Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer

Abstract

Metabolic surgery is the best treatment for long-term weight loss maintenance and comorbidity control. Metabolic operations were originally intended to change anatomy to alter behaviour, but we now understand that the anatomical changes can modulate physiology to change behaviour. They are no longer considered only mechanically restrictive and/or malabsorptive procedures; rather, they are considered metabolic procedures involving complex physiological changes, whereby gut adaptation influences signalling pathways in several other organs, including the liver and the brain, regulating hunger, satiation, satiety, body weight, glucose metabolism and immune functions. The integrative physiology of gut adaptation after these operations consists of a complex mechanistic web of communication between gut hormones, bile acids, gut microbiota, the brain and both enteric and central nervous systems. The understanding of nutrient sensing via enteroendocrine cells, the enteric nervous system, hypothalamic peptides and adipose tissue and of the role of inflammation has advanced our knowledge of this integrative physiology. In this Review, we focus on the adaptation of gut physiology to the anatomical alterations from Roux-en-Y gastric bypass and vertical sleeve gastrectomy and the influence of these procedures on food intake, weight loss, nonalcoholic fatty liver disease (NAFLD) and cancer. We also aim to demonstrate the underlying mechanisms that could explain how metabolic surgery could be used as a therapeutic option in NAFLD and certain obesity-related cancers.

Key points

  • Gut adaptation after metabolic surgery is pivotal in facilitating weight loss and comorbidity improvement.

  • The complex interactions between the gut–brain–endocrine axis, the gut microbiota and bile acid kinetics are postulated to have a role in reducing food intake and improving metabolic control after metabolic surgery.

  • The integrative physiology of changes in eating behaviour, weight loss, gut hormones, bile acids, gut microbiota and adipocyte-derived factors is also postulated to result in comorbidity improvement.

  • Further research on the mechanistic effects of metabolic surgery on nonalcoholic fatty liver disease and cancer are vital before metabolic surgery can be recommended as a treatment for these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peripheral and central regulators of obesity — a multiorgan disorder.
Fig. 2: The role of the vagus nerve in the gut–brain axis.
Fig. 3: Postulated role of the gut microbiota after metabolic surgery from animal and human models.
Fig. 4: The mechanistic web of metabolic surgery.
Fig. 5: Resolution of liver dysfunction after metabolic surgery.
Fig. 6: The effect of metabolic surgery on obesity-related cancer.

Similar content being viewed by others

References

  1. Flum, D. R. et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N. Engl. J. Med. 361, 445–454 (2009).

    PubMed  Google Scholar 

  2. Buchwald, H. Metabolic surgery (Grune and Stratton, New York, 1978).

    Google Scholar 

  3. O’Brien, P. E., McPhail, T., Chaston, T. B. & Dixon, J. B. Systematic review of medium-term weight loss after bariatric operations. Obes. Surg. 16, 1032–1040 (2006).

    PubMed  Google Scholar 

  4. Brethauer, S. A., Hammel, J. P. & Schauer, P. R. Systematic review of sleeve gastrectomy as staging and primary bariatric procedure. Surg. Obes. Relat. Dis. 5, 469–475 (2009).

    PubMed  Google Scholar 

  5. Wolnerhanssen, B. et al. Enteroendocrine cell population is reduced in obesity and restored after sleeve gastrectomy (LSG). Br. J. Surg. 102, 10 (2015).

    Google Scholar 

  6. Mumphrey, M. B., Patterson, L. M., Zheng, H. & Berthoud, H. R. Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol. Motil. 25, e70–e79 (2013).

    CAS  PubMed  Google Scholar 

  7. le Roux, C. W. et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann. Surg. 252, 50–56 (2010).

    PubMed  Google Scholar 

  8. Nora, M., Morais, T., Almeida, R., Guimaraes, M. & Monteiro, M. P. Should Roux-en-Y gastric bypass biliopancreatic limb length be tailored to achieve improved diabetes outcomes? Med. (Baltimore) 96, e8859 (2017).

    Google Scholar 

  9. Pournaras, D. J. et al. The gut hormone response following Roux-en-Y gastric bypass: cross-sectional and prospective study. Obes. Surg. 20, 56–60 (2010).

    PubMed  Google Scholar 

  10. Park, M. Y. et al. Gut microbiota-associated bile acid deconjugation accelerates hepatic steatosis in ob/ob mice. J. Appl. Microbiol. 121, 800–810 (2016).

    CAS  PubMed  Google Scholar 

  11. Zheng, X. et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol. 15, 120 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Begley, M., Gahan, C. G. M. & Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).

    CAS  PubMed  Google Scholar 

  13. Bose, M. et al. Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J. Diabetes 2, 47–55 (2009).

    PubMed Central  Google Scholar 

  14. Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    CAS  PubMed  Google Scholar 

  16. Latorre, R., Sternini, C., De Giorgio, R. & Greenwood-Van Meerveld, B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).

    CAS  PubMed  Google Scholar 

  17. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Richards, P. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

    CAS  PubMed  Google Scholar 

  19. de Heuvel, E., Wallace, L., Sharkey, K. A. & Sigalet, D. L. Glucagon-like peptide 2 induces vasoactive intestinal polypeptide expression in enteric neurons via phophatidylinositol 3-kinase-gamma signaling. Am. J. Physiol. Endocrinol. Metab. 303, E994–E1005 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Patterson, L. M., Zheng, H. & Berthoud, H. R. Vagal afferents innervating the gastrointestinal tract and CCKA-receptor immunoreactivity. Anat. Rec 266, 10–20 (2002).

    PubMed  Google Scholar 

  21. Nakagawa, A. et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton. Neurosci. 110, 36–43 (2004).

    CAS  PubMed  Google Scholar 

  22. Seeley, R. J., Schwartz, M. W., Porte, D., Woods, S. C. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    PubMed  Google Scholar 

  23. Le Roux, C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243, 108–114 (2006).

    PubMed  PubMed Central  Google Scholar 

  24. Theodorakis, M. J. et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am. J. Physiol. Endocrinol. Metab. 290, E550–E559 (2006).

    CAS  PubMed  Google Scholar 

  25. Group, T. L. A. R. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Google Scholar 

  26. Sumithran, P. et al. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365, 1597–1604 (2011).

    CAS  PubMed  Google Scholar 

  27. Hofmann, W., Guido, M.v. K., Stroebe, W., Ramanathan, S. & Aarts, H. As pleasure unfolds: hedonic responses to tempting food. Psychol. Sci. 21, 1863–1870 (2010).

    PubMed  Google Scholar 

  28. Miras, A. D. et al. Gastric bypass surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task. Am. J. Clin. Nutr. 96, 467–473 (2012).

    CAS  PubMed  Google Scholar 

  29. Wilson-Pérez, H. E. et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int. J. Obes. 37, 288–295 (2013).

    Google Scholar 

  30. Bjorklund, P., Lonroth, H. & Fandriks, L. Manometry of the upper gut following roux-en-y gastric bypass indicates that the gastric pouch and roux limb act as a common cavity. Obes. Surg. 25, 1833–1841 (2015).

    PubMed  Google Scholar 

  31. Kolakowski, S. Jr., Kirkland, M. L. & Schuricht, A. L. Routine postoperative upper gastrointestinal series after Roux-en-Y gastric bypass: determination of whether it is necessary. Arch. Surg. 142, 930–934; discussion 934 (2007).

    PubMed  Google Scholar 

  32. Vigneshwaran, B. et al. Impact of sleeve gastrectomy on type 2 diabetes mellitus, gastric emptying time, glucagon-like peptide 1 (GLP-1), ghrelin and leptin in non-morbidly obese subjects with BMI 30–35.0 kg/m2: a prospective study. Obes. Surg. 26, 2817–2823 (2016).

    CAS  PubMed  Google Scholar 

  33. Sista, F. et al. The effect of sleeve gastrectomy on GLP-1 secretion and gastric emptying: a prospective study. Surg. Obes. Relat. Dis. 13, 7–14 (2017).

    PubMed  Google Scholar 

  34. Nikkie van der, W. et al. Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine. PLoS ONE 9, e107531 (2014).

    Google Scholar 

  35. Dirksen, C. et al. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol. Motil. 25, 346–e255 (2013).

    CAS  PubMed  Google Scholar 

  36. Parker, H. E. et al. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br. J. Pharmacol. 165, 414–423 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roberts, R. E. et al. The relationship between postprandial bile acid concentration, GLP-1, PYY and ghrelin. Clin. Endocrinol. 74, 67–72 (2011).

    CAS  Google Scholar 

  38. Shah, S. et al. Prospective controlled study of effect of laparoscopic sleeve gastrectomy on small bowel transit time and gastric emptying half-time in morbidly obese patients with type 2 diabetes mellitus. Surg. Obes. Relat. Dis. 6, 152–157 (2010).

    PubMed  Google Scholar 

  39. Dirksen, C. et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int. J. Obes. 37, 1452–1459 (2013).

    CAS  Google Scholar 

  40. le Roux, C. W. et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg. 246, 780–785 (2007).

    PubMed  Google Scholar 

  41. Goldstone, A. P. et al. Link between increased satiety gut hormones and reduced food reward after gastric bypass surgery for obesity. J. Clin. Endocrinol. Metab. 101, 599–609 (2016).

    CAS  PubMed  Google Scholar 

  42. Pournaras, D. J. et al. Effect of bypassing the proximal gut on gut hormones involved with glycemic control and weight loss. Surg. Obes. Relat. Dis. 8, 371–374 (2012).

    PubMed  Google Scholar 

  43. Neary, N. M. et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 146, 5120–5127 (2005).

    CAS  PubMed  Google Scholar 

  44. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    CAS  PubMed  Google Scholar 

  45. Chandarana, K. et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY. Diabetes 60, 810–818 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Werling, M. et al. Preoperative assessment of gut hormones does not correlate to weight loss after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 10, 822–828 (2014).

    PubMed  Google Scholar 

  47. Wilson-Perez, H. E. et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like Peptide 1 receptor deficiency. Diabetes 62, 2380–2385 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chambers, A. P. et al. Similar effects of roux-en-Y gastric bypass and vertical sleeve gastrectomy on glucose regulation in rats. Physiol. Behav. 105, 120–123 (2011).

    CAS  PubMed  Google Scholar 

  49. Svane, M. S. et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int. J. Obes. 40, 1699–1706 (2016).

    CAS  Google Scholar 

  50. Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28, 203–209 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Buhmann, H., le Roux, C. W. & Bueter, M. The gut–brain axis in obesity. Best Pract. Res. Clin. Gastroenterol. 28, 559–571 (2014).

    CAS  PubMed  Google Scholar 

  52. Dorland, W. A. N. Dorland’s illustrated medical dictionary (Elsevier Saunders, Philadelphia, PA, 2012).

    Google Scholar 

  53. Soret, R. et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138, 1772–1782 (2010).

    CAS  PubMed  Google Scholar 

  54. Neunlist, M. et al. Glycine activates myenteric neurones in adult guinea-pigs. J. Physiol. 536, 727–739 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, M., Seino, S. & Kirchgessner, A. L. Identification and characterization of glucoresponsive neurons in the enteric nervous system. J. Neurosci. 19, 10305–10317 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kiciak, A., Wolinski, J., Borycka, K., Zabielski, R. & Bielecki, K. Roux-en-Y or ‘uncut’ Roux procedure? Relation of intestinal migrating motor complex recovery to the preservation of the network of interstitial cells of Cajal in pigs. Exp. Physiol. 92, 399–408 (2007).

    PubMed  Google Scholar 

  57. Reichardt, F., Krueger, D. & Schemann, M. Leptin excites enteric neurons of guinea-pig submucous and myenteric plexus. Neurogastroenterol. Motil. 23, e165–e170 (2011).

    CAS  PubMed  Google Scholar 

  58. Slattery, J. A., Page, A. J., Dorian, C. L., Brierley, S. M. & Blackshaw, L. A. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors. J. Physiol. 577, 295–306 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Poole, D. P. et al. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol. Motil. 22, 814–825 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Berthoud, H.-R. The vagus nerve, food intake and obesity. Regulatory Pept. 149, 15–25 (2008).

    CAS  Google Scholar 

  61. Iggo, A. Gastric mucosal chemoreceptors with vagal afferent fibres in the cat. Q. J. Exp. Physiol. Cogn. Med. Sci. 42, 398–409 (1957).

    CAS  PubMed  Google Scholar 

  62. Berthoud, H. R., Kressel, M., Raybould, H. E. & Neuhuber, W. L. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat. Embryol. 191, 203–212 (1995).

    CAS  Google Scholar 

  63. Fu-Cheng, X. et al. Mechanisms of peptide YY release induced by an intraduodenal meal in rats: neural regulation by proximal gut. Pflügers Arch. 433, 571–579 (1997).

    CAS  PubMed  Google Scholar 

  64. Elliott, R. M. et al. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J. Endocrinol. 138, 159–166 (1993).

    CAS  PubMed  Google Scholar 

  65. Plamboeck, A. et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1117–1127 (2013).

    CAS  PubMed  Google Scholar 

  66. Berthoud, H.-R., Lynn, P. A. & Blackshaw, L. A. Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, 1371–1381 (2001).

    Google Scholar 

  67. Phillips, R. J. & Powley, T. L. Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res. Brain Res. Rev. 34, 1–26 (2000).

    CAS  PubMed  Google Scholar 

  68. Zagorodnyuk, V. P., Chen, B. N. & Simon, J. H. B. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J. Physiol. 534, 255–268 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kral, J. G., Gortz, L., Hermansson, G. & Wallin, G. S. Gastroplasty for obesity: long-term weight loss improved by vagotomy. World J. Surg. 17, 75–78 (1993).

    CAS  PubMed  Google Scholar 

  70. Ikramuddin, S. et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA 312, 915–922 (2014).

    CAS  PubMed  Google Scholar 

  71. le Roux, C. W. et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J. Clin. Endocrinol. Metab. 90, 4521–4524 (2005).

    PubMed  Google Scholar 

  72. Peters, J. H. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J. Comp. Neuro. 521, 3584–3599 (2013).

    Google Scholar 

  73. Hao, Z. et al. Vagal innervation of intestine contributes to weight loss After Roux-en-Y gastric bypass surgery in rats. Obes. Surg. 24, 2145–2151 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Ballsmider, L. A. et al. Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural Plast. 2015, 601985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Okafor, P. N. et al. Effect of vagotomy during Roux-en-Y gastric bypass surgery on weight loss outcomes. Obes. Res. Clin. Pract. 9, 274–280 (2015).

    PubMed  Google Scholar 

  76. Qvigstad, E. et al. A novel technique of Roux-en-Y gastric bypass reversal for postprandial hyperinsulinemic hypoglycaemia: a case report. Int. J. Surg. Case Rep. 21, 91–94 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, T. et al. Effects of sleeve gastrectomy plus trunk vagotomy compared with sleeve gastrectomy on glucose metabolism in diabetic rats. World J. Gastroenterol. 23, 3269–3278 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Norgren, R. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3, 207–218 (1978).

    CAS  PubMed  Google Scholar 

  79. Mullier, A., Bouret, S. G., Prevot, V. & Dehouck, B. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J. Comp. Neurol. 518, 943–962 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ciofi, P. et al. Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology 150, 5509–5519 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rodríguez, E. M., Blázquez, J. L. & Guerra, M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides 31, 757–776 (2010).

    PubMed  Google Scholar 

  82. Norsted, E., Gömüç, B. & Meister, B. Protein components of the blood–brain barrier (BBB) in the mediobasal hypothalamus. J. Chem. Neuroanat. 36, 107–121 (2008).

    CAS  PubMed  Google Scholar 

  83. Bewick, G. A. et al. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) and agouti-related protein (AgRP) neurons coexpress the NOP1 receptor and nociceptin alters CART and AgRP release. Endocrinology 146, 3526–3534 (2005).

    CAS  PubMed  Google Scholar 

  84. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    CAS  PubMed  Google Scholar 

  85. Xu, A. W. et al. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J. Clin. Invest. 115, 951–958 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Larsen, P. J., Tang-Christensen, M., Holst, J. J. & Orskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77, 257–270 (1997).

    CAS  PubMed  Google Scholar 

  87. Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY3–36. N. Engl. J. Med. 349, 941–948 (2003).

    CAS  PubMed  Google Scholar 

  88. Koda, S. et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146, 2369–2375 (2005).

    CAS  PubMed  Google Scholar 

  89. Batterham, R. L. et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650–654 (2002).

    CAS  PubMed  Google Scholar 

  90. Schwartz, M. W. et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123 (1997).

    CAS  PubMed  Google Scholar 

  91. Tao, Y. X. The Melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr. Rev. 31, 506–543 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bonnefond, A. et al. Eating behavior, low-frequency functional mutations in the melanocortin-4 receptor (MC4R) gene, and outcomes of bariatric operations: a 6-year prospective study. Diabetes Care 39, 1384–1392 (2016).

    CAS  PubMed  Google Scholar 

  93. Jelin, E. B. et al. Melanocortin-4 receptor signaling is not required for short-term weight loss after sleeve gastrectomy in pediatric patients. Int. J. Obes. 40, 550–553 (2016).

    CAS  Google Scholar 

  94. Sogin, M. L. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    PubMed  Google Scholar 

  95. Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Furet, J.-P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Murphy, R. et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes. Surg. 27, 917–925 (2017).

    PubMed  Google Scholar 

  98. Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 5, 178ra141 (2013).

    Google Scholar 

  99. Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tazoe, H. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30, 149–156 (2009).

    CAS  PubMed  Google Scholar 

  101. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nohr, M. K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells versus FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552–3564 (2013).

    PubMed  Google Scholar 

  103. Tulika Arora, F. S. et al. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME J. 11, 2035–2046 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Pournaras, D. J. et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 153, 3613–3619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stefater, M. A. et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology 141, 939–949 (2011).

    CAS  PubMed  Google Scholar 

  106. Kohli, R. et al. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J. Clin. Endocrinol. Metab. 98, E708–E712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Patti, M. E. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity 17, 1671–1677 (2009).

    CAS  PubMed  Google Scholar 

  108. Risstad, H. et al. Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial. Surg. Obes. Relat. Dis. 13, 1544–1553 (2017).

    PubMed  Google Scholar 

  109. Brighton, C. A. et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology 156, 3961–3970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329, 386–390 (2005).

    CAS  PubMed  Google Scholar 

  111. Ryan, K. K. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183–183 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Holt, J. A. et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17, 1581–1591 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Jansen, P. L. et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig. Dis. 29, 48–51 (2011).

    PubMed  Google Scholar 

  114. Fu, L. et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145, 2594–2603 (2004).

    CAS  PubMed  Google Scholar 

  115. Keitel, V. et al. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58, 1794–1805 (2010).

    PubMed  Google Scholar 

  116. Fukiya, S. et al. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces. FEMS Microbiol. Lett. 293, 263–270 (2009).

    CAS  PubMed  Google Scholar 

  117. Pournaras, D. J. & le Roux, C. W. Are bile acids the new gut hormones? Lessons from weight loss surgery models. Endocrinology 154, 2255–2256 (2013).

    CAS  PubMed  Google Scholar 

  118. Neff, K. J. et al. Beyond weight loss: evaluating the multiple benefits of bariatric surgery after Roux-en-Y gastric bypass and adjustable gastric band. Obes. Surg. 24, 684–691 (2014).

    PubMed  Google Scholar 

  119. Biemann, R. et al. Serum bile acids and GLP-1 decrease following telemetric induced weight loss: results of a randomized controlled trial. Sci. Rep. 6, 30173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Watanabe, M. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408–1418 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sayiner, M., Koenig, A., Henry, L. & Younossi, Z. M. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin. Liver Dis. 20, 205–214 (2016).

    PubMed  Google Scholar 

  122. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    PubMed  Google Scholar 

  123. Setiawan, V. W. et al. Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: the multiethnic cohort. Hepatology 64, 1969–1977 (2016).

    PubMed  Google Scholar 

  124. Promrat, K. et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51, 121–129 (2010).

    CAS  PubMed  Google Scholar 

  125. Harrison, S. A., Fecht, W., Brunt, E. M. & Neuschwander-Tetri, B. A. Orlistat for overweight subjects with nonalcoholic steatohepatitis: a randomized, prospective trial. Hepatology 49, 80–86 (2009).

    CAS  PubMed  Google Scholar 

  126. Bowman, T. A. et al. Caloric restriction reverses hepatic insulin resistance and steatosis in rats with low aerobic capacity. Endocrinology 151, 5157–5164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lassailly, G. et al. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology 149, 379–388 (2015).

    PubMed  Google Scholar 

  128. Praveen Raj, P. et al. The effect of surgically induced weight loss on nonalcoholic fatty liver disease in morbidly obese Indians: “NASHOST” prospective observational trial. Surg. Obes. Relat. Dis. 11, 1315–1322 (2015).

    CAS  PubMed  Google Scholar 

  129. Tai, C. M. et al. Improvement of nonalcoholic fatty liver disease after bariatric surgery in morbidly obese Chinese patients. Obes. Surg. 22, 1016–1021 (2012).

    PubMed  Google Scholar 

  130. Yu, H., Jia, W. & Guo, Z. K. Reducing liver fat by low carbohydrate caloric restriction targets hepatic glucose production in non-diabetic obese adults with non-alcoholic fatty liver disease. J. Clin. Med. 3, 1050–1063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Petersen, K. F. et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54, 603–608 (2005).

    CAS  PubMed  Google Scholar 

  132. Bell, L. N. et al. Bariatric surgery-induced weight loss reduces hepatic lipid peroxidation levels and affects hepatic cytochrome P-450 protein content. Ann. Surg. 251, 1041–1048 (2010).

    PubMed  Google Scholar 

  133. Pournaras, D. J. et al. Improved glucose metabolism after gastric bypass: evolution of the paradigm. Surg. Obes. Relat. Dis. 12, 1457–1465 (2016).

    PubMed  Google Scholar 

  134. Al-Mrabeh, A., Hollingsworth, K. G., Steven, S. & Taylor, R. Morphology of the pancreas in type 2 diabetes: effect of weight loss with or without normalisation of insulin secretory capacity. Diabetologia 59, 1753–1759 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. Yamashita, H. et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl Acad. Sci. USA 98, 9116–9121 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Musso, G., Gambino, R., Pacini, G., De Michieli, F. & Cassader, M. Prolonged saturated fat-induced, glucose-dependent insulinotropic polypeptide elevation is associated with adipokine imbalance and liver injury in nonalcoholic steatohepatitis: dysregulated enteroadipocyte axis as a novel feature of fatty liver. Am. J. Clin. Nutr. 89, 558–567 (2009).

    CAS  PubMed  Google Scholar 

  137. Nomura, K. & Yamanouchi, T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J. Nutr. Biochem. 23, 203–208 (2012).

    CAS  PubMed  Google Scholar 

  138. le Roux, C. W. et al. Gastric bypass reduces fat intake and preference. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1057–1066 (2011).

    PubMed  PubMed Central  Google Scholar 

  139. Russell-Jones, D. & Gough, S. Recent advances in incretin-based therapies. Clin. Endocrinol. 77, 489–499 (2012).

    CAS  Google Scholar 

  140. Pachikian, B. D. et al. Prebiotic approach alleviates hepatic steatosis: Implication of fatty acid oxidative and cholesterol synthesis pathways. Mol. Nutr. Food Res. 57, 347–359 (2013).

    CAS  PubMed  Google Scholar 

  141. Svegliati-Baroni, G. et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 31, 1285–1297 (2011).

    CAS  PubMed  Google Scholar 

  142. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    CAS  PubMed  Google Scholar 

  143. Bechmann, L. P. et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 57, 1394–1406 (2013).

    CAS  PubMed  Google Scholar 

  144. Zhang, S., Wang, J., Liu, Q. & Harnish, D. C. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 51, 380–388 (2009).

    CAS  PubMed  Google Scholar 

  145. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    CAS  PubMed  Google Scholar 

  146. Bhutta, H. Y. et al. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. PLoS ONE 10, e0122273 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    CAS  PubMed  Google Scholar 

  148. Potthoff, Matthew,J. et al. FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metab. 13, 729–738 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Haluzíková, D. et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects: FGF-19 and -21 after sleeve gastrectomy. Obesity 21, 1335–1342 (2013).

    PubMed  Google Scholar 

  150. Myronovych, A. et al. The role of small heterodimer partner in nonalcoholic fatty liver disease improvement after sleeve gastrectomy in mice. Obesity 22, 2301–2311 (2014).

    CAS  PubMed  Google Scholar 

  151. Lau, E., Carvalho, D. & Freitas, P. Gut microbiota: association with NAFLD and metabolic disturbances. BioMed Res. Int. 2015, 979515–979519 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Spruss, A. et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094–1104 (2009).

    CAS  PubMed  Google Scholar 

  153. Sarkola, T. & Eriksson, C. J. Effect of 4-methylpyrazole on endogenous plasma ethanol and methanol levels in humans. Alcohol Clin. Exp. Res. 25, 513–516 (2001).

    CAS  PubMed  Google Scholar 

  154. Albano, E. Alcohol, oxidative stress and free radical damage. Proc. Nutr. Soc. 65, 278–290 (2006).

    CAS  PubMed  Google Scholar 

  155. da Costa, K. A., Garner, S. C., Chang, J. & Zeisel, S. H. Effects of prolonged (1 year) choline deficiency and subsequent re-feeding of choline on 1,2-sn-diradylglycerol, fatty acids and protein kinase C in rat liver. Carcinogenesis 16, 327–334 (1995).

    PubMed  Google Scholar 

  156. Spencer, M. D. et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140, 976–986 (2011).

    CAS  PubMed  Google Scholar 

  157. Exley, M. A., Hand, L., O’Shea, D. & Lynch, L. Interplay between the immune system and adipose tissue in obesity. J. Endocrinol. 223, R41–R48 (2014).

    CAS  PubMed  Google Scholar 

  158. Bugianesi, E. Non-alcoholic steatohepatitis and cancer. Clin. Liver Dis. 11, 191–207 (2007).

    CAS  PubMed  Google Scholar 

  159. Galanakis, C. G. et al. Computed tomography-based assessment of abdominal adiposity changes and their impact on metabolic alterations following bariatric surgery. World J. Surg. 39, 417–423 (2015).

    PubMed  Google Scholar 

  160. Moschen, A. R. et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor α expression. Gut 59, 1259–1264 (2010).

    CAS  PubMed  Google Scholar 

  161. Adachi, M. & Brenner, D. A. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 47, 677–685 (2008).

    CAS  PubMed  Google Scholar 

  162. Schaffler, A., Scholmerich, J. & Buchler, C. Mechanisms of disease: adipocytokines and visceral adipose tissue — emerging role in nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 273–280 (2005).

    PubMed  Google Scholar 

  163. Kamada, Y. et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 125, 1796–1807 (2003).

    CAS  PubMed  Google Scholar 

  164. Gressner, O. A. et al. Connective tissue growth factor is a Smad2 regulated amplifier of transforming growth factor β actions in hepatocytes — but without modulating bone morphogenetic protein 7 signaling. Hepatology 49, 2021–2030 (2009).

    CAS  PubMed  Google Scholar 

  165. Xu, X. J. et al. Improved insulin sensitivity 3 months after RYGB surgery is associated with increased subcutaneous adipose tissue AMPK activity and decreased oxidative stress. Diabetes 64, 3155–3159 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Salminen, A., Hyttinen, J. M. T. & Kaarniranta, K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J. Mol. Med. 89, 667–676 (2011).

    CAS  PubMed  Google Scholar 

  167. Basen-Engquist, K. & Chang, M. Obesity and cancer risk: recent review and evidence. Curr. Oncol. Rep. 13, 71–76 (2011).

    PubMed  PubMed Central  Google Scholar 

  168. Eliassen, A. H., Colditz, G. A., Rosner, B., Willett, W. C. & Hankinson, S. E. Adult weight change and risk of postmenopausal breast cancer. JAMA 296, 193–201 (2006).

    CAS  PubMed  Google Scholar 

  169. Nagle, C. M. et al. Impact of weight change and weight cycling on risk of different subtypes of endometrial cancer. Eur. J. Cancer 49, 2717–2726 (2013).

    CAS  PubMed  Google Scholar 

  170. Chlebowski, R. T. et al. Dietary fat reduction and breast cancer outcome: Interim efficacy results from the women’s intervention nutrition study. J. Natl Cancer Institute 98, 1767–1776 (2006).

    Google Scholar 

  171. Pierce, J. P. et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women’s Healthy Eating and Living (WHEL) Randomized Trial. JAMA 298, 289–298 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    CAS  PubMed  Google Scholar 

  173. Sjöström, L. et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet. Oncol. 10, 653–662 (2009).

    PubMed  Google Scholar 

  174. Anveden, Å. et al. Long-term incidence of female-specific cancer after bariatric surgery or usual care in the Swedish Obese Subjects Study. Gynecol. Oncol. 145, 224–229 (2016).

    Google Scholar 

  175. Blouin, K. et al. Pathways of adipose tissue androgen metabolism in women: depot differences and modulation by adipogenesis. Am. J. Physiol. Endocrinol. Metab. 296, E244–E255 (2009).

    CAS  PubMed  Google Scholar 

  176. Kaaks, R. & Calle, E. E. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    PubMed  Google Scholar 

  177. Legro, R. S. et al. Effects of gastric bypass surgery on female reproductive function. J. Clin. Endocrinol. Metab. 97, 4540–4548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Bastard, J.-P. et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Network 17, 4–12 (2006).

    CAS  Google Scholar 

  179. Moulin, C. M., Marguti, I., Peron, J. P., Halpern, A. & Rizzo, L. V. Bariatric surgery reverses natural killer (NK) cell activity and NK-related cytokine synthesis impairment induced by morbid obesity. Obes. Surg. 21, 112–118 (2011).

    PubMed  Google Scholar 

  180. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    PubMed  Google Scholar 

  181. Hicks, B. M. et al. Glucagon-like peptide-1 analogues and risk of breast cancer in women with type 2 diabetes: population based cohort study using the UK Clinical Practice Research Datalink. BMJ 355 (2016).

  182. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Bjerre Knudsen, L. et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 151, 1473–1486 (2010).

    PubMed  Google Scholar 

  184. Egan, A. G. et al. Pancreatic safety of incretin-based drugs — FDA and EMA assessment. N. Engl. J. Med. 370, 794–797 (2014).

    CAS  PubMed  Google Scholar 

  185. Trevisan, M. et al. Markers of insulin resistance and colorectal cancer mortality. Cancer Epidemiol. Biomarkers Prev. 10, 937–941 (2001).

    CAS  PubMed  Google Scholar 

  186. Yamada, T., De Souza, A. T., Finkelstein, S. & Jirtle, R. L. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis. Proc. Natl Acad. Sci. USA 94, 10351–10355 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, F., Beezhold, K. & Castranova, V. JNK1, a potential therapeutic target for hepatocellular carcinoma. Biochim. Biophys. Acta 1796, 242–251 (2009).

    CAS  PubMed  Google Scholar 

  188. Ignacio Barrasa, J. et al. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells. Apoptosis 16, 1054–1067 (2011).

    PubMed  Google Scholar 

  189. Tao, W. et al. Colorectal cancer prognosis following obesity surgery in a population-based cohort study. Obes. Surg. 27, 1233–1239 (2017).

    PubMed  Google Scholar 

  190. Lax, S. et al. Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int. J. Cancer 130, 2232–2239 (2012).

    CAS  PubMed  Google Scholar 

  191. Cao, W. et al. Expression of bile acid receptor TGR5 in gastric adenocarcinoma. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G322–327 (2013).

    CAS  PubMed  Google Scholar 

  192. Hong, J. et al. Role of a novel bile acid receptor TGR5 in the development of oesophageal adenocarcinoma. Gut 59, 170–180 (2010).

    CAS  PubMed  Google Scholar 

  193. Casaburi, I. et al. Chenodeoxycholic acid through a TGR5-dependent CREB signaling activation enhances cyclin D1 expression and promotes human endometrial cancer cell proliferation. Cell Cycle 11, 2699–2710 (2012).

    CAS  PubMed  Google Scholar 

  194. Yang, J. I. et al. Bile acid-induced TGR5-dependent c-Jun-N terminal kinase activation leads to enhanced caspase 8 activation in hepatocytes. Biochem. Biophys. Res. Commun. 361, 156–161 (2007).

    CAS  PubMed  Google Scholar 

  195. Chen, M. C., Chen, Y. L., Wang, T. W., Hsu, H. P. & Lai, M. D. Membrane bile acid receptor TGR5 predicts good prognosis in ampullary adenocarcinoma patients with hyperbilirubinemia. Oncol. Rep. 36, 1997–2008 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Phelan, J. P., Reen, F. J., Dunphy, N., O’Connor, R. & O’Gara, F. Bile acids destabilise HIF-1α and promote anti-tumour phenotypes in cancer cell models. BMC Cancer 16, 476 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Lee, W. S. et al. Ursodeoxycholic acid induces death receptor-mediated apoptosis in prostate cancer cells. J. Cancer Prev. 22, 16–21 (2017).

    PubMed  PubMed Central  Google Scholar 

  198. Miyoshi, Y. et al. Association of serum adiponectin levels with breast cancer risk. Clin. Cancer Res. 9, 5699–5704 (2003).

    CAS  PubMed  Google Scholar 

  199. Cust, A. E. et al. Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women. J. Clin. Endocrinol. Metab. 92, 255–263 (2007).

    CAS  PubMed  Google Scholar 

  200. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    CAS  PubMed  Google Scholar 

  201. Phillips, S. A. et al. Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 52, 667–674 (2003).

    CAS  PubMed  Google Scholar 

  202. Hancke, K., Grubeck, D., Hauser, N., Kreienberg, R. & Weiss, J. M. Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients. Breast Cancer Res. Treat. 119, 367–367 (2010).

    CAS  PubMed  Google Scholar 

  203. Cao, L. et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142, 52–64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Brakenhielm, E. et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl Acad. Sci. USA 101, 2476–2481 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu, Y. et al. Preventing oxidative stress: a new role for XBP1. Cell Death Differ. 16, 847–857 (2009).

    CAS  PubMed  Google Scholar 

  206. Kiraly, O., Gong, G., Olipitz, W., Muthupalani, S. & Engelward, B. P. Inflammation-induced cell proliferation potentiates dna damage-induced mutations in vivo. PLoS Genet 11, e1004901 (2015).

    PubMed  PubMed Central  Google Scholar 

  207. Vázquez, L. A. et al. Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery. J. Clin. Endocrinol. Metabolism 90, 316–322 (2005).

    Google Scholar 

  208. Uzun, H. et al. Changes in leptin, plasminogen activator factor and oxidative stress in morbidly obese patients following open and laparoscopic Swedish adjustable gastric banding. Obes. Surg. 14, 659–665 (2004).

    PubMed  Google Scholar 

  209. Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Ohsugi, M. et al. CD8 +  effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    PubMed  Google Scholar 

  211. Bertola, A. et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61, 2238–2247 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Strissel, K. J. et al. T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity 18, 1918–1925 (2010).

    CAS  PubMed  Google Scholar 

  213. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    PubMed  PubMed Central  Google Scholar 

  214. Kisakol, G. et al. Effect of surgical weight loss on free radical and antioxidant balance: a preliminary report. Obes. Surg. 12, 795–800; discussion 800–801 (2002).

    PubMed  Google Scholar 

  215. Lynch, L. et al. iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy. Cell Metab. 24, 510–519 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Mingrone, G. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 366, 1577–1585 (2012).

    CAS  PubMed  Google Scholar 

  217. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes — 5-year outcomes. N. Engl. J. Med. 376, 641–651 (2017).

    PubMed  PubMed Central  Google Scholar 

  218. Sjostrom, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351, 2683–2693 (2004).

    PubMed  Google Scholar 

  219. Sjöström, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).

    PubMed  Google Scholar 

  220. Buchwald, H. et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 292, 1724–1737 (2004).

    CAS  PubMed  Google Scholar 

  221. Asztalos, B. F. et al. Effects of weight loss, induced by gastric bypass surgery, on HDL remodeling in obese women. J. Lipid Res. 51, 2405–2412 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Haines, K. L. et al. Objective evidence that bariatric surgery improves obesity-related obstructive sleep apnea. Surgery 141, 354–358 (2007).

    PubMed  Google Scholar 

  223. Sjostrom, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    PubMed  Google Scholar 

  224. Karlsson, J., Taft, C., Ryden, A., Sjostrom, L. & Sullivan, M. Ten-year trends in health-related quality of life after surgical and conventional treatment for severe obesity: the SOS intervention study. Int. J. Obes. 31, 1248–1261 (2007).

    CAS  Google Scholar 

  225. Date, Y. et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141, 4255–4261 (2000).

    CAS  PubMed  Google Scholar 

  226. Lawrence, C. B., Snape, A. C., Baudoin, F. M. & Luckman, S. M. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 143, 155–162 (2002).

    CAS  PubMed  Google Scholar 

  227. Tymitz, K., Engel, A., McDonough, S., Hendy, M. P. & Kerlakian, G. Changes in ghrelin levels following bariatric surgery: review of the literature. Obes. Surg. 21, 125–130 (2011).

    PubMed  Google Scholar 

  228. Cummings, D. E. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002).

    PubMed  Google Scholar 

  229. Cote, C. D., Zadeh-Tahmasebi, M., Rasmussen, B. A., Duca, F. A. & Lam, T. K. T. Hormonal signaling in the gut. J. Biol. Chem. 289, 11642–11649 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kellum, J. M. et al. Gastrointestinal hormone responses to meals before and after gastric bypass and vertical banded gastroplasty. Ann. Surg. 211, 763–770 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Rubino, F. et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann. Surg. 240, 236–242 (2004).

    PubMed  PubMed Central  Google Scholar 

  232. Jacobsen, S. H. et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and β-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes. Surg. 22, 1084–1096 (2012).

    CAS  PubMed  Google Scholar 

  233. Peterli, R. et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes. Surg. 22, 740–748 (2012).

    PubMed  PubMed Central  Google Scholar 

  234. Mallipedhi, A. et al. Temporal changes in glucose homeostasis and incretin hormone response at 1 and 6 months after laparoscopic sleeve gastrectomy. Surg. Obes. Relat. Dis. 10, 860–869 (2014).

    PubMed  Google Scholar 

  235. Moran-Atkin, E., Brody, F., Fu, S. W. & Rojkind, M. Changes in GIP gene expression following bariatric surgery. Surg. Endosc. 27, 2492–2497 (2013).

    PubMed  Google Scholar 

  236. Svane, M. S. et al. Effects of endogenous GLP-1 and GIP on glucose tolerance after Roux-en-Y gastric bypass surgery. Am. J. Physiol. Endocrinol. Metab. 310, E505–E514 (2016).

    PubMed  Google Scholar 

  237. Dube, P. E. & Brubaker, P. L. Nutrient, neural and endocrine control of glucagon-like peptide secretion. Horm. Metab. Res. 36, 755–760 (2004).

    CAS  PubMed  Google Scholar 

  238. Romero, F. et al. Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-En-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg. Endosc. 26, 2231–2239 (2012).

    PubMed  Google Scholar 

  239. Sloth, B., Holst, J. J., Flint, A., Gregersen, N. T. & Astrup, A. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am. J. Physiol. Endocrinol. Metab. 292, E1062–E1068 (2007).

    CAS  PubMed  Google Scholar 

  240. Vazquez-Vela, M. E., Torres, N. & Tovar, A. R. White adipose tissue as endocrine organ and its role in obesity. Arch. Med. Res. 39, 715–728 (2008).

    CAS  PubMed  Google Scholar 

  241. Bays, H. E. et al. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: executive summary. J. Clin. Lipidol 10, 15–32 (2016).

    PubMed  Google Scholar 

  242. Bays, H. E. et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J. Clin. Lipidol 7, 304–383 (2013).

    PubMed  Google Scholar 

  243. Vijgen, G. H. et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J. Clin. Endocrinol. Metab. 97, E1229–E1233 (2012).

    CAS  PubMed  Google Scholar 

  244. Lo, K. A. & Sun, L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci. Rep. 33, e00065 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.W.L. acknowledges funding from Science Foundation Ireland (ref 12/YI/B2480) and the Health Research Board (USIRL-2016-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carel W. le Roux.

Ethics declarations

Competing interests

C.W.L. is part of advisory boards for Ethicon Endo-surgery, GI Dynamics, Herbalife and Novo Nordisk. P.S. and D.J.B. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinclair, P., Brennan, D.J. & le Roux, C.W. Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat Rev Gastroenterol Hepatol 15, 606–624 (2018). https://doi.org/10.1038/s41575-018-0057-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0057-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing