Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of thyroglobulin in thyroid hormonogenesis

Abstract

In humans, the thyroid hormones T3 and T4 are synthesized in the thyroid gland in a process that crucially involves the iodoglycoprotein thyroglobulin. The overall structure of thyroglobulin is conserved in all vertebrates. Upon thyroglobulin delivery from thyrocytes to the follicular lumen of the thyroid gland via the secretory pathway, multiple tyrosine residues can become iodinated to form mono-iodotyrosine (MIT) and/or di-iodotyrosine (DIT); however, selective tyrosine residues lead to preferential formation of T4 and T3 at distinct sites. T4 formation involves oxidative coupling between two DIT side chains, and de novo T3 formation involves coupling between an MIT donor and a DIT acceptor. Thyroid hormone synthesis is stimulated by TSH activating its receptor (TSHR), which upregulates the activity of many thyroid gene products involved in hormonogenesis. Additionally, TSH regulates post-translational changes in thyroglobulin that selectively enhance its capacity for T3 formation — this process is important in iodide deficiency and in Graves disease. 167 different mutations, many of which are newly discovered, are now known to exist in TG (encoding human thyroglobulin) that can lead to defective thyroid hormone synthesis, resulting in congenital hypothyroidism.

Key points

  • The first definitive evidence of a complete TG gene appears with the development of the vertebrates, and once appearing in evolution, the entire structure of thyroglobulin, as well as its ability to be secreted, has been retained thereafter.

  • The synthesis of T3 and T4 within thyroglobulin involves oxidative coupling between iodinated tyrosine residues on thyroglobulin.

  • The main T3-forming site within thyroglobulin couples a mono-iodotyrosine donor at the antepenultimate residue of one monomer with a di-iodotyrosine acceptor in the same residue of the apposed monomer within a dimer.

  • Post-translational modifications of thyroglobulin include phosphorylation for which the secretory pathway kinase FAM20C has been implicated.

  • TSH stimulation of thyrocytes promotes post-translational modifications that can alter thyroglobulin structure in a way that favours T3 formation upon iodination, whereas defects in TSH-mediated stimulation result in thyroglobulin with diminished capacity to form T3.

  • 167 TG mutations exist that can cause congenital hypothyroidism; although the disease is usually inherited as an autosomal recessive trait, patients with congenital hypothyroidism bearing monoallelic mutations of TG have recently been reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regional structure and primary hormonogenic sites found within thyroglobulin.
Fig. 2: Overview of de novo thyroid hormone biosynthesis.
Fig. 3: Physiological enzymatic reactions involved in thyroid hormone synthesis.
Fig. 4: Thyroglobulin post-translational modifications.
Fig. 5: Mechanisms of de novo hormonogenesis at conserved sites on thyroglobulin.
Fig. 6: TSH regulation of thyroid hormone biosynthesis in thyroglobulin.

Similar content being viewed by others

References

  1. Tovo-Neto, A., da Silva Rodrigues, M., Habibi, H. R. & Nóbrega, R. H. Thyroid hormone actions on male reproductive system of teleost fish. Gen. Comp. Endocrinol. 265, 230–236 (2018).

    CAS  PubMed  Google Scholar 

  2. Saito, M., Yamasu, K. & Suyemitsu, T. Binding properties of thyroxine to nuclear extract from sea urchin larvae. Zoolog. Sci. 29, 79–82 (2012).

    CAS  PubMed  Google Scholar 

  3. Hodin, J. Expanding networks: Signaling components in and a hypothesis for the evolution of metamorphosis. Integr. Comp. Biol. 46, 719–742 (2006).

    CAS  PubMed  Google Scholar 

  4. Heyland, A., Reitzel, A. M. & Hodin, J. Thyroid hormones determine developmental mode in sand dollars (Echinodermata: Echinoidea). Evol. Dev. 6, 382–392 (2004).

    CAS  PubMed  Google Scholar 

  5. Saito, M. et al. Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones. Dev. Growth Differ. 40, 307–312 (1998).

    CAS  PubMed  Google Scholar 

  6. Laudet, V. The origins and evolution of vertebrate metamorphosis. Curr. Biol. 21, R726–R737 (2011).

    CAS  PubMed  Google Scholar 

  7. Dardente, H., Hazlerigg, D. G. & Ebling, F. J. P. Thyroid hormone and seasonal rhythmicity. Front. Endocrinol. 5, 1–11 (2014).

    Google Scholar 

  8. Mullur, R., Liu, Y.-Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kouidhi, S. & Clerget-Froidevaux, M.-S. Integrating thyroid hormone signaling in hypothalamic control of metabolism: crosstalk between nuclear receptors. Int. J. Mol. Sci. 19, 1–20 (2018).

    Google Scholar 

  10. Nicoloff, J. T., Low, J. C., Dussault, J. H. & Fisher, D. A. Simultaneous measurement of thyroxine and triiodothyronine peripheral turnover kinetics in man. J. Clin. Invest. 51, 473–483 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalderon, B., Hertz, R. & Bar-Tana, J. Effect of thyroid hormone treatment on redox and phosphate potentials in rat liver. Endocrinology 131, 400–407 (1992).

    CAS  PubMed  Google Scholar 

  12. Venditti, P. & Di Meo, S. Thyroid hormone-induced oxidative stress. Cell. Mol. Life Sci. 63, 414–434 (2006).

    CAS  PubMed  Google Scholar 

  13. Nagayama, Y. et al. Regulation of thyroid peroxidase and thyroglobulin gene expression by thyrotropin in cultured human thyroid cells. J. Clin. Endocrinol. Metab. 68, 1155–1159 (1989).

    CAS  PubMed  Google Scholar 

  14. Kang, H. S. et al. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J. Clin. Invest. 127, 4326–4337 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Köhrle, J. in Thyroid Hormone Nuclear Receptor Methods and Protocols (eds Plateroti, M. & Samarut, J.) 85–104 (Springer New York, 2018).

  16. Cary, G. A., Cameron, A. R. & Hinman, V. F. EchinoBase: tools for echinoderm genome analyses. Methods Mol. Biol. 1757, 349–369 (2018).

    CAS  PubMed  Google Scholar 

  17. Kinjo, S., Kiyomoto, M., Yamamoto, T., Ikeo, K. & Yaguchi, S. HpBase: a genome database of a sea urchin, Hemicentrotus pulcherrimus. Dev. Growth Differ. 60, 174–182 (2018).

    CAS  PubMed  Google Scholar 

  18. Paris, M. & Laudet, V. The history of a developmental stage: metamorphosis in chordates. Genesis 46, 657–672 (2008).

    CAS  PubMed  Google Scholar 

  19. Paris, M., Brunet, F., Markov, G., Schubert, M. & Laudet, V. The amphioxus genome enlightens the evolution of the thyroid hormone signaling pathway. Dev. Genes Evol. 218, 667–680 (2008).

    CAS  PubMed  Google Scholar 

  20. Holland, L. Z. et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 18, 1100–1111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Putnam, N. H. et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1–7 (2008).

    Google Scholar 

  22. Paris, M. et al. Active metabolism of thyroid hormone during metamorphosis of amphioxus. Integr. Comp. Biol. 50, 63–74 (2010).

    CAS  PubMed  Google Scholar 

  23. Ogasawara, M. & Satoh, N. Isolation and characterization of endostyle-specific genes in the Ascidian Ciona intestinalis. Biol. Bull. 195, 60–69 (1998).

    CAS  PubMed  Google Scholar 

  24. Kimura, S. Thyroid-specific enhancer-binding protein: role in thyroid function and organogenesis. Trends Endocrinol. Metab. 7, 247–252 (1996).

    CAS  PubMed  Google Scholar 

  25. Monaco, F., Dominici, R., Andreoli, M., Pirro, R. D. E. & Roche, J. Thyroid hormone formation in thyroglobulin synthesized in the Amphioxus (Branchiostoma lanceolatum pallas). Comp. Biochem. Physiol. B 70, 341–343 (1981). This paper demonstrates, within the amphioxus endostyle, the synthesis of thyroid hormone in a large protein that has properties similar to those of thyroglobulin, despite complete genome sequencing subsequently confirming the absence of a vertebrate-style TG gene in this organism.

    Google Scholar 

  26. Targovnik, H. M. in Werner & Ingbar’s The Thyroid: A Fundamental and Clinical Text (eds Braverman, L. E. & Cooper, D.) 74–92 (Lippincott Williams & Wilkins, 2012). This comprehensive review describes the structure and function of thyroglobulin and TG and discusses mutations that cause congenital hypothyroidism.

  27. Holzer, G. et al. Thyroglobulin represents a novel molecular architecture of vertebrates. J. Biol. Chem. 291, 16553–16566 (2016). This paper confirms the presence of TG in lamprey and Xenopus and indicates functional conservation in thyroid hormone synthesis throughout all vertebrates.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith, J. J. et al. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Youson, J. H. Is lamprey metamorphosis regulated by thyroid hormones? Am. Zool. 37, 441–460 (1997).

    CAS  Google Scholar 

  30. Kluge, B., Renault, N. & Rohr, K. B. Anatomical and molecular reinvestigation of lamprey endostyle development provides new insight into thyroid gland evolution. Dev. Genes Evol. 215, 32–40 (2005).

    PubMed  Google Scholar 

  31. Malthiéry, Y. & Lissitzky, S. Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA. Eur. J. Biochem. 165, 491–498 (1987). This paper determines the complete cDNA nucleotide sequence of thyroglobulin, thereby establishing that the region-specific domain structure of human thyroglobulin is comparable to that in other vertebrate species.

    PubMed  Google Scholar 

  32. Matos, L. P. L. et al. Regulation of thyroid sodium-iodide symporter in different stages of goiter: possible involvement of reactive oxygen species. Clin. Exp. Pharmacol. Physiol. 12, 3218–3221 (2017).

    Google Scholar 

  33. Benvenga, S. & Guarneri, F. Homology of pendrin, sodium-iodide symporter and apical iodide transporter. Front. Biosci. 23, 1864–1873 (2018).

    CAS  Google Scholar 

  34. Silveira, J. C. & Kopp, P. A. Pendrin and anoctamin as mediators of apical iodide efflux in thyroid cells. Curr. Opin. Endocrinol. Diabetes Obes. 22, 374–380 (2015).

    CAS  PubMed  Google Scholar 

  35. Fong, P. Thyroid iodide efflux: a team effort? J. Physiol. 589, 5929–5939 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Den Hove, M. F. et al. The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 147, 1287–1296 (2006).

  37. Portulano, C., Paroder-Belenitsky, M. & Carrasco, N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr. Rev. 35, 106–149 (2014).

    CAS  PubMed  Google Scholar 

  38. Rhoden, K. J., Cianchetta, S., Duchi, S. & Romeo, G. Fluorescence quantitation of thyrocyte iodide accumulation with the yellow fluorescent protein variant YFP-H148Q/I152L. Anal. Biochem. 373, 239–246 (2008).

    CAS  PubMed  Google Scholar 

  39. Belforte, F. S. et al. Kinetic characterization of human thyroperoxidase. Normal and pathological enzyme expression in Baculovirus System: a molecular model of functional expression. Mol. Cell. Endocrinol. 404, 9–15 (2015).

    CAS  PubMed  Google Scholar 

  40. Saber-Lichtenberg, Y. et al. Covalent cross-linking of secreted bovine thyroglobulin by transglutaminase. FASEB J. 14, 1005–1014 (2000).

    CAS  PubMed  Google Scholar 

  41. Muzza, M. & Fugazzola, L. Disorders of H2O2 generation. Best Pract. Res. Clin. Endocrinol. Metab. 31, 225–240 (2017).

    CAS  PubMed  Google Scholar 

  42. De Deken, X., Corvilain, B., Dumont, J. E. & Miot, F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid. Redox Signal. 20, 2776–2793 (2014).

    PubMed  Google Scholar 

  43. Lisi, S. et al. Defective thyroglobulin storage in LDL receptor-associated protein-deficient mice. Am. J. Physiol. Cell Physiol. 290, C1160–C1167 (2006).

    CAS  PubMed  Google Scholar 

  44. Marinò, M. et al. Role of thyroglobulin endocytic pathways in the control of thyroid hormone release. Am. J. Physiol. Cell Physiol. 279, C1295–C1306 (2000).

    PubMed  Google Scholar 

  45. Delom, F., Mallet, B., Carayon, P. & Lejeune, P. Role of extracellular molecular chaperones in the folding of oxidized proteins. Refolding of colloidal thyroglobulin by protein disulfide isomerase and immunoglobulin heavy chain-binding protein. J. Biol. Chem. 276, 21337–21342 (2001).

    CAS  PubMed  Google Scholar 

  46. Berndorfer, U., Wilms, H. & Herzog, V. Multimerization of thyroglobulin (TG) during extracellular storage: isolation of highly cross-linked TG from human thyroids. J. Clin. Endocrinol. Metab. 81, 1918–1926 (1996).

    CAS  PubMed  Google Scholar 

  47. Leonardi, A. et al. Presence of dityrosine bridges in thyroglobulin and their relationship with iodination. Biochem. Biophys. Res. Commun. 202, 38–43 (1994).

    CAS  PubMed  Google Scholar 

  48. Baudry, N. et al. Dityrosine bridge formation and thyroid hormone synthesis are tightly linked and are both dependent on N-glycans. FEBS Lett. 396, 223–226 (1996).

    CAS  PubMed  Google Scholar 

  49. Taurog, A., Dorris, M. L. & Lamas, L. Comparison of lactoperoxidase- and thyroid peroxidase-catalyzed iodination and coupling. Endocrinology 94, 1286–1294 (1974).

    CAS  PubMed  Google Scholar 

  50. Lamas, L. & Taurog, A. The importance of thyroglobulin structure in thyroid peroxidase-catalyzed conversion of diiodotyrosine to thyroxine. Endocrinology 100, 1129–1136 (1977). This paper shows that the native structure of thyroglobulin is critical to the efficiency of the hormonogenic coupling reaction.

    CAS  PubMed  Google Scholar 

  51. Dunn, J. T. & Dunn, A. D. Update on intrathyroidal iodine metabolism. Thyroid 11, 407–414 (2001).

    CAS  PubMed  Google Scholar 

  52. Brix, K. & Lemansky, P. H. V. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology 137, 1963–1974 (1996).

    CAS  PubMed  Google Scholar 

  53. Rubio, I. G. S. & Medeiros-Neto, G. Mutations of the thyroglobulin gene and its relevance to thyroid disorders. Curr. Opin. Endocrinol. Diabetes. Obes. 16, 373–378 (2009).

    CAS  PubMed  Google Scholar 

  54. Mascia, A. et al. Rab7 regulates CDH1 endocytosis, circular dorsal ruffles genesis, and thyroglobulin internalization in a thyroid cell line. J. Cell. Physiol. 231, 1695–1708 (2016).

    CAS  PubMed  Google Scholar 

  55. Croizet-Berger, K., Daumerie, C., Couvreur, M., Courtoy, P. J. & van den Hove, M.-F. The endocytic catalysts, Rab5a and Rab7, are tandem regulators of thyroid hormone production. Proc. Natl Acad. Sci. USA 99, 8277–8282 (2002).

    CAS  PubMed  Google Scholar 

  56. Brix, K., Linke, M., Tepel, C. & Herzog, V. Cysteine proteinases mediate extracellular prohormone processing in the thyroid. Biol. Chem. 382, 717–725 (2001).

    CAS  PubMed  Google Scholar 

  57. Jordans, S. et al. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 10, 23 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Linke, M., Jordans, S., Mach, L., Herzog, V. & Brix, K. Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol. Chem. 383, 773–784 (2002).

    CAS  PubMed  Google Scholar 

  59. Suban, D. et al. Cathepsin C and plasma glutamate carboxypeptidase secreted from Fischer rat thyroid cells liberate thyroxin from the N-terminus of thyroglobulin. Biochimie 94, 719–726 (2012).

    CAS  PubMed  Google Scholar 

  60. Lisi, S. et al. Preferential megalin-mediated transcytosis of low-hormonogenic thyroglobulin: a control mechanism for thyroid hormone release. Proc. Natl Acad. Sci. USA 100, 14858–14863 (2003).

    CAS  PubMed  Google Scholar 

  61. Marino, M., Zheng, G. & Mccluskey, R. T. Megalin (gp330) is an endocytic receptor for thyroglobulin on cultured fisher rat thyroid cells. J. Biol. Chem. 274, 12898–12904 (1999).

    CAS  PubMed  Google Scholar 

  62. Miquelis, R. et al. The N-acetylglucosamine-specific receptor of the thyroid. Binding characteristics, partial characterization, and potential role. J. Biol. Chem. 262, 15291–15298 (1987).

    CAS  PubMed  Google Scholar 

  63. Miquelis, R. et al. Intracellular routing of GLcNAc-bearing molecules in thyrocytes: selective recycling through the Golgi Apparatus Raymond. J. Cell Biol. 123, 1695–1706 (1993).

    CAS  PubMed  Google Scholar 

  64. Pacifico, F., Liguoro, D., Acquaviva, R., Formisano, S. & Consiglio, E. Thyroglobulin binding and TSH regulation of the RHL-1 subunit of the asialoglycoprotein receptor in rat thyroid. Biochimie 81, 493–496 (1999).

    CAS  PubMed  Google Scholar 

  65. Montuori, N. et al. The rat asialoglycoprotein receptor binds the amino-terminal domain of thyroglobulin. Biochem. Biophys. Res. Commun. 268, 42–46 (2000).

    CAS  PubMed  Google Scholar 

  66. Mezghrani, A. et al. Protein-disulfide Isomerase (PDI) in FRTL5 Cells. J. Biol. Chem. 275, 1920–1929 (2000).

    CAS  PubMed  Google Scholar 

  67. Friedrichs, B. et al. Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest. 111, 1733–1745 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Oda, K. et al. Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes. Biochem. Biophys. Res. Commun. 483, 541–546 (2017).

    CAS  PubMed  Google Scholar 

  69. Kopp, P. in Werner & Ingbar’s The Thyroid: A Fundamental and Clinical Text (eds Braverman, L. E. & Cooper, D.) 48–74 (Lippincott Williams & Wilkins, 2012).

  70. van de Graaf, S. a et al. Up to date with human thyroglobulin. J. Endocrinol. 170, 307–321 (2001).

    PubMed  Google Scholar 

  71. Müller, J. et al. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency. Endocrinology 155, 315–325 (2018).

    Google Scholar 

  72. Krause, G. & Hinz, K. M. Thyroid hormone transport across L-type amino acid transporters: What can molecular modelling tell us? Mol. Cell. Endocrinol. 458, 68–75 (2017).

    CAS  PubMed  Google Scholar 

  73. Hinz, K. M. et al. Structural insights into thyroid hormone transport mechanisms of the L-type amino acid transporter 2. Mol. Endocrinol. 29, 933–942 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mayerl, S. et al. Thyroid hormone transporters MCT8 and OATP1C1 control skeletal muscle regeneration. Stem Cell Rep. 10, 1959–1974 (2018).

    CAS  Google Scholar 

  75. Weber, J. et al. Interdependence of thyroglobulin processing and thyroid hormone export in the mouse thyroid gland. Eur. J. Cell Biol. 96, 440–456 (2017). This paper suggests that lysosomal degradation of thyroglobulin and thyroid hormone transporter proteins in the thyroid gland are physiologically regulated.

    CAS  PubMed  Google Scholar 

  76. Gnidehou, S. et al. Cloning and characterization of a novel isoform of iodotyrosine dehalogenase 1 (DEHAL1) DEHAL1C from human thyroid: comparisons with DEHAL1 and DEHAL1B. Thyroid 16, 715–724 (2006).

    CAS  PubMed  Google Scholar 

  77. Gnidehou, S. et al. Iodotyrosine dehalogenase 1 (DEHAL1) is a transmembrane protein involved in the recycling of iodide close to the thyroglobulin iodination site. FASEB J. 18, 1574–1576 (2004).

    CAS  PubMed  Google Scholar 

  78. Renko, K. et al. A nonradioactive DEHAL assay for testing substrates, inhibitors, and monitoring endogenous activity. Endocrinology 157, 4516–4525 (2018).

    Google Scholar 

  79. Gavaret, J., Cahnmann, H. J. & Nunez, J. Thyroid hormone synthesis in thyroglobulin. J. Biol. Chem. 256, 9167–9173 (1981).

    CAS  PubMed  Google Scholar 

  80. Chanoine, J. P. et al. The thyroid gland is a major source of circulating T3 in the rat. J. Clin. Invest. 91, 2709–2713 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Larsen, P. R. Thyroidal triiodothyronine and thyroxine in Graves’ disease: correlation with presurgical treatment, thyroid status, and iodine content. J. Clin. Endocrinol. Metab. 41, 1098–1104 (1975).

    CAS  PubMed  Google Scholar 

  82. Schneider, M. J. et al. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 15, 2137–2148 (2001).

    CAS  PubMed  Google Scholar 

  83. Schneider, M. J. et al. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147, 580–589 (2006).

    CAS  PubMed  Google Scholar 

  84. Galton, V. A., Schneider, M. J., Clark, A. S. & St. Germain, D. L. Life without thyroxine to 3,5,3′-triiodothyronine conversion: Studies in mice devoid of the 5′-deiodinases. Endocrinology 150, 2957–2963 (2009). This paper reveals normal serum T 3 levels in mice with whole-body double knockout of DIO1 and DIO2 deiodinases, indicating robust T 3 formation in the absence of deiodination of T 4.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bianco, A. C. & Larsen, P. R. Cellular and structural biology of the deiodinases. Thyroid 15, 777–786 (2005).

    CAS  PubMed  Google Scholar 

  86. Lavado-Autric, R. et al. Deiodinase activities in thyroids and tissues of iodine-deficient female rats. Endocrinology 154, 529–536 (2013).

    CAS  PubMed  Google Scholar 

  87. Citterio, C. E. et al. De novo triiodothyronine formation from thyrocytes activated by Thyroid Stimulating Hormone. J. Biol. Chem. 292, 15434–15444 (2017). This paper demonstrates increased de novo T 3 formation in thyroglobulin secreted from TSH-stimulated thyrocytes and suggests that thyroglobulin phosphorylation may contribute to this effect.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sellitti, D. F. & Suzuki, K. Intrinsic regulation of thyroid function by thyroglobulin. Thyroid 24, 625–638 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Di Jeso, B. & Arvan, P. Thyroglobulin from molecular and cellular biology to clinical endocrinology. Endocr. Rev. 37, 2–36 (2016).

    PubMed  Google Scholar 

  90. Dentice, M., Cordeddu, V., Rosica, A. & Macchia, P. E. Missense mutation in the transcription factor NKX2–5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J. Clin. Endocrinol. Metab. 91, 1428–1433 (2005).

    Google Scholar 

  91. Ma, R., Morshed, S. A., Latif, R. & Davies, T. F. TAZ induction directs differentiation of thyroid follicular cells from human embryonic stem cells. Thyroid 27, 292–299 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lacroix, L. et al. HEX, PAX-8 and TTF-1 gene expression in human thyroid tissues: a comparative analysis with other genes involved in iodide metabolism. Clin. Endocrinol. 64, 398–404 (2006).

    CAS  Google Scholar 

  93. Pellizzari, L. et al. Expression and function of the homeodomain-containing protein Hex in thyroid cells. Nucleic Acids Res. 28, 2503–2511 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Berg, V., Vassart, G. & Christophe, D. Identification of a thyroid-specific and cAMP-responsive enhancer in the upstream sequences of the human thyroglobulin promoter. Biochim. Biophys. Acta 1307, 35–38 (1996).

    PubMed  Google Scholar 

  95. Berg, V., Vassart, G. & Christophe, D. A zinc-dependent DNA-binding activity co-operates with cAMP-responsive-element-binding protein to activate the human thyroglobulin enhancer. Biochem. J. 323, 349–357 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Baas, F., van Ommen, G. J., Bikker, H., Arnberg, A. C. & de Vijlder, J. J. The human thyroglobulin gene is over 300 kb long and contains introns of up to 64 kb. Nucleic Acids Res. 14, 5171–5186 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Meijerink, P. H. et al. The gene for the human Src-like adaptor protein (hSLAP) is located within the 64-kb intron of the thyroglobulin gene. Eur. J. Biochem. 254, 297–303 (1998).

    CAS  PubMed  Google Scholar 

  98. Lee, J. & Arvan, P. Repeat motif-containing regions within thyroglobulin. J. Biol. Chem. 286, 26327–26333 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Veneziani, B. M., Giallauria, F. & Gentile, F. The disulfide bond pattern between fragments obtained by the limited proteolysis of bovine thyroglobulin. Biochimie 81, 517–525 (1999).

    CAS  PubMed  Google Scholar 

  100. Molina, F., Bouanani, M., Pau, B. & Granier, C. Characterization of the type-1 repeat from thyroglobulin, a cysteine-rich module found in proteins from different families. Eur. J. Biochem. 240, 125–133 (1996).

    CAS  PubMed  Google Scholar 

  101. Cousin, X. et al. The alpha/beta fold family of proteins database and the cholinesterase gene server ESTHER. Nucleic Acids Res. 25, 143–146 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Targovnik, H. M., Citterio, C. E. & Rivolta, C. M. Thyroglobulin gene mutations in congenital hypothyroidism. Horm. Res. Paediatr. 75, 311–321 (2011).

    CAS  PubMed  Google Scholar 

  103. De Jaco, A., Dubi, N., Camp, S. & Taylor, P. Congenital hypothyroidism mutations affect common folding and trafficking in the α/β-hydrolase fold proteins. FEBS J. 279, 4293–4305 (2012).

    PubMed  PubMed Central  Google Scholar 

  104. Lee, J., Di jeso, B. & Arvan, P. The cholinesterase-like domain of thyroglobulin functions as an intramolecular chaperone. J. Clin. Invest. 118, 2950–2958 (2008). This paper demonstrates that the thyroglobulin ChEL domain can function independently to assist in the folding stability, intracellular transport and secretion of the upstream regions of thyroglobulin.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Park, Y.-N. & Arvan, P. The acetylcholinesterase homology region is essential for normal conformational maturation and secretion of thyroglobulin. J. Biol. Chem. 279, 17085–17089 (2004).

    CAS  PubMed  Google Scholar 

  106. Lee, J., Di Jeso, B. & Arvan, P. Maturation of thyroglobulin protein region I. J. Biol. Chem. 286, 33045–33052 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, P. S. & Arvant, P. Folding and assembly of newly synthesized thyroglobulin occurs in a pre-Golgi compartment. J. Biol. Chem. 266, 12412–12418 (1991).

    CAS  PubMed  Google Scholar 

  108. Suzuki, K. et al. Thyroglobulin autoregulation of thyroid-specific gene expression and follicular function. Rev. Endocr. Metab. Disord. 1, 217–224 (2000).

    CAS  PubMed  Google Scholar 

  109. Lee, J., Wang, X., Di Jeso, B. & Arvan, P. The cholinesterase-like domain, essential in thyroglobulin trafficking for thyroid hormone synthesis, is required for protein dimerization. J. Biol. Chem. 284, 12752–12761 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Citterio, C. E., Morishita, Y., Dakka, N., Veluswamy, B. & Arvan, P. Relationship between the dimerization of thyroglobulin and its ability to form triiodothyronine. J. Biol. Chem. 293, 4860–4869 (2018). This paper confirms that the major T 3-forming site of thyroglobulin involves MIT–DIT coupling of the antepenultimate residues of the two thyroglobulin monomers within the thyroglobulin dimer.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Desruisseau, S., Franc, J. L., Gruffat, D. & Chabaud, O. Glycosylation of thyroglobulin secreted by porcine cells cultured in chamber system: thyrotropin controls the number of oligosaccharides and their anionic residues. Endocrinology 134, 1676–1684 (1994).

    CAS  PubMed  Google Scholar 

  112. Desruisseau, S., Valette, A., Franc, J. L. & Chabaud, O. Thyrotropin controls dolichol-linked sugar pools and oligosaccharyltransferase activity in thyroid cells. Mol. Cell. Endocrinol. 122, 223–228 (1996).

    CAS  PubMed  Google Scholar 

  113. Di Jeso, B. et al. Modulation of the carbohydrate moiety of thyroglobulin by thyrotropin and calcium in fisher rat thyroid line-5. J. Biol. Chem. 267, 1938–1944 (1992).

    PubMed  Google Scholar 

  114. Grollman, E. F., Saji, M., Shimura, Y., Lau, J. T. & Ashwell, G. Thyrotropin regulation of sialic acid expression in rat thyroid cells. J. Biol. Chem. 268, 3604–3609 (1993).

    CAS  PubMed  Google Scholar 

  115. Nlend, M. C., Cauvi, D., Venot, N., Desruisseau, S. & Chabaud, O. Thyrotropin regulates tyrosine sulfation of thyroglobulin. Eur. J. Endocrinol. 141, 61–69 (1999).

    CAS  PubMed  Google Scholar 

  116. Haeberli, A., Kneubuehl, F. & Studer, H. Changes in the polypeptide assembly of guinea pig thyroglobulin induced by thyrotropin-regulated thyroid activity. Endocrinology 109, 523–529 (1981).

    CAS  PubMed  Google Scholar 

  117. Consiglio, E. et al. Characterization of phosphate residues on thyroglobulin. J. Biol. Chem. 262, 10304–10314 (1987).

    CAS  PubMed  Google Scholar 

  118. Yang, S., Pollock, H. G. & Rawitch, A. B. Glycosylation in human thyroglobulin: location of the N-linked oligosaccharide units and comparison with bovine thyroglobulin 1. Arch. Biochem. Biophys. 327, 61–70 (1996).

    CAS  PubMed  Google Scholar 

  119. MacPhee-Quigley, K., Vedvick, T. S., Taylor, P. & Taylor, S. S. Profile of the disulfide bonds in acetylcholinesterase. J. Biol. Chem. 261, 13565–13570 (1986).

    CAS  PubMed  Google Scholar 

  120. Di Jeso, B. et al. Mixed-disulfide folding intermediates between thyroglobulin and endoplasmic reticulum resident oxidoreductases ERp57 and protein disulfide isomerase. Mol. Cell. Biol. 25, 9793–9805 (2005).

    PubMed  PubMed Central  Google Scholar 

  121. Di Jeso, B. et al. Transient covalent interactions of newly synthesized thyroglobulin with oxidoreductases of the endoplasmic reticulum. J. Biol. Chem. 289, 11488–11496 (2014). This paper identifies several distinct chaperone and oxidoreductase partners that engage newly synthesized thyroglobulin during its early folding in the ER.

    PubMed  PubMed Central  Google Scholar 

  122. Di Jeso, B. et al. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum. Biochem. J. 370, 449–458 (2003).

    PubMed  PubMed Central  Google Scholar 

  123. Jessop, C. E. et al. ERp57 is essential for efficient folding of glycoproteins sharing common structural domains. EMBO J. 26, 28–40 (2007).

    CAS  PubMed  Google Scholar 

  124. Vali, M., Rose, N. R. & Caturegli, P. Thyroglobulin as autoantigen: structure-function relationships. Rev. Endocr. Metab. Disord. 1, 69–77 (2000).

    CAS  PubMed  Google Scholar 

  125. Xavier, A. C. W., Maciel, R. M. B., Vieira, J. G. H., Dias-da-Silva, M. R. & Martins, J. R. M. Insights into the posttranslational structural heterogeneity of thyroglobulin and its role in the development, diagnosis, and management of benign and malignant thyroid diseases. Arch. Endocrinol. Metab. 60, 66–75 (2016).

    PubMed  Google Scholar 

  126. Mallet, B., Lejeune, P., Baudry, N., Niccoli, P. & Carayon, P. N-glycans modulate in vivo and in vitro thyroid hormone synthesis. J. Biol. Chem. 270, 29881–29888 (1995).

    CAS  PubMed  Google Scholar 

  127. Conte, M. et al. A single chondroitin 6-sulfate oligosaccharide unit at Ser-2730 of human thyroglobulin enhances hormone formation and limits proteolytic accessibility at the carboxyl terminus. Potential insights into thyroid homeostasis and autoimmunity. J. Biol. Chem. 281, 22200–22211 (2006).

    CAS  PubMed  Google Scholar 

  128. Tsuji, T., Yamam, Irimura, T. & Osawa, T. Structure of carbohydrate unit A of porcine thyroglobulin. Biochem. J. 195, 691–699 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yamamoto, K., Tsuji, T., Irimura, T. & Osawa, T. The structure of carbohydrate unit B of porcine thyroglobulin. Biochem. J. 195, 701–713 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Spiro, R. G. & Bhoyroo, V. D. Occurrence of sulfate in the asparagine-linked complex carbohydrate units of thyroglobulin. Identification and localization of galactose 3-sulfate and N-acetylglucosamine 6-sulfate residues in the human and calf proteins. J. Biol. Chem. 263, 14351–14358 (1988).

    CAS  PubMed  Google Scholar 

  131. Zhao, J., Song, E., Zhu, R. & Mechref, Y. Parallel data acquisition of in-source fragmented glycopeptides to sequence the glycosylation sites of proteins. Electrophoresis 37, 1420–1430 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tassi, V., Liguoro, D., Consiglio, E. & Acquaviva, A. in Advances in Post-Translational Modifications of Proteins and Aging (eds Zappia, V., Galletti, P., Porta, R. & Wold, F.) 541–549 (Springer US, 1988).

  133. Wen, G., Ringseis, R. & Eder, K. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes. PLOS ONE 12, e0187561 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Tagliabracci, V. S. et al. Secreted kinase phosphorylated extracellular proteins that regulate biomineralization. Science 336, 1150–1153 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Cauvi, D., Venot, N., Nlend, M.-C. & Chabaud, O. M. Thyrotropin and iodide regulate sulfate concentration in thyroid cells. Relationship to thyroglobulin sulfation. Can. J. Physiol. Pharmacol. 81, 1131–1138 (2003).

    CAS  PubMed  Google Scholar 

  137. Schneider, A. B., Mccurdy, A., Chang, T., Dudlak, D. & Magner, J. Metabolic labeling of human thyroglobulin with [35S]sulfate: incorporation into chondroitin 6-sulfate and endoglycosidase-F-susceptible carbohydrate units. Endocrinology 122, 2428–2435 (1988).

    CAS  PubMed  Google Scholar 

  138. Schneider, A. B. & Dudlak, D. Chondroitin chain and complex carbohydrate chains of human thyroglobulin: studies in normal and neoplastic thyroid tissue. Endocrinology 124, 356–362 (1989).

    CAS  PubMed  Google Scholar 

  139. Sakurai, S., Fogelfeld, L., Ries, A. & Schneider, A. B. Anionic complex-carbohydrate units of human thyroglobulin. Endocrinology 127, 2056–2063 (1990).

    CAS  PubMed  Google Scholar 

  140. Chambard, M. et al. Thyrotrophin regulation of apical and basal exocytosis of thyroglobulin by porcine thyroid monolayers. J. Mol. Endocrinol. 4, 193–199 (1990).

    CAS  PubMed  Google Scholar 

  141. Nlend, M. C., Cauvi, D., Venot, N. & Chabaud, O. Sulfated tyrosines of thyroglobulin are involved in thyroid hormone synthesis. Biochem. Biophys. Res. Commun. 262, 193–197 (1999).

    CAS  PubMed  Google Scholar 

  142. Venot, N., Nlend, M. C., Cauvi, D. & Chabaud, O. The hormonogenic tyrosine 5 of porcine thyroglobulin is sulfated. Biochem. Biophys. Res. Commun. 298, 193–197 (2002).

    CAS  PubMed  Google Scholar 

  143. Nlend, M. C., Cauvi, D. M., Venot, N. & Chabaud, O. Role of sulfated tyrosines of thyroglobulin in thyroid hormonosynthesis. Endocrinology 146, 4834–4843 (2005).

    CAS  PubMed  Google Scholar 

  144. Palumbo, G., Gentile, F., Condorelli, G. L. & Salvatore, G. The earliest site of iodination in thyroglobulin is residue number 5. J. Biol. Chem. 265, 8887–8892 (1990). This paper shows that thyroglobulin Tyr5 becomes iodinated before other tyrosines, suggesting its exposure on the surface of the 3D molecular structure of thyroglobulin.

    CAS  PubMed  Google Scholar 

  145. Dedieu, A., Gaillard, J.-C., Pourcher, T., Darrouzet, E. & Armengaud, J. Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy. J. Biol. Chem. 286, 259–269 (2011).

    CAS  PubMed  Google Scholar 

  146. Dunn, J. T. & Dunn, A. D. The importance of thyroglobulin structure for thyroid hormone biosynthesis. Biochimie 81, 505–509 (1999). This comprehensive review summarizes the main hormonogenic sites of thyroglobulin that are involved in T 4 and T 3 formation.

    CAS  PubMed  Google Scholar 

  147. Lamas, L., Anderson, P., Fox, J. W. & Dunn, J. T. Consensus sequences for early iodination and hormonogenesis in human thyroglobulin. J. Biol. Chem. 264, 13541–13545 (1989).

    CAS  PubMed  Google Scholar 

  148. Izumi, M. & Larsen, P. R. Triiodothyronine, thyroxine, and iodine in purified thyroglobulin from patients with Graves’ disease. J. Clin. Invest. 59, 1105–1112 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dunn, A. D., Corsi, C. M., Myers, H. E. & Dunn, J. T. Tyrosine 130 is an important outer ring donor for thyroxine formation in thyroglobulin. J. Biol. Chem. 273, 25223–25229 (1998). This paper provides independent evidence in support of earlier work suggesting that DIT at residue 130 of thyroglobulin is the donor to the acceptor DIT at residue 5.

    CAS  PubMed  Google Scholar 

  150. Marriq, C., Lejeune, P. J., Venot, N. & Vinet, L. Hormone formation in the isolated fragment 1–171 of human thyroglobulin involves the couple tyrosine 5 and tyrosine 130. Mol. Cell. Endocrinol. 81, 155–164 (1991).

    CAS  PubMed  Google Scholar 

  151. Ohmiya, Y., Hayashi, H. & Kondo, T. K. Y. Location of dehydroalanine bovine thyroglobulin residues in the amino acid sequence of bovine thyroglobulin. J. Biol. Chem. 265, 9066–9071 (1990).

    CAS  PubMed  Google Scholar 

  152. Cetrangolo, G. P. et al. Hormonogenic donor Tyr2522 of bovine thyroglobulin. Insight into preferential T3 formation at thyroglobulin carboxyl terminus at low iodination level. Biochem. Biophys. Res. Commun. 450, 488–493 (2014). This paper presents strong mass spectrometry evidence for efficient mono-iodination and di-iodination of the antepenultimate residue that is engaged in T 3 synthesis in thyroglobulin.

    CAS  PubMed  Google Scholar 

  153. Mallet, B. et al. Tyrosine iodination and iodotyrosyl coupling of the N-terminal thyroid hormone forming site of human thyroglobulin modulate its binding to auto- and monoclonal antibodies. Mol. Cell. Endocrinol. 88, 89–95 (1992).

    CAS  PubMed  Google Scholar 

  154. den Hartog, M. T., Sijmons, C. C., Bakker, O., Ris-Stalpers, C. & de Vijlder, J. J. Importance of the content and localization of tyrosine residues for thyroxine formation within the N-terminal part of human thyroglobulin. Eur. J. Endocrinol. 132, 611–617 (1995).

    Google Scholar 

  155. Gentile, F., Ferranti, P., Mamone, G., Malorni, A. & Salvatore, G. Identification of hormonogenic tyrosines in fragment 1218–1591 of bovine thyroglobulin by mass spectrometry. Biochemistry 272, 639–646 (1997).

    CAS  Google Scholar 

  156. Marsili, A., Zavacki, A. M., Harney, J. W. & Larsen, P. R. Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J. Endocrinol. Invest. 34, 395–407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Laugwitz, K. L. et al. The human thyrotropin receptor: A heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl Acad. Sci. USA 93, 116–120 (1996).

    CAS  PubMed  Google Scholar 

  158. Maenhaut, C., Brabant, G., Vassart, G. & Dumont, J. E. In vitro and in vivo regulation of thyrotropin receptor mRNA levels in dog and human thyroid cells. J. Biol. Chem. 267, 3000–3007 (1992).

    CAS  PubMed  Google Scholar 

  159. Dohán, O. et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr. Rev. 24, 48–77 (2003).

    PubMed  Google Scholar 

  160. Raad, H., Eskalli, Z., Corvilain, B., Miot, F. & De Deken, X. Thyroid hydrogen peroxide production is enhanced by the Th2 cytokines, IL-4 and IL-13, through increased expression of the dual oxidase 2and its maturation factorDUOXA2. Free Radic. Biol. Med. 56, 216–225 (2013).

    CAS  PubMed  Google Scholar 

  161. Cardoso-Weide, L. C. et al. DuOx2 promoter regulation by hormones, transcriptional factors and the coactivator TAZ. Eur. Thyroid J. 4, 6–13 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pesce, L. et al. TSH regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells. Endocrinology 153, 512–521 (2012).

    CAS  PubMed  Google Scholar 

  163. Dupuy, C. et al. Mechanism of hydrogen peroxide formation catalyzed by NADPH oxidase in thyroid plasma membrane. J. Biol. Chem. 266, 3739–3743 (1991).

    CAS  PubMed  Google Scholar 

  164. Song, Y. et al. Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J. Clin. Endocrinol. Metab. 95, 375–382 (2010).

    CAS  PubMed  Google Scholar 

  165. Kero, J. et al. Thyrocyte-specific Gq / G11 deficiency impairs thyroid function and prevents goiter development. J. Clin. Invest. 117, 2399–2407 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Patyra, K. et al. Partial thyrocyte-specific G a s deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma – like lesions in mice. FASEB J. 32, 6239–6251 (2018).

    CAS  Google Scholar 

  167. Latif, R. et al. New small molecule agonists to the thyrotropin receptor. Thyroid 25, 51–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Luo, Y. et al. A novel role for flotillin-containing lipid rafts in negative-feedback regulation of thyroid-specific gene expression by thyroglobulin. Thyroid 26, 1630–1639 (2016).

    CAS  PubMed  Google Scholar 

  169. Carvalho, D. P. & Dupuy, C. Thyroid hormone biosynthesis and release. Mol. Cell. Endocrinol. 458, 6–15 (2017).

    CAS  PubMed  Google Scholar 

  170. Huang, H., Shi, Y., Liang, B., Cai, H. & Cai, Q. Iodinated TG in thyroid follicular lumen regulates TTF-1 and PAX8 expression via TSH/TSHR signaling pathway. J. Cell. Biochem. 118, 3444–3451 (2017).

    CAS  PubMed  Google Scholar 

  171. Noguchi, Y. et al. Thyroglobulin (Tg) induces thyroid cell growth in a concentration-specific manner by a mechanism other than thyrotropin / cAMP stimulation. Biochem. Biophys. Res. Commun. 391, 890–894 (2010).

    CAS  PubMed  Google Scholar 

  172. Padron, A. S. et al. Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J. Endocrinol. 221, 415–427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Schanze, N. et al. 3-iodothyronamine decreases expression of genes involved in iodide metabolism in mouse thyroids and inhibits iodide uptake in PCCL3 thyrocytes. Thyroid 27, 11–22 (2017).

    CAS  PubMed  Google Scholar 

  174. Ferreira, A. C. F. et al. Rapid regulation of thyroid sodium-iodide symporter activity by thyrotrophin and iodine. J. Endocrinol. 184, 69–76 (2005).

    CAS  PubMed  Google Scholar 

  175. Woeber, K. A. Iodine and thyroid disease. Med. Clin. North Am. 75, 169–178 (1991).

    CAS  PubMed  Google Scholar 

  176. Führer, D. et al. Autosomal dominant nonautoimmune hyperthyroidism. Clinical features-diagnosis-therapy. Exp. Clin. Endocrinol. Diabetes 106, 10–15 (1998).

    Google Scholar 

  177. Mai, V. & Burch, H. A. Stepwise approach to the evaluation and treatment of subclinical hyperthyroidism. Endocr. Pract. 18, 772–780 (2012).

    PubMed  Google Scholar 

  178. Toccafondi, R. et al. Effects of TSH on cAMP levels and thyroid hormone release in human thyroid ‘autonomous’ nodules: relationship with iodothyronine and iodine content in thyroglobulin. Clin. Endocrinol. 17, 537–546 (1982).

    CAS  Google Scholar 

  179. Kosugi, S., Hai, N., Okamoto, H., Sugawa, H. & Mori, T. A novel activating mutation in the thyrotropin receptor gene in an autonomously functioning thyroid nodule developed by a Japanese patient. Eur. J. Endocrinol. 143, 471–477 (2000).

    CAS  PubMed  Google Scholar 

  180. Patel, Y. C., Pharoah, P. P. O. D., Hornabrook, R. W. & Hetzel, B. S. Serum triiodothyronine, thyroxine and thyroid-stimulating hormone in endemic goiter: a comparison of goitrous and nongoitrous subjects in New Guinea. J. Clin. Endocrinol. Metab. 37, 783–789 (1973).

    CAS  PubMed  Google Scholar 

  181. Vagenakis, A. G. et al. Studies of serum triiodothyronine, thyroxine and thyrotropin concentrations in endemic goiter in Greece. J. Clin. Endocrinol. Metab. 37, 485–488 (1973).

    CAS  PubMed  Google Scholar 

  182. Gilbert, J. A. et al. Monoclonal pathogenic antibodies to the thyroid-stimulating hormone receptor in Graves’ disease with potent thyroid-stimulating activity but differential blocking activity activate multiple signaling pathways. J. Immunol. 176, 5084–5092 (2006).

    CAS  PubMed  Google Scholar 

  183. Targovnik, H. M., Citterio, C. E. & Rivolta, C. M. Iodide handling disorders (NIS, TPO, TG, IYD). Best Pract. Res. Clin. Endocrinol. Metab. 31, 195–212 (2017).

    CAS  PubMed  Google Scholar 

  184. Ricketts, M. H., Simons, M. J., Mercken, L. & Dong, Q. A nonsense mutation causes hereditary goitre in the Afrikander cattle and unmasks alternative splicing of thyroglobulin transcripts. Proc. Natl Acad. Sci. USA 84, 3181–3184 (1987).

    CAS  PubMed  Google Scholar 

  185. Veenboer, G. J. & de Vijlder, J. J. Molecular basis of the thyroglobulin synthesis defect in Dutch goats. Endocrinology 132, 377–381 (1993).

    CAS  PubMed  Google Scholar 

  186. Kim, P. S. et al. A single amino acid change in the acetylcholinesterase-like domain of thyroglobulin causes congenital goiter with hypothyroidism in the cog/cog mouse: a model of human endoplasmic reticulum storage diseases. Proc. Natl Acad. Sci. USA 95, 9909–9913 (1998).

    CAS  PubMed  Google Scholar 

  187. Kim, P. S. et al. A missense mutation G2320R in the thyroglobulin gene causes non-goitrous congenital primary hypothyroidism in the WIC-rdw rat. Mol. Endocrinol. 14, 1944–1953 (2000).

    CAS  PubMed  Google Scholar 

  188. Sato, A. et al. A novel mutation in the thyroglobulin gene that causes goiter and dwarfism in Wistar Hannover GALAS rats. Mutat. Res. 762, 17–23 (2014).

    CAS  PubMed  Google Scholar 

  189. Vigone, M. C., Capalbo, D., Weber, G. & Salerno, M. Mild hypothyroidism in childhood: who, when and how should be treated? J. Endocr. Soc. 2, (1024–1039 (2018).

    Google Scholar 

  190. Nicholas, A. K. et al. Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J. Clin. Endocrinol. Metab. 101, 4521–4531 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Peteiro-Gonzalez, D. et al. New insights into thyroglobulin pathophysiology revealed by the study of a family with congenital goiter. J. Clin. Endocrinol. Metab. 95, 3522–3526 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim, P. S. & Arvan, P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of chaperones. Endocr. Rev. 19, 173–202 (1998).

    CAS  PubMed  Google Scholar 

  193. Citterio, C. E. et al. New insights into thyroglobulin gene: molecular analysis of seven novel mutations associated with goiter and hypothyroidism. Mol. Cell. Endocrinol. 365, 277–291 (2013).

    CAS  PubMed  Google Scholar 

  194. Kanou, Y. et al. Thyroglobulin gene mutations producing defective intracellular transport of thyroglobulin are associated with increased thyroidal type 2 iodothyronine deiodinase activity. J. Clin. Endocrinol. Metab. 92, 1451–1457 (2007).

    CAS  PubMed  Google Scholar 

  195. Hishinuma, A. et al. Haplotype analysis reveals founder effects of thyroglobulin gene mutations C1058R and C1977S in Japan. J. Clin. Endocrinol. Metab. 91, 3100–3104 (2006).

    CAS  PubMed  Google Scholar 

  196. Umezu, M., Kagabu, S., Jiang, J. & Sato, E. Evaluation and characterization of congenital hypothyroidism in rdw dwarf rats. Lab. Anim. Sci. 48, 496–501 (1998).

    CAS  PubMed  Google Scholar 

  197. Baryshev, M. et al. Unfolded protein response is involved in the pathology of human congenital hypothyroid goiter and rat non-goitrous congenital hypothyroidism. J. Mol. Endocrinol. 32, 903–920 (2004).

    CAS  PubMed  Google Scholar 

  198. Menon, S. et al. Oxidoreductase interactions include a role for ERp72 engagement with mutant thyroglobulin from the rdw/rdw rat dwarf. J. Biol. Chem. 282, 6183–6191 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Gaide Chevronnay, H. P. et al. A mouse model suggests two mechanisms for thyroid alterations in infantile cystinosis: Decreased thyroglobulin synthesis due to endoplasmic reticulum stress/unfolded protein response and impaired lysosomal processing. Endocrinology 156, 2349–2364 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Taguchi, A. et al. A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide synthesis. Biochem. J. 456, 373–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of NIH grant R01 DK40344.

Reviewer information

Nature Reviews Endocrinology thanks X. DeDeken, J. Lado-Abeal and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.E.C., H.M.T. and P.A. researched data for the article and made a substantial contribution to discussion of content. C.E.C. and P.A. wrote, reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Peter Arvan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Metamorphosis

An abrupt developmental change in the shape or form of an animal.

Endostyle

A longitudinal, ciliated, grooved organ located on the ventral wall of the pharynx of chordates that has functional equivalence to the vertebrate thyroid gland, among other functions.

Thyroid hormonogenic coupling reaction

A post-translational modification resulting in the physical transfer of a mono-iodotyrosine or di-iodotyrosine donor to a di-iodotyrosine acceptor within a protein.

Thyroglobulin short unique tail sequence

Refers to the final ~32 residues of the thyroglobulin sequence containing the antepenultimate tyrosine residue that can form T3 and is conserved throughout all vertebrates.

De novo T3 formation

Refers to the synthesis of T3 within the thyroglobulin polypeptide backbone that occurs as a result of the coupling of iodotyrosines.

Thyroglobulin non-hormonogenic tyrosine residues

Refers to the tyrosines within thyroglobulin that are not directly involved in thyroid hormone synthesis.

Haploinsufficiency

A condition that arises when there is a complete loss of function of one copy of a gene, and the remaining functional copy of the gene is not adequate to preserve normal function in a diploid organism.

Monoallelic mutations

Changes in the genetic sequence in one of two homologous alleles (paternal or maternal) of a single gene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citterio, C.E., Targovnik, H.M. & Arvan, P. The role of thyroglobulin in thyroid hormonogenesis. Nat Rev Endocrinol 15, 323–338 (2019). https://doi.org/10.1038/s41574-019-0184-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0184-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing