Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments

Abstract

Increasing recognition of an association between obesity and many cancer types exists, but how the myriad of local and systemic effects of obesity affect key cellular and non-cellular processes within the tumour microenvironment (TME) relevant to carcinogenesis, tumour progression and response to therapies remains poorly understood. The TME is a complex cellular environment in which the tumour exists along with blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, signalling molecules and the extracellular matrix. Obesity, in particular visceral obesity, might fuel the dysregulation of key pathways relevant to both the adipose microenvironment and the TME, which interact to promote carcinogenesis in at-risk epithelium. The tumour-promoting effects of obesity can occur at the local level as well as systemically via circulating inflammatory, growth factor and metabolic mediators associated with adipose tissue inflammation, as well as paracrine and autocrine effects. This Review explores key pathways linking visceral obesity and gastrointestinal cancer, including inflammation, hypoxia, altered stromal and immune cell function, energy metabolism and angiogenesis.

Key points

  • Epidemiological evidence implicates obesity as a risk factor for the development of cancers at multiple sites in the gastrointestinal tract, including the oesophagus, liver, colon, gastric cardia and pancreas.

  • Immune, metabolic and inflammation-associated properties of excess adiposity are increasingly understood, but how they influence the tumour microenvironment (TME), which comprises tumour cells, blood vessels, immune cells, fibroblasts and the extracellular matrix, remains unclear.

  • Adipocyte stem cells are increased in adipose tissue of individuals with obesity; in mouse models, these cells migrate to tumour sites and differentiate into cell types that might affect the TME.

  • Interstitial fibrosis within the TME can influence cytokine signalling, epithelial cell morphology and stem cell differentiation. Adipocyte stem cells might be a source of cancer-associated fibroblasts, and obesity might play a part in fibrosis-associated mechanosignalling within tumours.

  • Metabolic reprogramming in the TME is associated with obesity, hypoxia and angiogenesis. These processes are tightly interconnected and represent a potential target affecting not only tumours but also immune or inflammatory cells within the TME.

  • Bariatric or metabolic surgery is associated with an improvement in the metabolic profile of patients with obesity and a marked decrease in the incidence of cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The tumour microenvironment in obesity.
Fig. 2: Obesity induces a local inflammatory state within the omentum that can drive carcinogenesis at multiple sites.
Fig. 3: Immune cell composition in lean versus obese omentum, liver and blood.
Fig. 4: Interplay between adipocytes, stem cells and the tumour microenvironment.
Fig. 5: The role of cancer-associated fibroblasts in the tumour microenvironment.
Fig. 6: Links between obese adipose tissue and cellular process in the tumour microenvironment.

Similar content being viewed by others

References

  1. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Kyrgiou, M. et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ 356, j477 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

    Google Scholar 

  4. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315, 2284–2291 (2016).

    CAS  PubMed  Google Scholar 

  5. Arnold, M. et al. Obesity and cancer: an update of the global impact. Cancer Epidemiol. 41, 8–15 (2016).

    PubMed  Google Scholar 

  6. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    PubMed  Google Scholar 

  7. Ogden, C. L. et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA 315, 2292–2299 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Abarca-Gómez, L. et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Google Scholar 

  9. Ahrens, W. et al. Prevalence of overweight and obesity in European children below the age of 10. Int. J. Obes. 38, S99 (2014).

    Google Scholar 

  10. Renehan, A. G. & Soerjomataram, I. Obesity as an avoidable cause of cancer (attributable risks). Recent Results Cancer Res. 208, 243–256 (2016).

    CAS  PubMed  Google Scholar 

  11. Dignam, J. J. et al. Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer. J. Natl Cancer Inst. 98, 1647–1654 (2006).

    PubMed  Google Scholar 

  12. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Maruthur, N. M., Bolen, S., Brancati, F. L. & Clark, J. M. Obesity and mammography: a systematic review and meta-analysis. J. Gen. Intern. Med. 24, 665–677 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Maruthur, N. M., Bolen, S., Gudzune, K., Brancati, F. L. & Clark, J. M. Body mass index and colon cancer screening: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 21, 737–746 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. Sinicrope, F. A., Foster, N. R., Sargent, D. J., O’Connell, M. J. & Rankin, C. Obesity is an independent prognostic variable in colon cancer survivors. Clin. Cancer Res. 16, 1884–1893 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Reeves, G. K. et al. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 335, 1134 (2007).

    PubMed  PubMed Central  Google Scholar 

  17. Prizment, A. E., Flood, A., Anderson, K. E. & Folsom, A. R. Survival of women with colon cancer in relation to precancer anthropometric characteristics: the Iowa Women’s Health Study. Cancer Epidemiol. Biomarkers Prev. 19, 2229–2237 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Ligibel, J. A. et al. American Society of Clinical Oncology position statement on obesity and cancer. J. Clin. Oncol. 32, 3568–3574 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Olson, O. C., Quail, D. F. & Joyce, J. A. Obesity and the tumor microenvironment. Science 358, 1130–1131 (2017).

    CAS  PubMed  Google Scholar 

  20. Seo, B. R. et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci. Transl Med. 7, 301ra130 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Dunlap, S. M. et al. Dietary energy balance modulates epithelial-to-mesenchymal transition and tumor progression in murine claudin-low and basal-like mammary tumor models. Cancer Prev. Res. 5, 930–942 (2012).

    CAS  Google Scholar 

  22. Santander, A. M. et al. Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers 7, 143–178 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ackerman, D. & Simon, M. C. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol. 24, 472–478 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cozzo, A. J., Fuller, A. M. & Makowski, L. Contribution of adipose tissue to development of cancer. Compr. Physiol. 8, 237–282 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Brahmkhatri, V. P., Prasanna, C. & Atreya, H. S. Insulin-like growth factor system in cancer: novel targeted therapies. Biomed. Res. Int. 2015, 538019 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008).

    CAS  PubMed  Google Scholar 

  27. Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 127, 74–82 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Vegiopoulos, A., Rohm, M. & Herzig, S. Adipose tissue: between the extremes. EMBO J. 36, 1999–2017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Meza-Perez, S. & Randall, T. D. Immunological functions of the omentum. Trends Immunol. 38, 526–536 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Janssen, I., Katzmarzyk, P. T. & Ross, R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch. Intern. Med. 162, 2074–2079 (2002).

    PubMed  Google Scholar 

  31. Klein, S. et al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity 15, 1061–1067 (2007).

    PubMed  Google Scholar 

  32. Dong, Y. et al. Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci. Rep. 37, BSR20170945 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Freisling, H. et al. Comparison of general obesity and measures of body fat distribution in older adults in relation to cancer risk: meta-analysis of individual participant data of seven prospective cohorts in Europe. Br. J. Cancer 116, 1486 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kabir, M. et al. Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am. J. Physiol. Endocrinol. Metab. 288, E454–E461 (2005).

    CAS  PubMed  Google Scholar 

  35. Item, F. & Konrad, D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes. Rev. 13 (Suppl. 2), 30–39 (2012).

    PubMed  Google Scholar 

  36. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    CAS  PubMed  Google Scholar 

  37. Yang, H. et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J. Immunol. 185, 1836–1845 (2010).

    CAS  PubMed  Google Scholar 

  38. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Caspar-Bauguil, S. et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett. 579, 3487–3492 (2005).

    CAS  PubMed  Google Scholar 

  40. Perrini, S. et al. Differences in gene expression and cytokine release profiles highlight the heterogeneity of distinct subsets of adipose tissue-derived stem cells in the subcutaneous and visceral adipose tissue in humans. PLOS ONE 8, e57892 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pérez-Pérez, A. et al. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 35, 71–84 (2017).

    PubMed  Google Scholar 

  44. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    CAS  PubMed  Google Scholar 

  45. Lin, T. C. et al. Leptin signaling axis specifically associates with clinical prognosis and is multifunctional in regulating cancer progression. Oncotarget 9, 17210–17219 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  47. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  48. Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

    CAS  PubMed  Google Scholar 

  49. Iyengar, N. M., Gucalp, A., Dannenberg, A. J. & Hudis, C. A. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J. Clin. Oncol. 34, 4270–4276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stefan, N., Haring, H. U. & Schulze, M. B. Metabolically healthy obesity: the low-hanging fruit in obesity treatment? Lancet Diabetes Endocrinol. 6, 249–258 (2018).

    PubMed  Google Scholar 

  51. Hinnouho, G. M. et al. Metabolically healthy obesity and risk of mortality: does the definition of metabolic health matter? Diabetes Care 36, 2294–2300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Phillips, C. M. Metabolically healthy obesity across the life course: epidemiology, determinants, and implications. Ann. NY Acad. Sci. 1391, 85–100 (2017).

    PubMed  Google Scholar 

  53. Schmidt, F. M. et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLOS ONE 10, e0121971 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Iglesias Molli, A. E. et al. Metabolically healthy obese individuals present similar chronic inflammation level but less insulin-resistance than obese individuals with metabolic syndrome. PLOS ONE 12, e0190528 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Font-Burgada, J., Sun, B. & Karin, M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 23, 48–62 (2016).

    CAS  PubMed  Google Scholar 

  56. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Google Scholar 

  57. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    CAS  PubMed  Google Scholar 

  58. Deng, B. et al. Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF-beta1 in gastric cancer. PLOS ONE 8, e63777 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Huber, V. et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin. Cancer Biol. 43, 74–89 (2017).

    CAS  PubMed  Google Scholar 

  60. Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31, 311–325 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Amor, S. et al. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer. Int. J. Colorectal Dis. 31, 365–375 (2016).

    CAS  PubMed  Google Scholar 

  62. Huang, J. et al. Adipocyte p62/SQSTM1 suppresses tumorigenesis through opposite regulations of metabolism in adipose tissue and tumor. Cancer Cell 33, 770–784 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 127, 1–4 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Lafontan, M. Adipose tissue and adipocyte dysregulation. Diabetes Metab. 40, 16–28 (2014).

    CAS  PubMed  Google Scholar 

  65. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  66. D’Archivio, M. et al. ω3-PUFAs exert anti-inflammatory activity in visceral adipocytes from colorectal cancer patients. PLOS ONE 8, e77432 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Caer, C. et al. Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Sci. Rep. 7, 3000 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Donninelli, G. et al. Distinct blood and visceral adipose tissue regulatory T cell and innate lymphocyte profiles characterize obesity and colorectal cancer. Front. Immunol. 8, 643 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Elgazar-Carmon, V., Rudich, A., Hadad, N. & Levy, R. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J. Lipid Res. 49, 1894–1903 (2008).

    CAS  PubMed  Google Scholar 

  70. Lysaght, J. et al. T lymphocyte activation in visceral adipose tissue of patients with oesophageal adenocarcinoma. Br. J. Surg. 98, 964–974 (2011).

    CAS  PubMed  Google Scholar 

  71. Wouters, K. et al. Circulating classical monocytes are associated with CD11c+ macrophages in human visceral adipose tissue. Sci. Rep. 7, 42665 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mraz, M. & Haluzik, M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J. Endocrinol. 222, R113–R127 (2014).

    CAS  PubMed  Google Scholar 

  74. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ju, C. & Tacke, F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell. Mol. Immunol. 13, 316–327 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kenna, T. et al. Distinct subpopulations of γδ T cells are present in normal and tumor-bearing human liver. Clin. Immunol. 113, 56–63 (2004).

    CAS  PubMed  Google Scholar 

  77. Toubal, A. & Lehuen, A. Lights on MAIT cells, a new immune player in liver diseases. J. Hepatol. 64, 1008–1010 (2016).

    CAS  PubMed  Google Scholar 

  78. Kurioka, A., Walker, L. J., Klenerman, P. & Willberg, C. B. MAIT cells: new guardians of the liver. Clin. Transl Immunol. 5, e98 (2016).

    Google Scholar 

  79. Rohr-Udilova, N. et al. Deviations of the immune cell landscape between healthy liver and hepatocellular carcinoma. Sci. Rep. 8, 6220 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Reccia, I. et al. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism 72, 94–108 (2017).

    CAS  PubMed  Google Scholar 

  81. Narayanan, S., Surette, F. A. & Hahn, Y. S. The immune landscape in nonalcoholic steatohepatitis. Immune Netw. 16, 147–158 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Conroy, M. J. et al. Parallel profiles of inflammatory and effector memory T cells in visceral fat and liver of obesity-associated cancer patients. Inflammation 39, 1729–1736 (2016).

    CAS  PubMed  Google Scholar 

  83. Ogawa, Y. et al. Soluble CD14 levels reflect liver inflammation in patients with nonalcoholic steatohepatitis. PLOS ONE 8, e65211 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rensen, S. S. et al. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am. J. Pathol. 175, 1473–1482 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ibrahim, J. et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143, 1061–1072 (2012).

    CAS  PubMed  Google Scholar 

  86. Rau, M. et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J. Immunol. 196, 97–105 (2016).

    CAS  PubMed  Google Scholar 

  87. Gadd, V. L. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59, 1393–1405 (2014).

    PubMed  Google Scholar 

  88. Tajiri, K., Shimizu, Y., Tsuneyama, K. & Sugiyama, T. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 21, 673–680 (2009).

    CAS  PubMed  Google Scholar 

  89. Conroy, M. J. et al. The microenvironment of visceral adipose tissue and liver alter natural killer cell viability and function. J. Leukoc. Biol. 100, 1435–1442 (2016).

    CAS  PubMed  Google Scholar 

  90. Kavanagh, M. E. et al. The esophagitis to adenocarcinoma sequence; the role of inflammation. Cancer Lett. 345, 182–189 (2014).

    CAS  PubMed  Google Scholar 

  91. Cabia, B., Andrade, S., Carreira, M. C., Casanueva, F. F. & Crujeiras, A. B. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes. Rev. 17, 361–376 (2016).

    CAS  PubMed  Google Scholar 

  92. Maurizi, G., Della Guardia, L., Maurizi, A. & Poloni, A. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J. Cell. Physiol. 233, 88–97 (2017).

    PubMed  Google Scholar 

  93. Pecht, T., Gutman-Tirosh, A., Bashan, N. & Rudich, A. Peripheral blood leucocyte subclasses as potential biomarkers of adipose tissue inflammation and obesity subphenotypes in humans. Obes. Rev. 15, 322–337 (2014).

    CAS  PubMed  Google Scholar 

  94. Galon, J. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).

    CAS  PubMed  Google Scholar 

  95. Galon, J. et al. Cancer classification using the Immunoscore: a worldwide task force. J. Transl Med. 10, 205 (2012).

    PubMed  PubMed Central  Google Scholar 

  96. Pagès, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    PubMed  Google Scholar 

  97. Taieb, J. et al. Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: current status and future perspectives. Cancer Treat. Rev. 66, 104–113 (2018).

    CAS  PubMed  Google Scholar 

  98. Strong, A. L., Burow, M. E., Gimble, J. M. & Bunnell, B. A. Concise review: the obesity cancer paradigm: exploration of the interactions and crosstalk with adipose stem cells. Stem Cells 33, 318–326 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Strong, A. L. et al. Obesity enhances the conversion of adipose-derived stromal/stem cells into carcinoma-associated fibroblast leading to cancer cell proliferation and progression to an invasive phenotype. Stem Cells Int. 2017, 9216502 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Park, J., Morley, T. S., Kim, M., Clegg, D. J. & Scherer, P. E. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hefetz-Sela, S. & Scherer, P. E. Adipocytes: impact on tumor growth and potential sites for therapeutic intervention. Pharmacol. Ther. 138, 197–210 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Toren, P., Mora, B. C. & Venkateswaran, V. Diet, obesity, and cancer progression: are adipocytes the link? Lipid Insights 6, 37–45 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Freese, K. E. et al. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review. Cancer Res. 75, 1161–1168 (2015).

    CAS  PubMed  Google Scholar 

  104. Arendt, L. M. et al. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 73, 6080–6093 (2013).

    CAS  PubMed  Google Scholar 

  105. Eterno, V. et al. Adipose-derived mesenchymal stem cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling. Oncotarget 5, 613–633 (2014).

    PubMed  Google Scholar 

  106. Zhao, B. C., Zhao, B., Han, J. G., Ma, H. C. & Wang, Z. J. Adipose-derived stem cells promote gastric cancer cell growth, migration and invasion through SDF-1/CXCR4 axis. Hepatogastroenterology 57, 1382–1389 (2010).

    CAS  PubMed  Google Scholar 

  107. Zhang, T. et al. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat. Commun. 7, 11674 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O. & Michalek, J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 21, 2724–2752 (2012).

    CAS  PubMed  Google Scholar 

  109. Razmkhah, M., Mansourabadi, Z., Mohtasebi, M. A., Talei, A. R. & Ghaderi, A. Cancer and normal adipose-derived mesenchymal stem cells (ASCs): do they have differential effects on tumor and immune cells? Cell Biol. Int. 42, 334–343 (2017).

    Google Scholar 

  110. Pérez, L. M., Bernal, A., San Martín, N. & Gálvez, B. G. Obese-derived ASCs show impaired migration and angiogenesis properties. Arch. Physiol. Biochem. 119, 195–201 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. Oñate, B. et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics 14, 625 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Zhang, Y. et al. Stromal cells derived from visceral and obese adipose tissue promote growth of ovarian cancers. PLOS ONE 10, e0136361 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Zhang, Y. et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 69, 5259–5266 (2009).

    CAS  PubMed  Google Scholar 

  114. Rehman, J. et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292–1298 (2004).

    PubMed  Google Scholar 

  115. Zhang, Y., Bellows, C. F. & Kolonin, M. G. Adipose tissue-derived progenitor cells and cancer. World J. Stem Cells 2, 103–113 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. Zhang, Y. et al. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 72, 5198–5208 (2012).

    CAS  PubMed  Google Scholar 

  117. Jotzu, C. et al. Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell. Oncol. 34, 55–67 (2011).

    Google Scholar 

  118. Bochet, L. et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013).

    CAS  PubMed  Google Scholar 

  119. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582 (2016).

    CAS  PubMed  Google Scholar 

  120. Nishida, T. et al. Low stromal area and high stromal microvessel density predict poor prognosis in pancreatic cancer. Pancreas 45, 593–600 (2016).

    CAS  PubMed  Google Scholar 

  121. Spaeth, E. L. et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLOS ONE 4, e4992 (2009).

    PubMed  PubMed Central  Google Scholar 

  122. Underwood, T. J. et al. Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J. Pathol. 235, 466–477 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Huijbers, A. et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: validation in the VICTOR trial. Ann. Oncol. 24, 179–185 (2013).

    CAS  PubMed  Google Scholar 

  124. Incio, J. et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 6, 852–869 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85 (2012).

    CAS  Google Scholar 

  130. Erez, N., Truitt, M., Olson, P. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    CAS  PubMed  Google Scholar 

  131. Zhu, Q. et al. The IL-6–STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 5, e1295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zheng, X. et al. EMT program is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128 (2018).

    CAS  PubMed  Google Scholar 

  136. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97–110 (2013).

    PubMed  Google Scholar 

  138. Li, L. & Li, W. Epithelial–mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol. Ther. 150, 33–46 (2015).

    CAS  PubMed  Google Scholar 

  139. Ricciardi, M. et al. Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells. Br. J. Cancer 112, 1067 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Uthaya Kumar, D. B. et al. TLR4 signaling via NANOG cooperates with STAT3 to activate Twist1 and promote formation of tumor-initiating stem-like cells in livers of mice. Gastroenterology 150, 707–719 (2015).

    PubMed  Google Scholar 

  141. Allott, E. H. et al. Elevated tumor expression of PAI-1 and SNAI2 in obese esophageal adenocarcinoma patients and impact on prognosis. Clin. Transl Gastroenterol. 3, e12 (2012).

    PubMed  PubMed Central  Google Scholar 

  142. Allott, E. H. et al. MMP9 expression in oesophageal adenocarcinoma is upregulated with visceral obesity and is associated with poor tumour differentiation. Mol. Carcinog. 52, 144–154 (2013).

    PubMed  Google Scholar 

  143. Giannoni, E. et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 70, 6945–6956 (2010).

    CAS  PubMed  Google Scholar 

  144. Martin, F. et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res. Treat. 124, 317–326 (2010).

    CAS  PubMed  Google Scholar 

  145. Shinagawa, K. et al. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int. J. Cancer 127, 2323–2333 (2010).

    CAS  PubMed  Google Scholar 

  146. Kabashima-Niibe, A. et al. Mesenchymal stem cells regulate epithelial–mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci. 104, 157–164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Strong, A. L. et al. Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res. 17, 1–16 (2015).

    CAS  Google Scholar 

  148. Yao-Borengasser, A. et al. Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells. Oncol. Rep. 33, 2689–2694 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Suarez-Carmona, M., Lesage, J., Cataldo, D. & Gilles, C. EMT and inflammation: inseparable actors of cancer progression. Mol. Oncol. 11, 805–823 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Clark, A. G. & Vignjevic, D. M. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36, 13–22 (2015).

    CAS  PubMed  Google Scholar 

  151. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362 (2003).

    CAS  PubMed  Google Scholar 

  152. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Qiao, L. et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 18, 500 (2008).

    CAS  PubMed  Google Scholar 

  154. Lu, Y. R. et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol. Ther. 7, 245–251 (2008).

    CAS  PubMed  Google Scholar 

  155. Ohlsson, L. B., Varas, L., Kjellman, C., Edvardsen, K. & Lindvall, M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp. Mol. Pathol. 75, 248–255 (2003).

    CAS  PubMed  Google Scholar 

  156. Cousin, B. et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLOS ONE 4, e6278 (2009).

    PubMed  PubMed Central  Google Scholar 

  157. Wu, X.-B. et al. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-κB activation. Sci. Rep. 6, 21420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Guaita-Esteruelas, S., Guma, J., Masana, L. & Borras, J. The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol. Cell Endocrinol. 462, 107–118 (2018).

    CAS  PubMed  Google Scholar 

  159. Dirat, B. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011).

    CAS  PubMed  Google Scholar 

  160. Trevellin, E. et al. Esophageal adenocarcinoma and obesity: peritumoral adipose tissue plays a role in lymph node invasion. Oncotarget 6, 11203–11215 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Rebours, V. et al. Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clin. Cancer Res. 21, 3522–3528 (2015).

    CAS  PubMed  Google Scholar 

  162. Peverill, W., Powell, L. W. & Skoien, R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int. J. Mol. Sci. 15, 8591–8638 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Yu, J., Shen, J., Sun, T. T., Zhang, X. & Wong, N. Obesity, insulin resistance, NASH and hepatocellular carcinoma. Semin. Cancer Biol. 23, 483–491 (2013).

    CAS  PubMed  Google Scholar 

  164. Poli, G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol. Aspects Med. 21, 49–98 (2000).

    CAS  PubMed  Google Scholar 

  165. Wang, Z., Li, Z., Ye, Y., Xie, L. & Li, W. Oxidative stress and liver cancer: etiology and therapeutic targets. Oxid. Med. Cell. Longev. 2016, 7891574 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. Malaguarnera, M., Di Rosa, M., Nicoletti, F. & Malaguarnera, L. Molecular mechanisms involved in NAFLD progression. J. Mol. Med. 87, 679–695 (2009).

    CAS  PubMed  Google Scholar 

  167. Chen, J. S. et al. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: association with MMP-9. Hepatol. Res. 39, 177–186 (2009).

    CAS  PubMed  Google Scholar 

  168. Mullen, M. & Gonzalez-Perez, R. R. Leptin-induced JAK/STAT signaling and cancer growth. Vaccines 4, 26 (2016).

    PubMed Central  Google Scholar 

  169. Tsochatzis, E., Papatheodoridis, G. V. & Archimandritis, A. J. The evolving role of leptin and adiponectin in chronic liver diseases. Am. J. Gastroenterol. 101, 2629–2640 (2006).

    CAS  PubMed  Google Scholar 

  170. Polyzos, S. A., Kountouras, J. & Mantzoros, C. S. Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism 64, 60–78 (2015).

    CAS  PubMed  Google Scholar 

  171. Nepal, S. & Park, P. H. Modulation of cell death and survival by adipokines in the liver. Biol. Pharm. Bull. 38, 961–965 (2015).

    CAS  PubMed  Google Scholar 

  172. He, G. et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17, 286–297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Menon, S. et al. Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci. Signal. 5, ra24 (2012).

    PubMed  PubMed Central  Google Scholar 

  174. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    CAS  PubMed  Google Scholar 

  175. Di Caro, S. et al. Role of body composition and metabolic profile in Barrett’s oesophagus and progression to cancer. Eur. J. Gastroenterol. Hepatol. 28, 251–260 (2016).

    PubMed  PubMed Central  Google Scholar 

  176. Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21, 36–51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Moschen, A. R. et al. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol. Med. 17, 840–845 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Kern, P. A., Ranganathan, S., Li, C., Wood, L. & Ranganathan, G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E745–E751 (2001).

    CAS  PubMed  Google Scholar 

  179. Divella, R., De Luca, R., Abbate, I., Naglieri, E. & Daniele, A. Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J. Cancer 7, 2346–2359 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. O’Sullivan, K. E., Reynolds, J. V., O’Hanlon, C., O’Sullivan, J. N. & Lysaght, J. Could signal transducer and activator of transcription 3 be a therapeutic target in obesity-related gastrointestinal malignancy? J. Gastrointest. Cancer 45, 1–11 (2014).

    PubMed  Google Scholar 

  182. Chang, W. J., Du, Y., Zhao, X., Ma, L. Y. & Cao, G. W. Inflammation-related factors predicting prognosis of gastric cancer. World J. Gastroenterol. 20, 4586–4596 (2014).

    PubMed  PubMed Central  Google Scholar 

  183. Ericksen, R. E. et al. Obesity accelerates Helicobacter felis-induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response. Gut 63, 385–394 (2014).

    CAS  PubMed  Google Scholar 

  184. Galizia, G. et al. Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin. Immunol. 102, 169–178 (2002).

    CAS  PubMed  Google Scholar 

  185. Knupfer, H. & Preiss, R. Serum interleukin-6 levels in colorectal cancer patients—a summary of published results. Int. J. Colorectal Dis. 25, 135–140 (2010).

    PubMed  Google Scholar 

  186. Voronov, E. & Apte, R. N. IL-1 in colon inflammation, colon carcinogenesis and invasiveness of colon cancer. Cancer Microenviron. 8, 187–200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Lysaght, J. et al. Pro-inflammatory and tumour proliferative properties of excess visceral adipose tissue. Cancer Lett. 312, 62–72 (2011).

    CAS  PubMed  Google Scholar 

  188. Rausch, L. K., Netzer, N. C., Hoegel, J. & Pramsohler, S. The linkage between breast cancer, hypoxia, and adipose tissue. Front. Oncol. 7, 211 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. Trayhurn, P., Wang, B. & Wood, I. S. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br. J. Nutr. 100, 227–235 (2008).

    CAS  PubMed  Google Scholar 

  190. Ratushnyy, A., Lobanova, M. & Buravkova, L. B. Expansion of adipose tissue-derived stromal cells at “physiologic” hypoxia attenuates replicative senescence. Cell Biochem. Funct. 35, 232–243 (2017).

    CAS  PubMed  Google Scholar 

  191. Trayhurn, P. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu. Rev. Nutr. 34, 207–236 (2014).

    CAS  PubMed  Google Scholar 

  192. Kang, Y. E. et al. The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLOS ONE 11, e0154003 (2016).

    PubMed  PubMed Central  Google Scholar 

  193. Rasouli, N. Adipose tissue hypoxia and insulin resistance. J. Investig. Med. 64, 830–832 (2016).

    PubMed  Google Scholar 

  194. Weljie, A. M. & Jirik, F. R. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int. J. Biochem. Cell Biol. 43, 981–989 (2011).

    CAS  PubMed  Google Scholar 

  195. van Uden, P., Kenneth, N. S. & Rocha, S. Regulation of hypoxia-inducible factor-1α by NF-κB. Biochem. J. 412, 477–484 (2008).

    PubMed  Google Scholar 

  196. Bakirtzi, K. et al. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. Am. J. Pathol. 184, 3405–3414 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

    CAS  PubMed  Google Scholar 

  198. Baba, Y. et al. HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am. J. Pathol. 176, 2292–2301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Lin, D. & Wu, J. Hypoxia inducible factor in hepatocellular carcinoma: atherapeutic target. World J. Gastroenterol. 21, 12171–12178 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Dai, X. et al. Association of PD-L1 and HIF-1α coexpression with poor prognosis in hepatocellular carcinoma. Transl Oncol. 11, 559–566 (2018).

    PubMed  PubMed Central  Google Scholar 

  201. Catalan, V. et al. IL-32α-induced inflammation constitutes a link between obesity and colon cancer. Oncoimmunology 6, e1328338 (2017).

    PubMed  PubMed Central  Google Scholar 

  202. Yang, Y. et al. Dysregulation of over-expressed IL-32 in colorectal cancer induces metastasis. World J. Surg. Oncol. 13, 146 (2015).

    PubMed  PubMed Central  Google Scholar 

  203. Wincewicz, A., Sulkowska, M., Koda, M. & Sulkowski, S. Clinicopathological significance and linkage of the distribution of HIF-1α and GLUT-1 in human primary colorectal cancer. Pathol. Oncol. Res. 13, 15–20 (2007).

    CAS  PubMed  Google Scholar 

  204. Lolmede, K., Durand de Saint Front, V., Galitzky, J., Lafontan, M. & Bouloumie, A. Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int. J. Obes. Relat. Metab. Disord. 27, 1187–1195 (2003).

    CAS  PubMed  Google Scholar 

  205. Zheng, H. et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 26, 3579–3583 (2006).

    CAS  PubMed  Google Scholar 

  206. Lemoine, A. Y., Ledoux, S. & Larger, E. Adipose tissue angiogenesis in obesity. Thromb. Haemost. 110, 661–668 (2013).

    CAS  PubMed  Google Scholar 

  207. Neels, J. G., Thinnes, T. & Loskutoff, D. J. Angiogenesis in an in vivo model of adipose tissue development. FASEB J. 18, 983–985 (2004).

    CAS  PubMed  Google Scholar 

  208. Fukumura, D. et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ. Res. 93, e88–e97 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Miyazawa-Hoshimoto, S. et al. Roles of degree of fat deposition and its localization on VEGF expression in adipocytes. Am. J. Physiol. Endocrinol. Metab. 288, E1128–E1136 (2005).

    CAS  PubMed  Google Scholar 

  210. Engin, A. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: hypoxia hypothesis. Adv. Exp. Med. Biol. 960, 305–326 (2017).

    CAS  PubMed  Google Scholar 

  211. Tam, J. et al. Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells. PLOS ONE 4, e4974 (2009).

    PubMed  PubMed Central  Google Scholar 

  212. Sun, K. et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl Acad. Sci. USA 109, 5874–5879 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Incio, J. et al. PlGF/VEGFR-1 signaling promotes macrophage polarization and accelerated tumor progression in obesity. Clin. Cancer Res. 22, 2993–3004 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Anagnostoulis, S. et al. Human leptin induces angiogenesis in vivo. Cytokine 42, 353–357 (2008).

    CAS  PubMed  Google Scholar 

  215. Bouloumie, A., Drexler, H. C., Lafontan, M. & Busse, R. Leptin, the product of Ob gene, promotes angiogenesis. Circ. Res. 83, 1059–1066 (1998).

    CAS  PubMed  Google Scholar 

  216. Koda, M. et al. Expression of the obesity hormone leptin and its receptor correlates with hypoxia-inducible factor-1α in human colorectal cancer. Ann. Oncol. 18 (Suppl. 6), 116–119 (2007).

    Google Scholar 

  217. Koda, M., Sulkowska, M., Kanczuga-Koda, L., Surmacz, E. & Sulkowski, S. Overexpression of the obesity hormone leptin in human colorectal cancer. J. Clin. Pathol. 60, 902–906 (2007).

    PubMed  PubMed Central  Google Scholar 

  218. Howard, J. M. et al. Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma. Br. J. Surg. 97, 1020–1027 (2010).

    CAS  PubMed  Google Scholar 

  219. Zhang, C. et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 4, 2935 (2013).

    PubMed  Google Scholar 

  220. Epstein, T., Gatenby, R. A. & Brown, J. S. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLOS ONE 12, e0185085 (2017).

    PubMed  PubMed Central  Google Scholar 

  221. Paspulati, R. M. & Gupta, A. PET/MR imaging in cancers of the gastrointestinal tract. PET Clin. 11, 403–423 (2016).

    PubMed  Google Scholar 

  222. Pisarsky, L. et al. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep. 15, 1161–1174 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Nakajima, E. C. & Van Houten, B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol. Carcinog. 52, 329–337 (2013).

    CAS  PubMed  Google Scholar 

  224. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8, 275–283 (2007).

    CAS  PubMed  Google Scholar 

  225. Phelan, J. J. et al. Examining the connectivity between different cellular processes in the Barrett tissue microenvironment. Cancer Lett. 371, 334–346 (2016).

    CAS  PubMed  Google Scholar 

  226. Huang, D., Li, C. & Zhang, H. Hypoxia and cancer cell metabolism. Acta Biochim. Biophys. Sin. 46, 214–219 (2014).

    CAS  PubMed  Google Scholar 

  227. Johnson, A. R., Milner, J. J. & Makowski, L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol. Rev. 249, 218–238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Krzywinska, E. & Stockmann, C. Hypoxia, metabolism and immune cell function. Biomedicines 6, 56 (2018).

    PubMed Central  Google Scholar 

  229. Lynam-Lennon, N. et al. Excess visceral adiposity induces alterations in mitochondrial function and energy metabolism in esophageal adenocarcinoma. BMC Cancer 14, 907 (2014).

    PubMed  PubMed Central  Google Scholar 

  230. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front. Immunol. 8, 1300 (2017).

    PubMed  PubMed Central  Google Scholar 

  231. Ikhlas, S. & Ahmad, M. Metformin: insights into its anticancer potential with special reference to AMPK dependent and independent pathways. Life Sci. 185, 53–62 (2017).

    CAS  PubMed  Google Scholar 

  232. Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 63, 2985–3023 (2014).

    PubMed  Google Scholar 

  233. LeBlanc, E. S., O’Connor, E., Whitlock, E. P., Patnode, C. D. & Kapka, T. Effectiveness of primary care-relevant treatments for obesity in adults: a systematic evidence review for the US Preventive Services Task Force. Ann. Intern. Med. 155, 434–447 (2011).

    PubMed  Google Scholar 

  234. Colquitt, J. L., Pickett, K., Loveman, E. & Frampton, G. K. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 8, CD003641 (2014).

    Google Scholar 

  235. Gloy, V. L. et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ 347, f5934 (2013).

    PubMed  PubMed Central  Google Scholar 

  236. Reges, O. et al. Association of bariatric surgery using laparoscopic banding, roux-en-Y gastric bypass, or laparoscopic sleeve gastrectomy versus usual care obesity management with all-cause mortality. JAMA 319, 279–290 (2018).

    PubMed  PubMed Central  Google Scholar 

  237. Sjöström, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).

    PubMed  Google Scholar 

  238. Sjöström, L. et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10, 653–662 (2009).

    PubMed  Google Scholar 

  239. Adams, T. D. et al. Cancer incidence and mortality after gastric bypass surgery. Obesity 17, 796–802 (2009).

    PubMed  Google Scholar 

  240. Schauer, D. P. et al. Bariatric surgery and the risk of cancer in a large multisite cohort. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002525 (2017).

    Article  PubMed  Google Scholar 

  241. Campbell, K. L., Landells, C. E., Fan, J. & Brenner, D. R. A systematic review of the effect of lifestyle interventions on adipose tissue gene expression: implications for carcinogenesis. Obesity 25 (Suppl. 2), 40–51 (2017).

    Google Scholar 

  242. Bai, Y. & Sun, Q. Macrophage recruitment in obese adipose tissue. Obes. Rev. 16, 127–136 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Pendyala, S., Neff, L. M., Suarez-Farinas, M. & Holt, P. R. Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis. Am. J. Clin. Nutr. 93, 234–242 (2011).

    CAS  PubMed  Google Scholar 

  245. Todoric, J. et al. Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids. Diabetologia 49, 2109–2119 (2006).

    CAS  PubMed  Google Scholar 

  246. Rowan, B. G. et al. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PLOS ONE 9, e89595 (2014).

    PubMed  PubMed Central  Google Scholar 

  247. Orecchioni, S. et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 73, 5880–5891 (2013).

    CAS  PubMed  Google Scholar 

  248. Bellows, C. F., Zhang, Y., Chen, J., Frazier, M. L. & Kolonin, M. G. Circulation of progenitor cells in obese and lean colorectal cancer patients. Cancer Epidemiol. Biomarkers Prev. 20, 2461–2468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Baglioni, S. et al. Functional differences in visceral and subcutaneous fat pads originate from differences in the adipose stem cell. PLOS ONE 7, e36569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.O., J.L., C.L.D. and J.V.R. researched data for the article. All authors contributed equally to the discussion of content, writing of the article and the reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to John V. Reynolds.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Sullivan, J., Lysaght, J., Donohoe, C.L. et al. Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat Rev Gastroenterol Hepatol 15, 699–714 (2018). https://doi.org/10.1038/s41575-018-0069-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0069-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer