Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systems biology in hepatology: approaches and applications

Abstract

Detailed insights into the biological functions of the liver and an understanding of its crosstalk with other human tissues and the gut microbiota can be used to develop novel strategies for the prevention and treatment of liver-associated diseases, including fatty liver disease, cirrhosis, hepatocellular carcinoma and type 2 diabetes mellitus. Biological network models, including metabolic, transcriptional regulatory, protein–protein interaction, signalling and co-expression networks, can provide a scaffold for studying the biological pathways operating in the liver in connection with disease development in a systematic manner. Here, we review studies in which biological network models were used to integrate multiomics data to advance our understanding of the pathophysiological responses of complex liver diseases. We also discuss how this mechanistic approach can contribute to the discovery of potential biomarkers and novel drug targets, which might lead to the design of targeted and improved treatment strategies. Finally, we present a roadmap for the successful integration of models of the liver and other human tissues with the gut microbiota to simulate whole-body metabolic functions in health and disease.

Key points

  • Detailed characterization of human liver tissue and gut microbiota is enabled by omics technologies.

  • Biological network models are functional tools for the exploration and integration of multiomics data.

  • Systems biology uses a holistic and integrative approach for comprehensive analysis of the biological functions in healthy and diseased states.

  • Systems biology approaches have been successfully employed in gastroenterology and hepatology to identify biomarkers and drug targets.

  • These integrative tools can be used for simulation of liver tissue functions and crosstalk of liver with other tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integration of multiomics data using biological networks.
Fig. 2: Metabolic alterations involved in the development of hepatic steatosis.
Fig. 3: Integration of biological networks.
Fig. 4: Host–gut microbiota crosstalk and effects on whole-body biological functions.

Similar content being viewed by others

References

  1. Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Kampf, C. et al. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. FASEB J. 28, 2901–2914 (2014).

    Article  PubMed  CAS  Google Scholar 

  3. Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330–344 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Lonardo, A., Ballestri, S., Marchesini, G., Angulo, P. & Loria, P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 47, 181–190 (2015).

    Article  PubMed  Google Scholar 

  5. Videla, L. A., Rodrigo, R., Araya, J. & Poniachik, J. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol. Med. 12, 555–558 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Perry, R. J., Samuel, V. T., Petersen, K. F. & Shulman, G. I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Paschos, P. & Paletas, K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 13, 9–19 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Dyson, J. K., Anstee, Q. M. & McPherson, S. Non-alcoholic fatty liver disease: a practical approach to treatment. Frontline Gastroenterol. 5, 277–286 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Charlton, M. Nonalcoholic fatty liver disease: a review of current understanding and future impact. Clin. Gastroenterol. Hepatol. 2, 1048–1058 (2004).

    Article  PubMed  Google Scholar 

  11. Bosley, J. et al. Improving the economics of NASH/NAFLD treatment through the use of systems biology. Drug Discov. Today 22, 1532–1538 (2017).

    Article  PubMed  Google Scholar 

  12. Gonzalez de Castro, D., Clarke, P. A., Al-Lazikani, B. & Workman, P. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin. Pharmacol. Ther. 93, 252–259 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Auffray, C., Chen, Z. & Hood, L. Systems medicine: the future of medical genomics and healthcare. Genome Med. 1, 2 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nielsen, J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 25, 572–579 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Mardinoglu, A. & Nielsen, J. Editorial: the impact of systems medicine on human health and disease. Front. Physiol. 7, 552 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gebhardt, R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53, 275–354 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. Kietzmann, T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11, 622–630 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gebhardt, R. & Matz-Soja, M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J. Gastroenterol. 20, 8491–8504 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Uhlen, M. et al. Towards a knowledge-based human protein atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article  PubMed  CAS  Google Scholar 

  20. Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  CAS  Google Scholar 

  23. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. Beck, H. C. et al. Quantitative proteomic analysis of post-translational modifications of human histones. Mol. Cell. Proteomics 5, 1314–1325 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. GTEx. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  26. Yu, N. Y. et al. Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Res. 43, 6787–6798 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Uhlen, M. et al. Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12, 862 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Chen, Z. Progress and prospects of long noncoding RNAs in lipid homeostasis. Mol. Metab. 5, 164–170 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Chen, Y., Huang, H., Xu, C., Yu, C. & Li, Y. Long non-coding RNA profiling in a non-alcoholic fatty liver disease rodent model: new insight into pathogenesis. Int. J. Mol. Sci. 18, 21 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  31. Afonso, M. B., Rodrigues, P. M., Simao, A. L. & Castro, R. E. Circulating microRNAs as potential biomarkers in non-alcoholic fatty liver disease and hepatocellular carcinoma. J. Clin. Med. 5, 30 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  32. Newgard, C. B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 25, 43–56 (2017).

    Article  PubMed  CAS  Google Scholar 

  33. Holmes, E., Wijeyesekera, A., Taylor-Robinson, S. D. & Nicholson, J. K. The promise of metabolic phenotyping in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12, 458–471 (2015).

    Article  PubMed  Google Scholar 

  34. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wurtz, P. et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 61, 1372–1380 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee, S. et al. Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab. 24, 172–184 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mardinoglu, A. et al. Plasma mannose levels are associated with incident type 2 diabetes and cardiovascular disease. Cell Metab. 26, 281–283 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Shah, S. H. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 3, 207–214 (2010).

    Article  PubMed  CAS  Google Scholar 

  40. Magnusson, M. et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur. Heart J. 34, 1982–1989 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Kalhan, S. C. et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 60, 404–413 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Tan, Y. et al. Metabolomics study of stepwise hepatocarcinogenesis from the model rats to patients: potential biomarkers effective for small hepatocellular carcinoma diagnosis. Mol. Cell. Proteomics 11, M111.010694 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Ganti, S. & Weiss, R. H. Urine metabolomics for kidney cancer detection and biomarker discovery. Urol. Oncol. 29, 551–557 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. McDunn, J. E. et al. Metabolomic signatures of aggressive prostate cancer. Prostate 73, 1547–1560 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Zeng, J. et al. Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry. J. Proteome Res. 13, 3420–3431 (2014).

    Article  PubMed  CAS  Google Scholar 

  46. Dumas, M. E., Kinross, J. & Nicholson, J. K. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 146, 46–62 (2014).

    Article  PubMed  Google Scholar 

  47. Sookoian, S. et al. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am. J. Clin. Nutr. 103, 422–434 (2016).

    Article  PubMed  CAS  Google Scholar 

  48. Sookoian, S. & Pirola, C. J. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J. Gastroenterol. 18, 3775–3781 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sookoian, S. & Pirola, C. J. Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World J. Gastroenterol. 21, 711–725 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cheng, S. et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125, 2222–2231 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Krumsiek, J. et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLOS Genet. 8, e1003005 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLOS Med. 13, e1002179 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Taskinen, M. R. & Boren, J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239, 483–495 (2015).

    Article  PubMed  CAS  Google Scholar 

  54. Bjornson, E., Adiels, M., Taskinen, M. R. & Boren, J. Kinetics of plasma triglycerides in abdominal obesity. Curr. Opin. Lipidol 28, 11–18 (2017).

    PubMed  Google Scholar 

  55. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kawano, Y. & Cohen, D. E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 48, 434–441 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Dentin, R., Girard, J. & Postic, C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87, 81–86 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Williams, K. J. & Wu, X. Imbalanced insulin action in chronic over nutrition: clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 247, 225–282 (2016).

    Article  PubMed  CAS  Google Scholar 

  59. Adiels, M., Mardinoglu, A., Taskinen, M. R. & Boren, J. Kinetic studies to elucidate impaired metabolism of triglyceride-rich lipoproteins in humans. Front. Physiol. 6, 342 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Boren, J., Taskinen, M. R. & Adiels, M. Kinetic studies to investigate lipoprotein metabolism. J. Intern. Med. 271, 166–173 (2012).

    Article  PubMed  CAS  Google Scholar 

  61. Mardinoglu, A. et al. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13, 916 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  PubMed  CAS  Google Scholar 

  64. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  PubMed  CAS  Google Scholar 

  65. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  PubMed  CAS  Google Scholar 

  67. Qin, J. J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  PubMed  CAS  Google Scholar 

  68. Mardinoglu, A., Boren, J. & Smith, U. Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab. 23, 10–12 (2016).

    Article  PubMed  CAS  Google Scholar 

  69. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Arora, T. & Backhed, F. The gut microbiota and metabolic disease: current understanding and future perspectives. J. Intern. Med. 280, 339–349 (2016).

    Article  PubMed  CAS  Google Scholar 

  73. Mardinoglu, A. & Nielsen, J. Systems medicine and metabolic modelling. J. Intern. Med. 271, 142–154 (2012).

    Article  PubMed  CAS  Google Scholar 

  74. Van Regenmortel, M. H. Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep. 5, 1016–1020 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  PubMed  CAS  Google Scholar 

  76. Scannell, J. W. & Bosley, J. When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLOS ONE 11, e0147215 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 (2014).

    Article  PubMed  CAS  Google Scholar 

  79. Mardinoglu, A., Gatto, F. & Nielsen, J. Genome-scale modeling of human metabolism — a systems biology approach. Biotechnol. J. 8, 985–996 (2013).

    Article  PubMed  CAS  Google Scholar 

  80. Shoaie, S. & Nielsen, J. Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front. Genet. 5, 86 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Oberhardt, M. A., Yizhak, K. & Ruppin, E. Metabolically re-modeling the drug pipeline. Curr. Opin. Pharmacol. 13, 778–785 (2013).

    Article  PubMed  CAS  Google Scholar 

  82. Mardinoglu, A. & Nielsen, J. New paradigms for metabolic modeling of human cells. Curr. Opin. Biotechnol. 34, 91–97 (2015).

    Article  PubMed  CAS  Google Scholar 

  83. O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yizhak, K. et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol. Syst. Biol. 10, 744 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yizhak, K. et al. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. eLife 3, e03641 (2014).

    Article  PubMed Central  Google Scholar 

  86. Yizhak, K., Gabay, O., Cohen, H. & Ruppin, E. Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat. Commun. 4, 2632 (2013).

    Article  PubMed  CAS  Google Scholar 

  87. Zhang, C., Ji, B., Mardinoglu, A., Nielsen, J. & Hua, Q. Logical transformation of genome-scale metabolic models for gene level applications and analysis. Bioinformatics 31, 2324–2331 (2015).

    Article  PubMed  CAS  Google Scholar 

  88. Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).

    Article  PubMed  CAS  Google Scholar 

  89. Björnson, E. et al. Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep. 13, 2014–2026 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Mardinoglu, A. et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9, 649 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ma, H. et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLOS Comput. Biol. 8, e1002518 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).

    Article  PubMed  CAS  Google Scholar 

  95. Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Blais, E. M. et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat. Commun. 8, 14250 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yizhak, K., Chaneton, B., Gottlieb, E. & Ruppin, E. Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 11, 817 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Bordbar, A. et al. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst. Biol. 5, 180 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang, Y. L., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6, 153 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nam, H. et al. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLOS Comput. Biol. 10, e1003837 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context-specific metabolic network models. PLOS Comput. Biol. 10, e1003424 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150, 1274–1286 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Pechenick, D. A., Payne, J. L. & Moore, J. H. Phenotypic robustness and the assortativity signature of human transcription factor networks. PLOS Comput. Biol. 10, e1003780 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Xu, H., Ang, Y. S., Sevilla, A., Lemischka, I. R. & Ma’ayan, A. Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLOS Comput. Biol. 10, e1003777 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Bossi, A. & Lehner, B. Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. De Las Rivas, J. & Fontanillo, C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLOS Comput. Biol. 6, e1000807 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    Article  PubMed  CAS  Google Scholar 

  109. Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43, D470–D478 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Goel, R., Harsha, H. C., Pandey, A. & Prasad, T. S. Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol. Biosyst. 8, 453–463 (2012).

    Article  PubMed  CAS  Google Scholar 

  111. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    Article  PubMed  CAS  Google Scholar 

  113. Safari-Alighiarloo, N., Taghizadeh, M., Rezaei-Tavirani, M., Goliaei, B. & Peyvandi, A. A. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench 7, 17–31 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Helikar, T., Konvalina, J., Heidel, J. & Rogers, J. A. Emergent decision-making in biological signal transduction networks. Proc. Natl Acad. Sci. USA 105, 1913–1918 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cui, Q. et al. A map of human cancer signaling. Mol. Syst. Biol. 3, 152 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kim, J. et al. Robustness and evolvability of the human signaling network. PLOS Comput. Biol. 10, e1003763 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Lee, S., Mardinoglu, A., Lee, D. & Nielsen, J. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis. Nucleic Acids Res. 44, 5529–5539 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gille, C. et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6, 411 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Sookoian, S. & Pirola, C. J. NAFLD: metabolic make-up of NASH: from fat and sugar to amino acids. Nat. Rev. Gastroenterol. Hepatol. 11, 205–207 (2014).

    Article  PubMed  CAS  Google Scholar 

  121. Hyötyläinen, T. et al. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease. Nat. Commun. 7, 8994 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Ghaffari, P., Mardinoglu, A. & Nielsen, J. Cancer metabolism: a modeling perspective. Front. Physiol. 6, 382 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Pinyol, R. & Llovet, J. M. Hepatocellular carcinoma: genome-scale metabolic models for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 11, 336–337 (2014).

    Article  PubMed  CAS  Google Scholar 

  125. Ghaffari, P. et al. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci. Rep. 5, 8183 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Zur, H., Ruppin, E. & Shlomi, T. iMAT: an integrative metabolic analysis tool. Bioinformatics 26, 3140–3142 (2010).

    Article  PubMed  CAS  Google Scholar 

  127. Shoaie, S. et al. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3, 2532 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

    Article  PubMed  CAS  Google Scholar 

  129. Magnusdottir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    Article  PubMed  CAS  Google Scholar 

  130. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  PubMed  CAS  Google Scholar 

  131. Mardinoglu, A. et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 11, 834 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lee, S. et al. Network analyses identify liver-specific targets for treating liver diseases. Mol. Syst. Biol. 13, 938 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lee, S. et al. TCSBN: a database of tissue and cancer specific biological networks. Nucleic Acids Res. 46, D595–D600 (2017).

    Article  PubMed Central  Google Scholar 

  134. Bjornson, E., Boren, J. & Mardinoglu, A. Personalized cardiovascular disease prediction and treatment-a review of existing strategies and novel systems medicine tools. Front. Physiol. 7, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mardinoglu, A. & Uhlen, M. Liver: Phenotypic and genetic variance: a systems approach to the liver. Nat. Rev. Gastroenterol. Hepatol. 13, 439–440 (2016).

    Article  PubMed  Google Scholar 

  136. Williams, E. G. et al. Systems proteomics of liver mitochondria function. Science 352, aad0189 (2016).

    Article  PubMed  CAS  Google Scholar 

  137. Zhang, C., Lee, S., Mardinoglu, A. & Hua, Q. Investigating the combinatory effects of biological networks on gene co-expression. Front. Physiol. 7, 160 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Gatto, F. et al. Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15, 1822–1836 (2016).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Knut and Alice Wallenberg Foundation. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under European Medical Information Framework grant agreement no. 115372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Mardinoglu.

Ethics declarations

Competing interests

A.M., M.U. and J.B. are founders of ScandiBio and ScandiEdge Therapeutics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

TCSBN: a database of tissue and cancer-specific biological networks: http://inetmodels.com/

Glossary

Proteomics

A field that analyses data to quantify protein abundance.

Transcriptomics

A field that measures mRNA transcript levels.

Metabolomics

A field that analyses data to determine the abundance of small cellular metabolites.

Metagenomics

A field that directly analyses the genomes contained within an environmental sample.

Fluxomics

A field that quantifies the flux of substrates through a reaction step to establish dynamic changes of molecules within a cell over time.

Interactomics

A field that analyses the interactions between major constituents of cells, including proteins and metabolites, to resolve the whole set of molecular interactions in cells.

Systems biology

An interdisciplinary field that studies the complex interactions within cells and/or tissues using a holistic approach.

Biological networks

Models that make up the basis of systems biology and provide a mathematical representation of connections between the constituents of cells or tissues.

Genome-scale metabolic models

Mathematical models for a collection of metabolic biochemical reactions and the associated enzymes and transporters.

Gene regulatory networks

Networks that represent the interactions between transcription factors and their target genes.

Protein–protein interaction networks

Networks that provides detailed information about the protein complexes formed by biochemical events.

Signalling networks

Networks describing sequential molecular reactions that govern how a cell responds to its environment.

Gene co-expression networks

Networks representing the links between the expression of genes that might result in functional connections.

Secretome

A collection of cell components secreted to the outside of the cell or tissue.

Druggable proteome

A collection of the proteins used in the development of drugs.

Network topology

The arrangement of the network components including links, nodes and edges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardinoglu, A., Boren, J., Smith, U. et al. Systems biology in hepatology: approaches and applications. Nat Rev Gastroenterol Hepatol 15, 365–377 (2018). https://doi.org/10.1038/s41575-018-0007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0007-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing