Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wnt–β-catenin signalling in liver development, health and disease

Abstract

The canonical Wnt–β-catenin pathway is a complex, evolutionarily conserved signalling mechanism that regulates fundamental physiological and pathological processes. Wnt–β-catenin signalling tightly controls embryogenesis, including hepatobiliary development, maturation and zonation. In the mature healthy liver, the Wnt–β-catenin pathway is mostly inactive but can become re-activated during cell renewal and/or regenerative processes, as well as in certain pathological conditions, diseases, pre-malignant conditions and cancer. In hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults, Wnt–β-catenin signalling is frequently hyperactivated and promotes tumour growth and dissemination. A substantial proportion of liver tumours (mainly HCC and, to a lesser extent, CCA) have mutations in genes encoding key components of the Wnt–β-catenin signalling pathway. Likewise, hepatoblastoma, the most common paediatric liver cancer, is characterized by Wnt–β-catenin activation, mostly as a result of β-catenin mutations. In this Review, we discuss the most relevant molecular mechanisms of action and regulation of Wnt–β-catenin signalling in liver development and pathophysiology. Moreover, we highlight important preclinical and clinical studies and future directions in basic and clinical research.

Key points

  • Wnt–β-catenin signalling is a highly-conserved and tightly-controlled molecular pathway that regulates cell fate during embryogenesis and hepatobiliary development, as well as liver homeostasis and repair in adulthood.

  • Abnormal Wnt–β-catenin signalling promotes the development and/or progression of different liver diseases, including cancer.

  • Mutations in key regulatory genes of the Wnt–β-catenin pathway are characteristic of hepatobiliary tumours and promote their growth, dedifferentiation and dissemination.

  • Targeting Wnt–β-catenin signalling is a new opportunity for personalized medicine currently under clinical investigation for liver cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of Wnt signalling.
Fig. 2: Wnt–β-catenin signalling in embryogenesis and hepatic development.
Fig. 3: Therapeutic strategies based on Wnt–β-catenin modulation in human cancer.

Similar content being viewed by others

References

  1. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    CAS  PubMed  Google Scholar 

  3. Kretzschmar, K. & Clevers, H. Wnt/β-catenin signaling in adult mammalian epithelial stem cells. Dev. Biol. 428, 273–282 (2017).

    CAS  PubMed  Google Scholar 

  4. Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701 (2004).

    CAS  PubMed  Google Scholar 

  5. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    CAS  PubMed  Google Scholar 

  6. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brembeck, F. H., Rosario, M. & Birchmeier, W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr. Opin. Genet. Dev. 16, 51–59 (2006).

    CAS  PubMed  Google Scholar 

  8. Niessen, C. M. & Gottardi, C. J. Molecular components of the adherens junction. Biochim. Biophys. Acta 1778, 562–571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stamos, J. L. & Weis, W. I. The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 5, a007898 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Cong, F., Schweizer, L. & Varmus, H. Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131, 5103–5115 (2004).

    CAS  PubMed  Google Scholar 

  11. Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidson, G. et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872 (2005).

    CAS  PubMed  Google Scholar 

  13. Schwarz-Romond, T. et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Struct. Mol. Biol. 14, 484–492 (2007).

    CAS  PubMed  Google Scholar 

  14. Gao, C. & Chen, Y. G. Dishevelled: the hub of Wnt signaling. Cell. Signal. 22, 717–727 (2010).

    CAS  PubMed  Google Scholar 

  15. Vlad, A., Rohrs, S., Klein-Hitpass, L. & Muller, O. The first five years of the Wnt targetome. Cell. Signal. 20, 795–802 (2008).

    CAS  PubMed  Google Scholar 

  16. Cadigan, K. M. & Waterman, M. L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 4, a007906 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Valenta, T., Hausmann, G. & Basler, K. The many faces and functions of β-catenin. EMBO J. 31, 2714–2736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaidi, A., Williams, A. C. & Paraskeva, C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat. Cell Biol. 9, 210–217 (2007).

    CAS  PubMed  Google Scholar 

  19. Essers, M. A. et al. Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science 308, 1181–1184 (2005).

    CAS  PubMed  Google Scholar 

  20. Kormish, J. D., Sinner, D. & Zorn, A. M. Interactions between SOX factors and Wnt/β-catenin signaling in development and disease. Dev. Dyn. 239, 56–68 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cruciat, C. M. & Niehrs, C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. 5, a015081 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Koo, B. K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012).

    CAS  PubMed  Google Scholar 

  23. Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195–200 (2012).

    CAS  PubMed  Google Scholar 

  24. van Amerongen, R. Alternative Wnt pathways and receptors. Cold Spring Harb. Perspect. Biol. 4, a007914 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Mlodzik, M. Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet. 18, 564–571 (2002).

    CAS  PubMed  Google Scholar 

  26. Wang, H. Y. & Malbon, C. C. Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. Science 300, 1529–1530 (2003).

    CAS  PubMed  Google Scholar 

  27. Chen, A. E., Ginty, D. D. & Fan, C. M. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433, 317–322 (2005).

    CAS  PubMed  Google Scholar 

  28. Thompson, M. D. & Monga, S. P. WNT/β-catenin signaling in liver health and disease. Hepatology 45, 1298–1305 (2007).

    CAS  PubMed  Google Scholar 

  29. Monga, S. P. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 148, 1294–1310 (2015).

    CAS  PubMed  Google Scholar 

  30. Loh, K. M., van Amerongen, R. & Nusse, R. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev. Cell 38, 643–655 (2016).

    CAS  PubMed  Google Scholar 

  31. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    CAS  PubMed  Google Scholar 

  32. Yamaguchi, T. P. Heads or tails: Wnts and anterior-posterior patterning. Curr. Biol. 11, R713–724 (2001).

    CAS  PubMed  Google Scholar 

  33. Lade, A. G. & Monga, S. P. β-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev. Dyn. 240, 486–500 (2011).

    CAS  PubMed  Google Scholar 

  34. Nejak-Bowen, K. & Monga, S. P. Wnt/β-catenin signaling in hepatic organogenesis. Organogenesis 4, 92–99 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Perea-Gomez, A. et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745–756 (2002).

    CAS  PubMed  Google Scholar 

  36. Haramoto, Y. et al. Xenopus tropicalis nodal-related gene 3 regulates BMP signaling: an essential role for the pro-region. Dev. Biol. 265, 155–168 (2004).

    CAS  PubMed  Google Scholar 

  37. Onuma, Y. et al. Xnr2 and Xnr5 unprocessed proteins inhibit Wnt signaling upstream of dishevelled. Dev. Dyn. 234, 900–910 (2005).

    CAS  PubMed  Google Scholar 

  38. Jung, J., Zheng, M., Goldfarb, M. & Zaret, K. S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998–2003 (1999).

    CAS  PubMed  Google Scholar 

  39. Zhang, W., Yatskievych, T. A., Baker, R. K. & Antin, P. B. Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling. Dev. Biol. 268, 312–326 (2004).

    CAS  PubMed  Google Scholar 

  40. Finley, K. R., Tennessen, J. & Shawlot, W. The mouse secreted frizzled-related protein 5 gene is expressed in the anterior visceral endoderm and foregut endoderm during early post-implantation development. Gene Expr. Patterns 3, 681–684 (2003).

    CAS  PubMed  Google Scholar 

  41. Dessimoz, J., Opoka, R., Kordich, J. J., Grapin-Botton, A. & Wells, J. M. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech. Dev. 123, 42–55 (2006).

    CAS  PubMed  Google Scholar 

  42. Zaret, K. Early liver differentiation: genetic potentiation and multilevel growth control. Curr. Opin. Genet. Dev. 8, 526–531 (1998).

    CAS  PubMed  Google Scholar 

  43. Martinez Barbera, J. P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433–2445 (2000).

    CAS  PubMed  Google Scholar 

  44. Bort, R., Signore, M., Tremblay, K., Martinez Barbera, J. P. & Zaret, K. S. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44–56 (2006).

    CAS  PubMed  Google Scholar 

  45. Monga, S. P. et al. β-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 124, 202–216 (2003).

    CAS  PubMed  Google Scholar 

  46. Suksaweang, S. et al. Morphogenesis of chicken liver: identification of localized growth zones and the role of β-catenin/Wnt in size regulation. Dev. Biol. 266, 109–122 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan, X. et al. β-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 47, 1667–1679 (2008).

    CAS  PubMed  Google Scholar 

  48. Pettinato, G. et al. Scalable differentiation of human iPSCs in a multicellular spheroid-based 3D culture into hepatocyte-like cells through direct Wnt/β-catenin pathway inhibition. Sci. Rep. 6, 32888 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hussain, S. Z. et al. Wnt impacts growth and differentiation in ex vivo liver development. Exp. Cell Res. 292, 157–169 (2004).

    CAS  PubMed  Google Scholar 

  50. Decaens, T. et al. Stabilization of β-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47, 247–258 (2008).

    CAS  PubMed  Google Scholar 

  51. Gerard, C., Tys, J. & Lemaigre, F. P. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin. Cell Dev. Biol. 66, 43–50 (2017).

    CAS  PubMed  Google Scholar 

  52. Matsumoto, K., Miki, R., Nakayama, M., Tatsumi, N. & Yokouchi, Y. Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium. Dev. Biol. 319, 234–247 (2008).

    CAS  PubMed  Google Scholar 

  53. Sekhon, S. S., Tan, X., Micsenyi, A., Bowen, W. C. & Monga, S. P. Fibroblast growth factor enriches the embryonic liver cultures for hepatic progenitors. Am. J. Pathol. 164, 2229–2240 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cordi, S. et al. Role of β-catenin in development of bile ducts. Differentiation 91, 42–49 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Merino-Azpitarte, M. et al. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. J. Hepatol. 67, 72–83 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jungermann, K. & Katz, N. Functional specialization of different hepatocyte populations. Physiol. Rev. 69, 708–764 (1989).

    CAS  PubMed  Google Scholar 

  57. Benhamouche, S. et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev. Cell 10, 759–770 (2006).

    CAS  PubMed  Google Scholar 

  58. Yang, J. et al. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology 60, 964–976 (2014).

    CAS  PubMed  Google Scholar 

  59. Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rocha, A. S. et al. The angiocrine factor rspondin3 is a key determinant of liver zonation. Cell Rep. 13, 1757–1764 (2015).

    CAS  PubMed  Google Scholar 

  61. Planas-Paz, L. et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 18, 467–479 (2016).

    CAS  PubMed  Google Scholar 

  62. Nejak-Bowen, K. N. & Monga, S. P. β-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin. Cancer Biol. 21, 44–58 (2011).

    CAS  PubMed  Google Scholar 

  63. Apte, U. et al. Wnt/β-catenin signaling mediates oval cell response in rodents. Hepatology 47, 288–295 (2008).

    CAS  PubMed  Google Scholar 

  64. Williams, J. M. et al. The role of the Wnt family of secreted proteins in rat oval “stem” cell-based liver regeneration: Wnt1 drives differentiation. Am. J. Pathol. 176, 2732–2742 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji, X. K. et al. GSK-3β suppresses the proliferation of rat hepatic oval cells through modulating Wnt/β-catenin signaling pathway. Acta Pharmacol. Sin. 36, 334–342 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, J. Y. et al. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget 7, 20395–20409 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Monga, S. P., Pediaditakis, P., Mule, K., Stolz, D. B. & Michalopoulos, G. K. Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33, 1098–1109 (2001).

    CAS  PubMed  Google Scholar 

  68. Sodhi, D. et al. Morpholino oligonucleotide-triggered β-catenin knockdown compromises normal liver regeneration. J. Hepatol. 43, 132–141 (2005).

    CAS  PubMed  Google Scholar 

  69. Tan, X., Behari, J., Cieply, B., Michalopoulos, G. K. & Monga, S. P. Conditional deletion of β-catenin reveals its role in liver growth and regeneration. Gastroenterology 131, 1561–1572 (2006).

    CAS  PubMed  Google Scholar 

  70. Koch, A. et al. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the β-catenin gene. Cancer Res. 59, 269–273 (1999).

    CAS  PubMed  Google Scholar 

  71. Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, D777–D783 (2017).

    CAS  PubMed  Google Scholar 

  72. Wei, Y. et al. Activation of β-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene 19, 498–504 (2000).

    CAS  PubMed  Google Scholar 

  73. Lopez-Terrada, D. et al. Towards an international pediatric liver tumor consensus classification: proceedings of the Los Angeles COG liver tumors symposium. Mod. Pathol. 27, 472–491 (2014).

    PubMed  Google Scholar 

  74. Bell, D., Ranganathan, S., Tao, J. & Monga, S. P. Novel advances in understanding of molecular pathogenesis of hepatoblastoma: a Wnt/β-catenin perspective. Gene Expr. 17, 141–154 (2017).

    CAS  PubMed  Google Scholar 

  75. Adesina, A. M. et al. Gene expression profiling reveals signatures characterizing histologic subtypes of hepatoblastoma and global deregulation in cell growth and survival pathways. Hum. Pathol. 40, 843–853 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cairo, S. et al. Hepatic stem-like phenotype and interplay of Wnt/β-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell 14, 471–484 (2008).

    CAS  PubMed  Google Scholar 

  77. Armengol, C., Cairo, S., Fabre, M. & Buendia, M. A. Wnt signaling and hepatocarcinogenesis: the hepatoblastoma model. Int. J. Biochem. Cell Biol. 43, 265–270 (2011).

    CAS  PubMed  Google Scholar 

  78. Goga, A., Yang, D., Tward, A. D., Morgan, D. O. & Bishop, J. M. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat. Med. 13, 820–827 (2007).

    CAS  PubMed  Google Scholar 

  79. Ilmer, M. et al. Targeting the neurokinin-1 receptor compromises canonical Wnt signaling in hepatoblastoma. Mol. Cancer Ther. 14, 2712–2721 (2015).

    CAS  PubMed  Google Scholar 

  80. Cairo, S., Armengol, C. & Buendia, M. A. Activation of Wnt and Myc signaling in hepatoblastoma. Front. Biosci. 4, 480–486 (2012).

    Google Scholar 

  81. Lopez-Terrada, D. et al. Histologic subtypes of hepatoblastoma are characterized by differential canonical Wnt and Notch pathway activation in DLK+ precursors. Hum. Pathol. 40, 783–794 (2009).

    CAS  PubMed  Google Scholar 

  82. Tao, J. et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147, 690–701 (2014).

    CAS  PubMed  Google Scholar 

  83. Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).

    PubMed  Google Scholar 

  84. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001).

    CAS  PubMed  Google Scholar 

  85. Kelleher, F. C., Fennelly, D. & Rafferty, M. Common critical pathways in embryogenesis and cancer. Acta Oncol. 45, 375–388 (2006).

    CAS  PubMed  Google Scholar 

  86. Russell, J. O. & Monga, S. S. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annu. Rev. Pathol. 13, 351–378 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Ihara, A., Koizumi, H., Hashizume, R. & Uchikoshi, T. Expression of epithelial cadherin and α- and β-catenins in nontumoral livers and hepatocellular carcinomas. Hepatology 23, 1441–1447 (1996).

    CAS  PubMed  Google Scholar 

  88. Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. 24, 245–250 (2000).

    CAS  PubMed  Google Scholar 

  89. Waisberg, J. & Saba, G. T. Wnt−/−β-catenin pathway signaling in human hepatocellular carcinoma. World J. Hepatol. 7, 2631–2635 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Rebouissou, S. et al. Genotype-phenotype correlation of CTNNB1 mutations reveals different ss-catenin activity associated with liver tumor progression. Hepatology 64, 2047–2061 (2016).

    CAS  PubMed  Google Scholar 

  91. Ding, S. L. et al. Integrative analysis of aberrant Wnt signaling in hepatitis B virus-related hepatocellular carcinoma. World J. Gastroenterol. 21, 6317–6328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tornesello, M. L. et al. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics 102, 74–83 (2013).

    CAS  PubMed  Google Scholar 

  93. Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lau, C. C. et al. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell 25, 335–349 (2014).

    CAS  PubMed  Google Scholar 

  95. Jia, Y. et al. SOX17 antagonizes WNT/β-catenin signaling pathway in hepatocellular carcinoma. Epigenetics 5, 743–749 (2010).

    CAS  PubMed  Google Scholar 

  96. Tsao, C. M. et al. SOX1 functions as a tumor suppressor by antagonizing the WNT/β-catenin signaling pathway in hepatocellular carcinoma. Hepatology 56, 2277–2287 (2012).

    CAS  PubMed  Google Scholar 

  97. Quan, H. et al. Hepatitis C virus core protein epigenetically silences SFRP1 and enhances HCC aggressiveness by inducing epithelial-mesenchymal transition. Oncogene 33, 2826–2835 (2014).

    CAS  PubMed  Google Scholar 

  98. Wang, Y. et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 16, 413–425 (2015).

    CAS  PubMed  Google Scholar 

  99. Carotenuto, P. et al. Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut 66, 1268–1277 (2017).

    CAS  PubMed  Google Scholar 

  100. Ying, Y. & Tao, Q. Epigenetic disruption of the WNT/β-catenin signaling pathway in human cancers. Epigenetics 4, 307–312 (2009).

    CAS  PubMed  Google Scholar 

  101. Braconi, C. et al. Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 108, 786–791 (2011).

    CAS  PubMed  Google Scholar 

  102. Wang, W. et al. Blocking Wnt secretion reduces growth of hepatocellular carcinoma cell lines mostly independent of β-catenin signaling. Neoplasia 18, 711–723 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Debebe, A. et al. Wnt/β-catenin activation and macrophage induction during liver cancer development following steatosis. Oncogene 36, 6020–6029 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhi, X. et al. βII-Spectrin (SPTBN1) suppresses progression of hepatocellular carcinoma and Wnt signaling by regulation of Wnt inhibitor kallistatin. Hepatology 61, 598–612 (2015).

    CAS  PubMed  Google Scholar 

  105. Lai, K. K. Y. et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6. Gastroenterology 152, 1477–1491 (2017).

    CAS  PubMed  Google Scholar 

  106. Nambotin, S. B. et al. Pharmacological inhibition of Frizzled-7 displays anti-tumor properties in hepatocellular carcinoma. J. Hepatol. 54, 288–299 (2011).

    CAS  PubMed  Google Scholar 

  107. Pez, F. et al. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J. Hepatol. 59, 1107–1117 (2013).

    CAS  PubMed  Google Scholar 

  108. Chai, S. et al. Octamer 4/microRNA-1246 signaling axis drives Wnt/β-catenin activation in liver cancer stem cells. Hepatology 64, 2062–2076 (2016).

    CAS  PubMed  Google Scholar 

  109. Gu, W., Li, X. & Wang, J. miR-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol. Rep. 31, 397–404 (2014).

    CAS  PubMed  Google Scholar 

  110. Qu, C. et al. Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/β-catenin activation. J. Hepatol. 64, 1076–1089 (2016).

    CAS  PubMed  Google Scholar 

  111. Harada, N. et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of β-catenin. Cancer Res. 62, 1971–1977 (2002).

    CAS  PubMed  Google Scholar 

  112. Nejak-Bowen, K. N. et al. Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant β-catenin. Hepatology 51, 1603–1613 (2010).

    CAS  PubMed  Google Scholar 

  113. Mokkapati, S. et al. β-catenin activation in a novel liver progenitor cell type is sufficient to cause hepatocellular carcinoma and hepatoblastoma. Cancer Res. 74, 4515–4525 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tao, J. et al. Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point-mutant β-catenin. Hepatology 64, 1587–1605 (2016).

    CAS  PubMed  Google Scholar 

  115. Tao, J. et al. Targeting β-catenin in hepatocellular cancers induced by coexpression of mutant β-catenin and K-Ras in mice. Hepatology 65, 1581–1599 (2017).

    CAS  PubMed  Google Scholar 

  116. Colnot, S. et al. Liver-targeted disruption of Apc in mice activates β-catenin signaling and leads to hepatocellular carcinomas. Proc. Natl Acad. Sci. USA 101, 17216–17221 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lam, S. H. & Gong, Z. Modeling liver cancer using zebrafish: a comparative oncogenomics approach. Cell Cycle 5, 573–577 (2006).

    CAS  PubMed  Google Scholar 

  118. Ober, E. A., Verkade, H., Field, H. A. & Stainier, D. Y. Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442, 688–691 (2006).

    CAS  PubMed  Google Scholar 

  119. Evason, K. J. et al. Identification of chemical inhibitors of β-catenin-driven liver tumorigenesis in zebrafish. PLOS Genet. 11, e1005305 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Banales, J. M. et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 13, 261–280 (2016).

    PubMed  Google Scholar 

  121. Rizvi, S., Khan, S. A., Hallemeier, C. L., Kelley, R. K. & Gores, G. J. Cholangiocarcinoma — evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 15, 95–111 (2018).

    CAS  PubMed  Google Scholar 

  122. Valle, J. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 362, 1273–1281 (2010).

    CAS  PubMed  Google Scholar 

  123. Tokumoto, N. et al. Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas. Int. J. Oncol. 27, 973–980 (2005).

    CAS  PubMed  Google Scholar 

  124. Yothaisong, S. et al. Opisthorchis viverrini infection activates the PI3K/ AKT/PTEN and Wnt/β-catenin signaling pathways in a Cholangiocarcinogenesis model. Asian Pac. J. Cancer Prev. 15, 10463–10468 (2014).

    PubMed  Google Scholar 

  125. Zhang, K. S., Zhou, Q., Wang, Y. F. & Liang, L. J. Inhibition of Wnt signaling induces cell apoptosis and suppresses cell proliferation in cholangiocarcinoma cells. Oncol. Rep. 30, 1430–1438 (2013).

    CAS  PubMed  Google Scholar 

  126. Sugimachi, K. et al. Altered expression of β-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod. Pathol. 14, 900–905 (2001).

    CAS  PubMed  Google Scholar 

  127. Goeppert, B. et al. Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway. Hepatology 59, 544–554 (2014).

    CAS  PubMed  Google Scholar 

  128. Goeppert, B. et al. Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma. Epigenetics 11, 780–790 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Zhang, F. et al. Long noncoding RNA PCAT1 regulates extrahepatic cholangiocarcinoma progression via the Wnt/β-catenin-signaling pathway. Biomed. Pharmacother. 94, 55–62 (2017).

    CAS  PubMed  Google Scholar 

  130. Loilome, W. et al. Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. Tumour Biol. 35, 5357–5367 (2014).

    CAS  PubMed  Google Scholar 

  131. Boulter, L. et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J. Clin. Invest. 125, 1269–1285 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Shen, D. Y., Zhang, W., Zeng, X. & Liu, C. Q. Inhibition of Wnt/β-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci. 104, 1303–1308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang, G. L. et al. Oncogenic activity of retinoic acid receptor gamma is exhibited through activation of the Akt/NF-kappaB and Wnt/β-catenin pathways in cholangiocarcinoma. Mol. Cell. Biol. 33, 3416–3425 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, J. et al. Underexpression of LKB1 tumor suppressor is associated with enhanced Wnt signaling and malignant characteristics of human intrahepatic cholangiocarcinoma. Oncotarget 6, 18905–18920 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Friedman, S. L. Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol. 7, 425–436 (2010).

    PubMed  Google Scholar 

  136. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    CAS  PubMed  Google Scholar 

  137. Liu, Y. et al. WNT signaling pathway gene polymorphisms and risk of hepatic fibrosis and inflammation in HCV-infected patients. PLOS ONE 8, e84407 (2013).

    PubMed  PubMed Central  Google Scholar 

  138. Ge, W. S. et al. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Mol. Med. Rep. 9, 2145–2151 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Jiang, F., Parsons, C. J. & Stefanovic, B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J. Hepatol. 45, 401–409 (2006).

    CAS  PubMed  Google Scholar 

  140. Xiong, W. J. et al. Wnt5a participates in hepatic stellate cell activation observed by gene expression profile and functional assays. World J. Gastroenterol. 18, 1745–1752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Corbett, L., Mann, J. & Mann, D. A. Non-canonical Wnt predominates in activated rat hepatic stellate cells, influencing HSC survival and paracrine stimulation of Kupffer cells. PLOS ONE 10, e0142794 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Myung, S. J. et al. Wnt signaling enhances the activation and survival of human hepatic stellate cells. FEBS Lett. 581, 2954–2958 (2007).

    CAS  PubMed  Google Scholar 

  143. Cheng, J. H. et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G39–G49 (2008).

    CAS  PubMed  Google Scholar 

  144. Chatani, N. et al. Secreted frizzled-related protein 5 (Sfrp5) decreases hepatic stellate cell activation and liver fibrosis. Liver Int. 35, 2017–2026 (2015).

    CAS  PubMed  Google Scholar 

  145. Kweon, S. M., Chi, F., Higashiyama, R., Lai, K. & Tsukamoto, H. Wnt pathway stabilizes MeCP2 protein to repress PPAR-γ in activation of hepatic stellate cells. PLOS ONE 11, e0156111 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. Tokunaga, Y. et al. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Sci. Rep. 7, 325 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Zhu, N. L., Wang, J. & Tsukamoto, H. The Necdin-Wnt pathway causes epigenetic peroxisome proliferator-activated receptor γ repression in hepatic stellate cells. J. Biol. Chem. 285, 30463–30471 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Haughton, E. L. et al. Pregnane X receptor activators inhibit human hepatic stellate cell transdifferentiation in vitro. Gastroenterology 131, 194–209 (2006).

    CAS  PubMed  Google Scholar 

  149. Yu, F., Guo, Y., Chen, B., Dong, P. & Zheng, J. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Invest. 95, 781–789 (2015).

    CAS  PubMed  Google Scholar 

  150. Yu, F. et al. MicroRNA-17-5p-activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis. Oncotarget 7, 81–93 (2016).

    PubMed  Google Scholar 

  151. Zhou, D. D. et al. MicroRNA-145 inhibits hepatic stellate cell activation and proliferation by targeting ZEB2 through Wnt/β-catenin pathway. Mol. Immunol. 75, 151–160 (2016).

    CAS  PubMed  Google Scholar 

  152. Yu, F., Fan, X., Chen, B., Dong, P. & Zheng, J. Activation of hepatic stellate cells is inhibited by microRNA-378a-3p via Wnt10a. Cell Physiol. Biochem. 39, 2409–2420 (2016).

    CAS  PubMed  Google Scholar 

  153. Irvine, K. M. et al. Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury. Fibrogen. Tissue Repair 8, 19 (2015).

    Google Scholar 

  154. Preziosi, M. E. et al. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload. J. Hepatol. 67, 360–369 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang, C. K. et al. Restoration of Wnt/β-catenin signaling attenuates alcoholic liver disease progression in a rat model. J. Hepatol. 63, 191–198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Reccia, I. et al. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism 72, 94–108 (2017).

    CAS  PubMed  Google Scholar 

  157. Wong, V. W. et al. Pathogenesis and novel treatment options for non-alcoholic steatohepatitis. Lancet Gastroenterol. Hepatol. 1, 56–67 (2016).

    PubMed  Google Scholar 

  158. Liu, S. et al. β-catenin is essential for ethanol metabolism and protection against alcohol-mediated liver steatosis in mice. Hepatology 55, 931–940 (2012).

    CAS  PubMed  Google Scholar 

  159. Go, G. W. et al. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metab. 19, 209–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang, S. et al. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. Faseb J. 29, 3436–3445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, W. et al. Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J. Biol. Chem. 287, 7213–7223 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Nobili, V. et al. Docosahexaenoic acid for the treatment of fatty liver: randomised controlled trial in children. Nutr. Metab. Cardiovasc. Dis. 23, 1066–1070 (2013).

    CAS  PubMed  Google Scholar 

  163. Carpino, G. et al. Macrophage activation in pediatric nonalcoholic fatty liver disease (NAFLD) correlates with hepatic progenitor cell response via Wnt3a pathway. PLOS ONE 11, e0157246 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Allen, K., Jaeschke, H. & Copple, B. L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am. J. Pathol. 178, 175–186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yeh, T. H. et al. Liver-specific β-catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis. Hepatology 52, 1410–1419 (2010).

    CAS  PubMed  Google Scholar 

  166. Lemberger, U. J. et al. Hepatocyte specific expression of an oncogenic variant of β-catenin results in cholestatic liver disease. Oncotarget 7, 86985–86998 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. de Vries, E. & Beuers, U. Management of cholestatic disease in 2017. Liver Int. 37 (Suppl. 1), 123–129 (2017).

    PubMed  Google Scholar 

  168. Tanaka, A. et al. Genomic analysis of differentially expressed genes in liver and biliary epithelial cells of patients with primary biliary cirrhosis. J. Autoimmun 17, 89–98 (2001).

    CAS  PubMed  Google Scholar 

  169. Shackel, N. A., McGuinness, P. H., Abbott, C. A., Gorrell, M. D. & McCaughan, G. W. Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression. Gut 49, 565–576 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Thompson, M. D., Awuah, P., Singh, S. & Monga, S. P. Disparate cellular basis of improved liver repair in β-catenin-overexpressing mice after long-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Am. J. Pathol. 177, 1812–1822 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Okabe, H. et al. Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice. Hepatology 64, 1652–1666 (2016).

    CAS  PubMed  Google Scholar 

  172. Sackett, S. D. et al. Foxl1 promotes liver repair following cholestatic injury in mice. Lab Invest. 89, 1387–1396 (2009).

    CAS  PubMed  Google Scholar 

  173. Perugorria, M. J. et al. Polycystic liver diseases: advanced insights into the molecular mechanisms. Nat. Rev. Gastroenterol. Hepatol. 11, 750–761 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Perugorria, M. J. & Banales, J. M. Genetics: Novel causative genes for polycystic liver disease. Nat. Rev. Gastroenterol. Hepatol. 14, 391–392 (2017).

    CAS  PubMed  Google Scholar 

  175. Masyuk, A. I. et al. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology 67, 1088–1108 (2017).

    Google Scholar 

  176. Cnossen, W. R. et al. Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis. Proc. Natl Acad. Sci. USA 111, 5343–5348 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wills, E. S. et al. Liver cyst gene knockout in cholangiocytes inhibits cilium formation and Wnt signaling. Hum. Mol. Genet. 26, 4190–4202 (2017).

    CAS  PubMed  Google Scholar 

  178. Spirli, C. et al. Protein kinase A-dependent pSer(675) -β-catenin, a novel signaling defect in a mouse model of congenital hepatic fibrosis. Hepatology 58, 1713–1723 (2013).

    CAS  PubMed  Google Scholar 

  179. Locatelli, L. et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 63, 965–982 (2016).

    CAS  PubMed  Google Scholar 

  180. Kaffe, E. et al. β-catenin and IL-1β dependent CXCL10 production drives progression of disease in a mouse model of congenital hepatic fibrosis. Hepatology 67, 1903–1919 (2017).

    Google Scholar 

  181. Krishnamurthy, N. & Kurzrock, R. Targeting the Wnt/β-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 62, 50–60 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02069145 (2014).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02675946 (2016).

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02375880 (2015).

  185. Shi, X. D. et al. Dickkopf-1 expression is associated with tumorigenity and lymphatic metastasis in human hilar cholangiocarcinoma. Oncotarget 7, 70378–70387 (2016).

    PubMed  PubMed Central  Google Scholar 

  186. Yu, B. et al. Elevated expression of DKK1 is associated with cytoplasmic/nuclear β-catenin accumulation and poor prognosis in hepatocellular carcinomas. J. Hepatol. 50, 948–957 (2009).

    CAS  PubMed  Google Scholar 

  187. Kagey, M. H. & He, X. Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br. J. Pharmacol. 174, 4637–4650 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02195440 (2014).

  189. Ganesh, S. et al. Direct pharmacological inhibition of β-catenin by RNA interference in tumors of diverse origin. Mol. Cancer Ther. 15, 2143–2154 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Sebio, A., Kahn, M. & Lenz, H. J. The potential of targeting Wnt/β-catenin in colon cancer. Expert Opin. Ther. Targets 18, 611–615 (2014).

    CAS  PubMed  Google Scholar 

  191. Palmer, H. G. et al. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol. 154, 369–387 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Osei-Sarfo, K. & Gudas, L. J. Retinoic acid suppresses the canonical Wnt signaling pathway in embryonic stem cells and activates the noncanonical Wnt signaling pathway. Stem Cells 32, 2061–2071 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen, J. et al. Vitamin D deficiency promotes liver tumor growth in transforming growth factor-β/Smad3-deficient mice through Wnt and Toll-like Receptor 7 pathway modulation. Sci. Rep. 6, 30217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Chiang, K. C. et al. Chemopreventive and chemotherapeutic effect of dietary supplementation of vitamin D on cholangiocarcinoma in a chemical-induced animal model. Oncotarget 5, 3849–3861 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. Xia, H. & Hui, K. M. Emergence of aspirin as a promising chemopreventive and chemotherapeutic agent for liver cancer. Cell Death Dis. 8, e3112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Choi, J. et al. Aspirin use and the risk of cholangiocarcinoma. Hepatology 64, 785–796 (2016).

    CAS  PubMed  Google Scholar 

  197. Rahman, M. A. et al. Sulindac and exisulind exhibit a significant antiproliferative effect and induce apoptosis in human hepatocellular carcinoma cell lines. Cancer Res. 60, 2085–2089 (2000).

    CAS  PubMed  Google Scholar 

  198. Wentz, S. C. et al. Sulindac prevents carcinogen-induced intrahepatic cholangiocarcinoma formation in vivo. J. Surg. Res. 157, e87–95 (2009).

    CAS  PubMed  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02013154 (2013).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02655952 (2016).

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02020291 (2013).

  202. Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhang, X. & Hao, J. Development of anticancer agents targeting the Wnt/β-catenin signaling. Am. J. Cancer Res. 5, 2344–2360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.M.B., M.J.P. and J.J.G.M. are supported by the Spanish Ministry of Economy and Competitiveness (J.M.B.: FIS PI12/00380, FIS PI15/01132 and Miguel Servet Programme CON14/00129; M.J.P.: FIS PI14/00399, PI17/00022 and “Ramon y Cajal” Programme RYC-2015-17755; J.J.G.M.: FIS PI16/00598; SAF2016-75197-R) cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER). J.M.B., M.J.P., J.J.G.M. and L.B. are also supported by ISCIII (CIBERehd), Spain. J.M.B. is supported by “Diputación Foral Gipuzkoa” (DFG15/010, DFG16/004) and “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation). M.J.P. is supported by the Department of Health of the Basque Country (2015111100). P.O. and I.L. were funded by the Basque Government (PRE_2016_1_0152 and PRE_2016_1_0269, respectively), and A.E.-B. by the University of the Basque Country (UPV/EHU: PIF2014/11).

Author information

Authors and Affiliations

Authors

Contributions

J.M.B., M.J.P., P.O., I.L. and A.E-B. contributed to all aspects of this manuscript. M.M., J.J.G.M. and L.B. made substantial contributions to discussion of content, wrote the manuscript and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jesus M. Banales.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

COSMIC: http://cancer.sanger.ac.uk/cosmic

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perugorria, M.J., Olaizola, P., Labiano, I. et al. Wnt–β-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol 16, 121–136 (2019). https://doi.org/10.1038/s41575-018-0075-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0075-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing