google Scholar 

  44. Cazanave, S. et al. The transcriptomic signature of disease development and progression of nonalcoholic fatty liver disease. Sci. Rep. 7, 17193 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Feaver, R. E. et al. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight 1, e90954 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Syn, W. K. et al. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 137, 1478–1488 (2009).

    CAS  PubMed  Google Scholar 

  47. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    CAS  PubMed  Google Scholar 

  48. Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).

    CAS  PubMed  Google Scholar 

  49. Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLOS Genet. 7, e1001324 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Puri, P. et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 50, 1827–1838 (2009).

    CAS  PubMed  Google Scholar 

  51. Cheung, O. et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48, 1810–1820 (2008).

    CAS  PubMed  Google Scholar 

  52. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).

    CAS  PubMed  Google Scholar 

  54. BasuRay, S., Smagris, E., Cohen, J. C. & Hobbs, H. H. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 66, 1111–1124 (2017).

    CAS  PubMed  Google Scholar 

  55. Kozlitina, J. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46, 352–356 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Smagris, E., Gilyard, S., BasuRay, S., Cohen, J. C. & Hobbs, H. H. Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J. Biol. Chem. 291, 10659–10676 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Abul-Husn, N. S. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Puri, P. & Sanyal, A. J. The intestinal microbiome in nonalcoholic fatty liver disease. Clin. Liver Dis. 22, 121–132 (2018).

    PubMed  Google Scholar 

  61. Santhekadur, P. K., Kumar, D. P. & Sanyal, A. J. Preclinical models of nonalcoholic fatty liver disease. J. Hepatol. 68, 230–237 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Horie, Y., Ohshima, S., Sato, W., Suzuki, A. & Watanabe, S. Hepatocyte-specific Pten deficient mice [Japanese]. Nippon Rinsho 64, 1033–1042 (2006).

    PubMed  Google Scholar 

  63. Rinella, M. E. & Green, R. M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J. Hepatol. 40, 47–51 (2004).

    CAS  PubMed  Google Scholar 

  64. Saito, K. et al. Characterization of hepatic lipid profiles in a mouse model with nonalcoholic steatohepatitis and subsequent fibrosis. Sci. Rep. 5, 12466 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hill-Baskin, A. E. et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum. Mol. Genet. 18, 2975–2988 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsuchida, T. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 69, 385–395 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Asgharpour, A. et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65, 579–588 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Browning, J. D. et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40, 1387–1395 (2004).

    PubMed  Google Scholar 

  69. Welsh, J. A., Karpen, S. & Vos, M. B. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988–1994 to 2007–2010. J. Pediatr. 162, 496–500 (2013).

    PubMed  Google Scholar 

  70. India State-Level Disease Burden Initiative Diabetes Collaborators. The increasing burden of diabetes and variations among the states of India: the Global Burden of Disease Study 1990–2016. Lancet Glob. Health 6, e1352–e1362 (2018).

    Google Scholar 

  71. Williams, C. D. et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140, 124–131 (2011).

    PubMed  Google Scholar 

  72. Noureddin, M. et al. Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology 58, 1644–1654 (2013).

    CAS  PubMed  Google Scholar 

  73. Schwimmer, J. B. et al. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology 42, 641–649 (2005).

    PubMed  Google Scholar 

  74. Carter-Kent, C. et al. Nonalcoholic steatohepatitis in children: a multicenter clinicopathological study. Hepatology 50, 1113–1120 (2009).

    PubMed  Google Scholar 

  75. Brunt, E. M., Janney, C. G., Di Bisceglie, A. M., Neuschwander-Tetri, B. A. & Bacon, B. R. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 94, 2467–2474 (1999).

    CAS  PubMed  Google Scholar 

  76. Everhart, J. E. et al. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology 51, 585–594 (2010).

    PubMed  Google Scholar 

  77. Goodman, Z. D. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J. Hepatol. 47, 598–607 (2007).

    PubMed  Google Scholar 

  78. Bedossa, P. & the FLIP Pathology Consortium. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60, 565–575 (2014).

    CAS  PubMed  Google Scholar 

  79. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397 (2015).

    PubMed  Google Scholar 

  80. Ekstedt, M., Franzen, L. E., Mathiesen, U. L. & Kechagias, S. Low clinical relevance of the nonalcoholic fatty liver disease activity score (NAS) in predicting fibrosis progression. Scand. J. Gastroenterol. 47, 108–115 (2012).

    PubMed  Google Scholar 

  81. Hagstrom, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 67, 1265–1273 (2017).

    PubMed  Google Scholar 

  82. Dongiovanni, P. et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J. Intern. Med. 283, 356–370 (2018).

    CAS  PubMed  Google Scholar 

  83. Brunt, E. M. et al. Improvements in histologic features and diagnosis associated with improvement in fibrosis in NASH: results from the NASH Clinical Research Network Treatment Trials. Hepatology https://doi.org/10.1002/hep.30418 (2018).

    Article  PubMed  Google Scholar 

  84. Sanyal, A. J. et al. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology 61, 1392–1405 (2015).

    PubMed  Google Scholar 

  85. Argo, C. K., Northup, P. G., Al-Osaimi, A. M. & Caldwell, S. H. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J. Hepatol. 51, 371–379 (2009).

    CAS  PubMed  Google Scholar 

  86. Ratziu, V. Back to Byzance: Querelles byzantines over NASH and fibrosis. J. Hepatol. 67, 1134–1136 (2017).

    PubMed  Google Scholar 

  87. Harrison, S. A. et al. Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis. Gastroenterology 155, 1140–1153 (2018).

    CAS  PubMed  Google Scholar 

  88. Matteoni, C. A. et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116, 1413–1419 (1999).

    CAS  PubMed  Google Scholar 

  89. Ekstedt, M. et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44, 865–873 (2006).

    CAS  PubMed  Google Scholar 

  90. Singh, S. et al. Fibrosis progression in nonalcoholic fatty liver versus nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13, 643–654 (2015).

    PubMed  Google Scholar 

  91. Yano, M. et al. The long-term pathological evolution of chronic hepatitis C. Hepatology 23, 1334–1340 (1996).

    CAS  PubMed  Google Scholar 

  92. Sanyal, A., Poklepovic, A., Moyneur, E. & Barghout, V. Population-based risk factors and resource utilization for HCC: US perspective. Curr. Med. Res. Opin. 26, 2183–2191 (2010).

    CAS  PubMed  Google Scholar 

  93. White, D. L., Kanwal, F. & El-Serag, H. B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol. 10, 1342–1359 (2012).

    PubMed  PubMed Central  Google Scholar 

  94. Wong, R. J., Cheung, R. & Ahmed, A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology 59, 2188–2195 (2014).

    PubMed  Google Scholar 

  95. Steele, C. B. et al. Vital signs: trends in incidence of cancers associated with overweight and obesity - United States, 2005–2014. MMWR Morb. Mortal. Wkly Rep. 66, 1052–1058 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Sanyal, A. J. et al. Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 43, 682–689 (2006).

    PubMed  Google Scholar 

  97. Sanyal, A. J. A. et al. Efficacy and safety of simtuzumab for the treatment of nonalcoholic steatohepatitis with bridging fibrosis or cirrhosis: results of two phase 2b, dose-ranging, randomized, placebo-controlled trials. J. Hepatol. 66, S54 (2017).

    Google Scholar 

  98. Nagula, S., Jain, D., Groszmann, R. J. & Garcia-Tsao, G. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J. Hepatol. 44, 111–117 (2006).

    PubMed  Google Scholar 

  99. Idilman, I. S. et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267, 767–775 (2013).

    PubMed  Google Scholar 

  100. Siddiqui, M. S. et al. Vibration-controlled transient elastography to assess fibrosis and steatosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 17, 156–163 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2017).

    PubMed  Google Scholar 

  102. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Google Scholar 

  103. Rinella, M. E. & Sanyal, A. J. Management of NAFLD: a stage-based approach. Nat. Rev. Gastroenterol. Hepatol. 13, 196–205 (2016).

    CAS  PubMed  Google Scholar 

  104. Rockey, D. C. et al. Liver biopsy. Hepatology 49, 1017–1044 (2009).

    PubMed  Google Scholar 

  105. Yatsuji, S. et al. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J. Gastroenterol. Hepatol. 24, 248–254 (2009).

    CAS  PubMed  Google Scholar 

  106. Castera, L., Vilgrain, V. & Angulo, P. Noninvasive evaluation of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10, 666–675 (2013).

    CAS  PubMed  Google Scholar 

  107. Shah, A. G. et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 7, 1104–1112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Angulo, P. et al. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 145, 782–789 (2013).

    PubMed  Google Scholar 

  109. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).

    CAS  PubMed  Google Scholar 

  110. Vuppalanchi, R. et al. Performance characteristics of vibration-controlled transient elastography for evaluation of non-alcoholic fatty liver disease. Hepatology 67, 134–144 (2017).

    PubMed  Google Scholar 

  111. Park, C. C. et al. Magnetic resonance elastography versus transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 152, 598–607 (2017).

    PubMed  Google Scholar 

  112. Sanyal, A. J. et al. A pilot study of vitamin E versus vitamin E and pioglitazone for the treatment of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 2, 1107–1115 (2004).

    CAS  PubMed  Google Scholar 

  113. Lavine, J. E. Vitamin E treatment of nonalcoholic steatohepatitis in children: a pilot study. J. Pediatr. 136, 734–738 (2000).

    CAS  PubMed  Google Scholar 

  114. Ratziu, V. et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51, 445–453 (2010).

    CAS  PubMed  Google Scholar 

  115. Lavine, J. E. et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA 305, 1659–1668 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cusi, K. Pioglitazone for the treatment of NASH in patients with prediabetes or type 2 diabetes mellitus. Gut 67, 1371 (2017).

    PubMed  Google Scholar 

  117. Sanyal, A. J. et al. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology 147, 377–384 (2014).

    CAS  PubMed  Google Scholar 

  118. Argo, C. K. et al. Effects of n-3 fish oil on metabolic and histological parameters in NASH: a double-blind, randomized, placebo-controlled trial. J. Hepatol. 62, 190–197 (2015).

    CAS  PubMed  Google Scholar 

  119. Dasarathy, S. et al. Double-blind randomized placebo-controlled clinical trial of omega 3 fatty acids for the treatment of diabetic patients with nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 49, 137–144 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wei, J., Qiu de, K. & Ma, X. Bile acids and insulin resistance: implications for treating nonalcoholic fatty liver disease. J. Dig. Dis. 10, 85–90 (2009).

    CAS  PubMed  Google Scholar 

  121. Mudaliar, S. et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145, 574–582 (2013).

    CAS  PubMed  Google Scholar 

  122. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    CAS  PubMed  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02548351 (2019).

  124. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159 (2016).

    CAS  PubMed  Google Scholar 

  125. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02704403 (2019).

  126. Mathurin, P. et al. Prospective study of the long-term effects of bariatric surgery on liver injury in patients without advanced disease. Gastroenterology 137, 532–540 (2009).

    CAS  PubMed  Google Scholar 

  127. Friedman, S. et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR phase 2b study design. Contemp. Clin. Trials 47, 356–365 (2016).

    PubMed  Google Scholar 

  128. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  129. Africa, J. A. et al. In children with nonalcoholic fatty liver disease, zone 1 steatosis is associated with advanced fibrosis. Clin. Gastroenterol. Hepatol. 16, 438–446 (2018).

    PubMed  Google Scholar 

  130. Patel, Y. A. et al. Baseline parameters in clinical trials for nonalcoholic steatohepatitis: recommendations from the Liver Forum. Gastroenterology 153, 621–625 (2017).

    PubMed  Google Scholar 

  131. Siddiqui, M. S. et al. Case definitions for inclusion and analysis of endpoints in clinical trials for NASH through the lens of regulatory science. Hepatology 67, 2001–2012 (2017).

    Google Scholar 

  132. Woodcock, J. & LaVange, L. M. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 377, 62–70 (2017).

    CAS  PubMed  Google Scholar 

  133. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges funding from NIH project RO1 DK 105961.

Competing interests

A.J.S. is President of Sanyal Biotechnology and has stock options in Akarna, Durect, Exhalenz, Genfit, Haemoshear, Indalo and Tiziana. He has served as a consultant to AbbVie, Amarin, Ardelyx, Astra Zeneca, Boehringer, Conatus, Fibrogen, Genfit, Gilead, Jannsen, Lilly, Nimbus, Nitto Denko, Novartis, Pfizer, Salix, Takeda, Tobira and Zafgen. He has been an unpaid consultant to Affimune, Bristol Myers Squibb, Chemomab, Echosens, Fractyl, Galectin, Immuron, Intercept, Nordic Bioscience, Novartis, Novo Nordisk and Syntlogic. His institution has received grant support from Astra Zeneca, Bristol Myers Squibb, Cumberland, Gilead, Intercept, Malinckrodt, Merck, Salix, Shire and Tobira. He receives royalties from Elsevier and UptoDate. Virginia Commonwealth University also has ownership interests in Sanyal Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun J. Sanyal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanyal, A.J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 16, 377–386 (2019). https://doi.org/10.1038/s41575-019-0144-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0144-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing