Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Motilin: from gastric motility stimulation to hunger signalling

Abstract

After the discovery of motilin in 1972, motilin and the motilin receptor were studied intensely for their role in the control of gastrointestinal motility and as targets for treating hypomotility disorders. The genetic revolution — with the use of knockout models — sparked novel insights into the role of multiple peptides but contributed to a decline in interest in motilin, as this peptide and its receptor exist only as pseudogenes in rodents. The past 5 years have seen a major surge in interest in motilin, as a series of studies have shown its relevance in the control of hunger and regulation of food intake in humans in both health and disease. Luminal stimuli, such as bitter tastants, have been identified as modulators of motilin release, with effects on hunger and food intake. The current state of knowledge and potential implications for therapy are summarized in this Review.

Key points

  • Motilin is a gastrointestinal hormone produced in the small intestine; during the fasting state, plasma levels of motilin fluctuate and induce gastric contractions to signal hunger via a cholinergic pathway.

  • The cyclic release of endogenous motilin in the fasting state is mainly regulated by duodenal acidification and bile acids.

  • Postprandially, the secretion of motilin is modulated by the presence of macronutrients and the release of other gut hormones (insulin, somatostatin, pancreatic polypeptide and secretin).

  • Exogenously administered motilin or motilin agonists accelerate gastric emptying via high-sensitivity neural receptors and low-sensitivity muscular receptors and increase lower oesophageal sphincter pressure but have no effect on colonic motility.

  • Stimulatory effects of motilin have been observed on hunger ratings, gallbladder emptying and glucose-induced insulin secretion.

  • Targeting the motilin receptor has therapeutic potential to treat hypomotility disorders, modulate hunger and affect glucose metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main biological functions of motilin.
Fig. 2: Fluctuation of plasma levels of motilin during the different phases of the migrating motor complex.
Fig. 3: Relationship between interdigestive motility and hunger ratings.
Fig. 4: Relationship between interdigestive hunger ratings and plasma levels of hormones.

Similar content being viewed by others

References

  1. Brown, J. C., Cook, M. A. & Dryburgh, J. R. Motilin, a gastric motor activity-stimulating polypeptide: final purification, amino acid composition, and C-terminal residues. Gastroenterology 62, 401–404 (1972).

    CAS  PubMed  Google Scholar 

  2. Itoh, Z., Aizawa, R. & Takeuchi, S. in Proc. 5th Int. Symp. on Gastrointestinal Motility (ed. Vantrappen, G.) 48–55 (Typoff-Press, Belgium, 1975).

  3. Vantrappen, G. et al. Motilin and the interdigestive migrating motor complex in man. Dig. Dis. Sci. 24, 497–500 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Peeters, T. L., Vantrappen, G. & Janssens, J. Fasting plasma motilin levels are related to the interdigestive motility complex. Gastroenterology 79, 716–719 (1980).

    CAS  PubMed  Google Scholar 

  5. Peeters, T. L. et al. Effect of motilin on gastric emptying in patients with diabetic gastroparesis. Gastroenterology 102, 97–101 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Luiking, Y. C. et al. Motilin induces gall bladder emptying and antral contractions in the fasted state in humans. Gut 42, 830–835 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Itoh, Z., Nakaya, M., Suzuki, T., Arai, H. & Wakabayashi, K. Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog. Am. J. Physiol. 247, G688–G694 (1984).

    CAS  PubMed  Google Scholar 

  8. Peeters, T. et al. Erythromycin is a motilin receptor agonist. Am. J. Physiol. 257, G470–G474 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Depoortere, I. et al. Structure-activity relation of erythromycin-related macrolides in inducing contractions and in displacing bound motilin in rabbit duodenum. Neurogastroenterol. Motil. 1, 150–159 (1989).

    Article  Google Scholar 

  10. Tack, J. & Peeters, T. What comes after macrolides and other motilin stimulants? Gut 49, 317–318 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tack, J. et al. Motilin-induced gastric contractions signal hunger in man. Gut 65, 214–224 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Brown, J. C. Prescence of a gastric motor-stimulating property in duodenal extracts. Gastroenterology 52, 225–229 (1967).

    CAS  PubMed  Google Scholar 

  13. Schubert, H. & Brown, J. C. Correction to the amino acid sequence of porcine motilin. Can. J. Biochem. 52, 7–8 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. De Clercq, P. et al. Purification and amino acid sequence of human motilin isolated from a motilin containing liver metastasis. Regul. Pept. 55, 79–84 (1995).

    Article  PubMed  Google Scholar 

  15. He, J., Irwin, D. M., Chen, R. & Zhang, Y. P. Stepwise loss of motilin and its specific receptor genes in rodents. J. Mol. Endocrinol. 44, 37–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Sanger, G. J., Holbrook, J. D. & Andrews, P. L. The translational value of rodent gastrointestinal functions: a cautionary tale. Trends Pharmacol. Sci. 32, 402–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Depoortere, I. et al. Comparison of the gastroprokinetic effects of ghrelin, GHRP-6 and motilin in rats in vivo and in vitro. Eur. J. Pharmacol. 515, 160–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Yano, H. et al. Exon-intron organization, expression, and chromosomal localization of the human motilin gene. FEBS Lett. 249, 248–252 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Dea, D., Boileau, G., Poitras, P. & Lahaie, R. G. Molecular heterogeneity of human motilinlike immunoreactivity explained by the processing of prepromotilin. Gastroenterology 96, 695–703 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Mitznegg, P. et al. Pharmacokinetics of motilin in man. Gastroenterology 72, 413–416 (1977).

    CAS  PubMed  Google Scholar 

  21. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Wierup, N. et al. Ghrelin and motilin are cosecreted from a prominent endocrine cell population in the small intestine. J. Clin. Endocrinol. Metab. 92, 3573–3581 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, L. et al. Evidence for the presence of motilin, ghrelin, and the motilin and ghrelin receptor in neurons of the myenteric plexus. Regul. Pept. 124, 119–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Macielag, M. J. et al. Synthesis and in vitro evaluation of [Leu13]porcine motilin fragments. Peptides 13, 565–569 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Peeters, T. L. et al. D-Amino acid and alanine scans of the bioactive portion of porcine motilin. Peptides 13, 1103–1107 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Mitselos, A., Depoortere, I. & Peeters, T. L. Delineation of the motilin domain involved in desensitization and internalization of the motilin receptor by using full and partial antagonists. Biochem. Pharmacol. 73, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Poitras, P., Dumont, A., Cuber, J. C. & Trudel, L. Cholinergic regulation of motilin release from isolated canine intestinal cells. Peptides 14, 207–213 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, K. Y., Chey, W. Y., Tai, H. H. & Yajima, H. Radioimmunoassay of motilin. Validation and studies on the relationship between plasma motilin and interdigestive myoelectric activity of the duodenum of dog. Am. J. Dig. Dis. 23, 789–795 (1978).

    Article  CAS  PubMed  Google Scholar 

  29. Janssens, J., Vantrappen, G. & Peeters, T. L. The activity front of the migrating motor complex of the human stomach but not of the small intestine is motilin-dependent. Regul. Pept. 6, 363–369 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Bormans, V. et al. In man, only activity fronts that originate in the stomach correlate with motilin peaks. Scand. J. Gastroenterol. 22, 781–784 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Boivin, M. et al. Plasma motilin variation during the interdigestive and digestive states in man. Neurogastroenterol. Motil. 2, 240–246 (1990).

    Article  Google Scholar 

  32. Sarna, S. et al. Cause-and-effect relationship between motilin and migrating myoelectric complexes. Am. J. Physiol. 245, G277–G284 (1983).

    CAS  PubMed  Google Scholar 

  33. Tack, J. et al. Influence of ghrelin on interdigestive gastrointestinal motility in humans. Gut 55, 327–333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tomomasa, T., Kuroume, T., Arai, H., Wakabayashi, K. & Itoh, Z. Erythromycin induces migrating motor complex in human gastrointestinal tract. Dig. Dis. Sci. 31, 157–161 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Dryburgh, J. R. & Brown, J. C. Radioimmunoassay for motilin. Gastroenterology 68, 1169–1176 (1975).

    CAS  PubMed  Google Scholar 

  36. Fox, J. E., Track, N. S. & Daniel, E. E. Relationship of plasma motilin concentration to fat ingestion, duodenal acidification and alkalinization, and migrating motor complexes in dogs. Can. J. Physiol. Pharmacol. 59, 180–187 (1981).

    Article  CAS  PubMed  Google Scholar 

  37. Collins, S. M. et al. Changes in plasma motilin concentration in response to manipulation of intragastric and intraduoduenal contents in man. Can. J. Physiol. Pharmacol. 59, 188–194 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Mitznegg, P. et al. Release of motilin in man. Scand. J. Gastroenterol. Suppl. 39, 53–56 (1976).

    CAS  PubMed  Google Scholar 

  39. Mitznegg, P. et al. Release of motilin after duodenal acidification. Lancet 1, 888–889 (1976).

    Article  CAS  PubMed  Google Scholar 

  40. Strunz, U. et al. Acid releases motilin from human duodenum in vitro. Acta Hepatogastroenterol. (Stuttg.) 24, 456–457 (1977).

    CAS  Google Scholar 

  41. Bloom, S. R. et al. Release of VIP, secretin and motilin after duodenal acidification in man. Acta Hepatogastroenterol. (Stuttg.) 25, 365–368 (1978).

    CAS  Google Scholar 

  42. Woodtli, W. & Owyang, C. Duodenal pH governs interdigestive motility in humans. Am. J. Physiol. 268, G146–G152 (1995).

    CAS  PubMed  Google Scholar 

  43. Vantrappen, G. R., Peeters, T. L. & Janssens, J. The secretory component of the interdigestive migrating motor complex in man. Scand. J. Gastroenterol. 14, 663–667 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. Kusano, M. et al. Disturbed initiation of gastric interdigestive migrating complexes despite high plasma motilin levels in patients with low gastric pH. Dig. Dis. Sci. 43, 1697–1700 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Romanski, K. W., Peeters, T. L., Bormans, V., Vantrappen, G. R. & Janssens, J. Interdigestive fluctuations of plasma bile acid concentration: relation to interdigestive motility pattern. Hepatogastroenterology 34, 24–27 (1987).

    CAS  PubMed  Google Scholar 

  46. Stolk, M. F. et al. Motor cycles with phase III in antrum are associated with high motilin levels and prolonged gallbladder emptying. Am. J. Physiol. 264, G596–G600 (1993).

    CAS  PubMed  Google Scholar 

  47. Svenberg, T., Nilsson, I., Samuelson, K. & Welbourn, R. D. Studies on the causal relationship between gall-bladder emptying and motilin release in man. Acta Chir. Scand. Suppl. 520, 59–61 (1984).

    CAS  PubMed  Google Scholar 

  48. Qvist, N. et al. Increases in plasma motilin follow each episode of gallbladder emptying during the interdigestive period, and changes in serum bile acid concentration correlate to plasma motilin. Scand. J. Gastroenterol. 30, 122–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Hellstrom, P. M., Nilsson, I. & Svenberg, T. Role of bile in regulation of gut motility. J. Intern. Med. 237, 395–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Saito, S. et al. Regulation of motilin secretion in the postprandial state in man. Endocrinol. Jpn. 27 (Suppl. 1), 157–162 (1980).

    Article  CAS  PubMed  Google Scholar 

  51. Imura, H., Seino, Y., Mori, K., Itoh, Z. & Yanaihara, N. Plasma motilin levels in normal subjects and patients with diabetes mellitus and certain other diseases. Fasting levels and responses to food and glucose. Endocrinol. Jpn. 27 (Suppl. 1), 151–155 (1980).

    PubMed  Google Scholar 

  52. Christofides, N. D., Bloom, S. R., Besterman, H. S., Adrian, T. E. & Ghatei, M. A. Release of motilin by oral and intravenous nutrients in man. Gut 20, 102–106 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jenssen, T. G., Burhol, P. G., Jorde, R., Florholmen, J. & Lygren, I. Radioimmunoassayable plasma motilin in man. Secretagogues, insulin-induced suppression, renal removal, and plasma components. Scand. J. Gastroenterol. 19, 717–723 (1984).

    Article  CAS  PubMed  Google Scholar 

  54. Funakoshi, A., Ho, L. L., Jen, K. L., Knopf, R. & Vinik, A. I. Diurnal profile of plasma motilin concentrations during fasting and feeding in man. Gastroenterol. Jpn. 20, 446–456 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Deloose, E. et al. Intragastric infusion of denatonium benzoate attenuates interdigestive gastric motility and hunger scores in healthy female volunteers. Am. J. Clin. Nutr. 105, 580–588 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Deloose, E., Corsetti, M., Van Oudenhove, L., Depoortere, I. & Tack, J. Intragastric infusion of the bitter tastant quinine suppresses hormone release and antral motility during the fasting state in healthy female volunteers. Neurogastroenterol. Motil. 30, e13171 (2018).

    Article  CAS  Google Scholar 

  57. Iven, J. et al. Intragastric quinine administration decreases hedonic eating in healthy women through peptide-mediated gut-brain signaling mechanisms. Nutr. Neurosci. https://doi.org/10.1080/1028415x.2018.1457841 (2018).

    Article  PubMed  Google Scholar 

  58. Avau, B. & Depoortere, I. The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. Acta Physiol. (Oxf.) 216, 407–420 (2016).

    Article  CAS  Google Scholar 

  59. Kim, K. S., Egan, J. M. & Jang, H. J. Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 57, 2117–2125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, M. C., Wu, S. V., Reeve, J. R. Jr & Rozengurt, E. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am. J. Physiol. Cell Physiol. 291, C726–C739 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Wu, S. V. et al. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc. Natl Acad. Sci. USA 99, 2392–2397 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Christofides, N. D. Importance of the jejunal hormone motilin. J. Clin. Pathol. Suppl. (Assoc. Clin. Pathol.) 8, 51–57 (1978).

    Article  CAS  Google Scholar 

  63. Penman, E. et al. Distribution and characterisation of immunoreactive somatostatin in human gastrointestinal tract. Regul. Pept. 7, 53–65 (1983).

    Article  CAS  PubMed  Google Scholar 

  64. Morisset, J. Somatostatin: one of the rare multifunctional inhibitors of mammalian species. Pancreas 46, 8–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Mori, K., Seino, Y., Itoh, Z., Yanaihara, N. & Imura, H. Motilin release by intravenous infusion of nutrients and somatostatin in conscious dogs. Regul. Pept. 1, 265–270 (1981).

    Article  CAS  PubMed  Google Scholar 

  66. Peeters, T. L., Janssens, J. & Vantrappen, G. R. Somatostatin and the interdigestive migrating motor complex in man. Regul. Pept. 5, 209–217 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Jenssen, T. G., Haukland, H. H., Florholmen, J., Jorde, R. & Burhol, P. G. Evidence of somatostatin as a humoral modulator of motilin release in man. A study of plasma motilin and somatostatin during intravenous infusion of somatostatin, secretin, cholecystokinin, and gastric inhibitory polypeptide. Scand. J. Gastroenterol. 21, 273–280 (1986).

    Article  CAS  PubMed  Google Scholar 

  68. Poitras, P., Trudel, L., Miller, P. & Gu, C. M. Regulation of motilin release: studies with ex vivo perfused canine jejunum. Am. J. Physiol. 272, G4–G9 (1997).

    CAS  PubMed  Google Scholar 

  69. Depoortere, I., Thijs, T., Thielemans, L., Robberecht, P. & Peeters, T. L. Interaction of the growth hormone-releasing peptides ghrelin and growth hormone-releasing peptide-6 with the motilin receptor in the rabbit gastric antrum. J. Pharmacol. Exp. Ther. 305, 660–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Gutierrez, J. A. et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc. Natl Acad. Sci. USA 105, 6320–6325 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Muller, T. D. et al. Ghrelin. Mol. Metab. 4, 437–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Deloose, E., Vos, R., Corsetti, M., Depoortere, I. & Tack, J. Endogenous motilin, but not ghrelin plasma levels fluctuate in accordance with gastric phase III activity of the migrating motor complex in man. Neurogastroenterol. Motil. 27, 63–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Sjolund, K., Ekman, R. & Wierup, N. Covariation of plasma ghrelin and motilin in irritable bowel syndrome. Peptides 31, 1109–1112 (2010).

    Article  PubMed  CAS  Google Scholar 

  74. Johnson, L. R. Gastrointestinal hormones and their functions. Annu. Rev. Physiol. 39, 135–158 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, K. Y., Kim, M. S. & Chey, W. Y. Effects of a meal and gut hormones on plasma motilin and duodenal motility in dog. Am. J. Physiol. 238, G280–G283 (1980).

    CAS  PubMed  Google Scholar 

  76. Katsuura, G., Asakawa, A. & Inui, A. Roles of pancreatic polypeptide in regulation of food intake. Peptides 23, 323–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Hall, K. E., Diamant, N. E., El-Sharkawy, T. Y. & Greenberg, G. R. Effect of pancreatic polypeptide on canine migrating motor complex and plasma motilin. Am. J. Physiol. 245, G178–G185 (1983).

    Article  CAS  PubMed  Google Scholar 

  78. Janssens, J. et al. Pancreatic polypeptide is not involved in the regulation of the migrating motor complex in man. Regul. Pept. 3, 41–49 (1982).

    Article  CAS  PubMed  Google Scholar 

  79. Mitznegg, P. et al. Effect of secretin on plasma motilin in man. Gut 18, 468–471 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Donnelly, D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br. J. Pharmacol. 166, 27–41 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hellstrom, P. M. et al. GLP-1 suppresses gastrointestinal motility and inhibits the migrating motor complex in healthy subjects and patients with irritable bowel syndrome. Neurogastroenterol. Motil. 20, 649–659 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Feighner, S. D. et al. Receptor for motilin identified in the human gastrointestinal system. Science 284, 2184–2188 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. McKee, K. K. et al. Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics 46, 426–434 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Peeters, T. L., Bormans, V. & Vantrappen, G. Comparison of motilin binding to crude homogenates of human and canine gastrointestinal smooth muscle tissue. Regul. Pept. 23, 171–182 (1988).

    Article  CAS  PubMed  Google Scholar 

  85. Depoortere, I., Peeters, T. L. & Vantrappen, G. Motilin receptors of the rabbit colon. Peptides 12, 89–94 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Poitras, P. et al. Heterogeneity of motilin receptors in the gastrointestinal tract of the rabbit. Peptides 17, 701–707 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Van Assche, G., Depoortere, I. & Peeters, T. L. Localization of motilin binding sites in subcellular fractions from rabbit antral and colonic smooth muscle tissue. Regul. Pept. 77, 89–94 (1998).

    Article  PubMed  Google Scholar 

  88. Miller, P. et al. Motilin receptors in the human antrum. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G18–G23 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Miller, P., Trudel, L., St-Pierre, S., Takanashi, H. & Poitras, P. Neural and muscular receptors for motilin in the rabbit colon. Peptides 21, 283–287 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Matsuura, B., Dong, M., Naik, S., Miller, L. J. & Onji, M. Differential contributions of motilin receptor extracellular domains for peptide and non-peptidyl agonist binding and activity. J. Biol. Chem. 281, 12390–12396 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Matsuura, B., Dong, M. & Miller, L. J. Differential determinants for peptide and non-peptidyl ligand binding to the motilin receptor. Critical role of second extracellular loop for peptide binding and action. J. Biol. Chem. 277, 9834–9839 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Xu, L. et al. Motilin and erythromycin-A share a common binding site in the third transmembrane segment of the motilin receptor. Biochem. Pharmacol. 70, 879–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Mitselos, A., Vanden Berghe, P., Peeters, T. L. & Depoortere, I. Differences in motilin receptor desensitization after stimulation with motilin or motilides are due to alternative receptor trafficking. Biochem. Pharmacol. 75, 1115–1128 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Mitselos, A., Peeters, T. L. & Depoortere, I. Desensitization and internalization of the human motilin receptor is independent of the C-terminal tail. Peptides 29, 1167–1175 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Smith, J. S. & Rajagopal, S. The β-arrestins: multifunctional regulators of G protein-coupled receptors. J. Biol. Chem. 291, 8969–8977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thielemans, L. et al. Desensitization of the human motilin receptor by motilides. J. Pharmacol. Exp. Ther. 313, 1397–1405 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Christofides, N. D., Modlin, I. M., Fitzpatrick, M. L. & Bloom, S. R. Effect of motilin on the rate of gastric emptying and gut hormone release during breakfast. Gastroenterology 76, 903–907 (1979).

    CAS  PubMed  Google Scholar 

  98. Xynos, E. et al. Erythromycin accelerates delayed gastric emptying of solids in patients after truncal vagotomy and pyloroplasty. Eur. J. Surg. 158, 407–411 (1992).

    CAS  PubMed  Google Scholar 

  99. Urbain, J. L. et al. Intravenous erythromycin dramatically accelerates gastric emptying in gastroparesis diabeticorum and normals and abolishes the emptying discrimination between solids and liquids. J. Nucl. Med. 31, 1490–1493 (1990).

    CAS  PubMed  Google Scholar 

  100. Tack, J. et al. Effect of erythromycin on gastric motility in controls and in diabetic gastroparesis. Gastroenterology 103, 72–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Achem-Karam, S. R., Funakoshi, A., Vinik, A. I. & Owyang, C. Plasma motilin concentration and interdigestive migrating motor complex in diabetic gastroparesis: effect of metoclopramide. Gastroenterology 88, 492–499 (1985).

    Article  CAS  PubMed  Google Scholar 

  102. Annese, V. et al. Erythromycin accelerates gastric emptying by inducing antral contractions and improved gastroduodenal coordination. Gastroenterology 102, 823–828 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Bruley des Varannes, S. et al. Erythromycin enhances fasting and postprandial proximal gastric tone in humans. Gastroenterology 109, 32–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Coulie, B., Tack, J., Peeters, T. & Janssens, J. Involvement of two different pathways in the motor effects of erythromycin on the gastric antrum in humans. Gut 43, 395–400 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Deloose, E., Janssen, P., Depoortere, I. & Tack, J. The migrating motor complex: control mechanisms and its role in health and disease. Nat. Rev. Gastroenterol. Hepatol. 9, 271–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Deloose, E. et al. The motilin receptor agonist erythromycin stimulates hunger and food intake through a cholinergic pathway. Am. J. Clin. Nutr. 103, 730–737 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Zhao, D. et al. The motilin agonist erythromycin increases hunger by modulating homeostatic and hedonic brain circuits in healthy women: a randomized, placebo-controlled study. Sci. Rep. 8, 1819 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Van Assche, G., Depoortere, I., Thijs, T., Janssens, J. J. & Peeters, T. L. Concentration-dependent stimulation of cholinergic motor nerves or smooth muscle by [Nle13]motilin in the isolated rabbit gastric antrum. Eur. J. Pharmacol. 337, 267–274 (1997).

    Article  PubMed  Google Scholar 

  109. Dass, N. B. et al. The rabbit motilin receptor: molecular characterisation and pharmacology. Br. J. Pharmacol. 140, 948–954 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Broad, J. et al. Regional- and agonist-dependent facilitation of human neurogastrointestinal functions by motilin receptor agonists. Br. J. Pharmacol. 167, 763–774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang, J. et al. Signaling pathways mediating gastrointestinal smooth muscle contraction and MLC20 phosphorylation by motilin receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G23–G31 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Suzuki, A. et al. Molecular identification of GHS-R and GPR38 in Suncus murinus. Peptides 36, 29–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Javid, F. A. et al. Anti-emetic and emetic effects of erythromycin in Suncus murinus: role of vagal nerve activation, gastric motility stimulation and motilin receptors. Eur. J. Pharmacol. 699, 48–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Mathis, C. & Malbert, C. H. Erythromycin gastrokinetic activity is partially vagally mediated. Am. J. Physiol. 274, G80–G86 (1998).

    CAS  PubMed  Google Scholar 

  115. Depoortere, I., Van Assche, G. & Peeters, T. L. Distribution and subcellular localization of motilin binding sites in the rabbit brain. Brain Res. 777, 103–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Thielemans, L., Depoortere, I., Van Assche, G., Bender, E. & Peeters, T. L. Demonstration of a functional motilin receptor in TE671 cells from human cerebellum. Brain Res. 895, 119–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Kai, Y., Kawatani, H., Yajima, H. & Itoh, Z. Studies on peptides. LV. Total synthesis of porcine motilin, a gastric motor activity stimulating polypeptide. Chem. Pharm. Bull. 23, 2346–2352 (1975).

    Article  CAS  PubMed  Google Scholar 

  118. Itoh, Z. et al. Motilin-induced mechanical activity in the canine alimentary tract. Scand. J. Gastroenterol. Suppl. 39, 93–110 (1976).

    CAS  PubMed  Google Scholar 

  119. Boldyreff, W. Le travail periodique de l’appareil digestif endehors de la digestion [French]. Am. J. Physiol. 217, 1757–1763 (1905).

    Google Scholar 

  120. Carlson, A. A study of the mechanisms of the hunger contractions of the empty stomach by experiments on dogs. Am. J. Physiol. 32, 369–388 (1913).

    Article  Google Scholar 

  121. Szurszewski, J. H. A migrating electric complex of canine small intestine. Am. J. Physiol. 217, 1757–1763 (1969).

    Article  CAS  PubMed  Google Scholar 

  122. Code, C. F. & Marlett, J. A. The interdigestive myo-electric complex of the stomach and small bowel of dogs. J. Physiol. 246, 289–309 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. De Wever, I., Eeckhout, C., Vantrappen, G. & Hellemans, J. Disruptive effect of test meals on interdigestive motor complex in dogs. Am. J. Physiol. 235, E661–E665 (1978).

    PubMed  Google Scholar 

  124. Suzuki, H. et al. Effect of duodenectomy on gastric motility and gastric hormones in dogs. Ann. Surg. 233, 353–359 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mondal, A. et al. Coordination of motilin and ghrelin regulates the migrating motor complex of gastrointestinal motility in Suncus murinus. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1207–G1215 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Dent, J., Dodds, W. J., Sekiguchi, T., Hogan, W. J. & Arndorfer, R. C. Interdigestive phasic contractions of the human lower esophageal sphincter. Gastroenterology 84, 453–460 (1983).

    CAS  PubMed  Google Scholar 

  127. Janssens, J., Annese, V. & Vantrappen, G. Bursts of non-deglutitive simultaneous contractions may be a normal oesophageal motility pattern. Gut 34, 1021–1024 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Domschke, W., Lux, G., Mitznegg, P., Rosch, W. & Domschke, S. Endogenous motilin and lower esophageal sphincter pressure in man: clue to an association. Acta Hepatogastroenterol. (Stuttg.) 23, 274–275 (1976).

    CAS  Google Scholar 

  129. Pennathur, A., Cioppi, M., Fayad, J. B. & Little, A. G. Erythromycin, motilin, and the esophagus. Surgery 114, 295–298 (1993).

    CAS  PubMed  Google Scholar 

  130. Korimilli, A. & Parkman, H. P. Effect of atilmotin, a motilin receptor agonist, on esophageal, lower esophageal sphincter, and gastric pressures. Dig. Dis. Sci. 55, 300–306 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lux, G. et al. Intravenous 13-Nle-motilin increases the human lower esophageal sphincter pressure. Scand. J. Gastroenterol. Suppl. 39, 75–79 (1976).

    CAS  PubMed  Google Scholar 

  132. Tzovaras, G., Xynos, E., Chrysos, E., Mantides, A. & Vassilakis, J. S. The effect of intravenous erythromycin on esophageal motility in healthy subjects. Am. J. Surg. 171, 316–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Pennathur, A. et al. Erythromycin strengthens the defective lower esophageal sphincter in patients with gastroesophageal reflux disease. Am. J. Surg. 167, 169–172 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Chrysos, E. et al. Erythromycin enhances oesophageal motility in patients with gastro-oesophageal reflux. ANZ J. Surg. 71, 98–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Janssen, P. et al. Review article: the role of gastric motility in the control of food intake. Aliment. Pharmacol. Ther. 33, 880–894 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Cuomo, R. et al. Influence of motilin on gastric fundus tone and on meal-induced satiety in man: role of cholinergic pathways. Am. J. Gastroenterol. 101, 804–811 (2006).

    Article  PubMed  Google Scholar 

  137. Tack, J., Caenepeel, P., Piessevaux, H., Cuomo, R. & Janssens, J. Assessment of meal induced gastric accommodation by a satiety drinking test in health and in severe functional dyspepsia. Gut 52, 1271–1277 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tack, J., Piessevaux, H., Coulie, B., Caenepeel, P. & Janssens, J. Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology 115, 1346–1352 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Kamerling, I. M. et al. Motilin effects on the proximal stomach in patients with functional dyspepsia and healthy volunteers. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G776–G781 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Ruppin, H. et al. Effects of 13-nle-motilin in man—inhibition of gastric evacuation and stimulation of pepsin secretion. Scand. J. Gastroenterol. 10, 199–202 (1975).

    Article  CAS  PubMed  Google Scholar 

  141. Strunz, U. et al. Gastroduodenal motor response to natural motilin and synthetic position 13-substituted motilin analogues: a comparative in vitro study. Scand. J. Gastroenterol. 11, 199–203 (1976).

    CAS  PubMed  Google Scholar 

  142. Luttikhold, J. et al. Review article: the role of gastrointestinal hormones in the treatment of delayed gastric emptying in critically ill patients. Aliment. Pharmacol. Ther. 38, 573–583 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. De Smet, B. & Depoortere, I. Motilin and ghrelin as prokinetic drug targets. Pharmacol. Ther. 123, 207–223 (2009).

    Article  PubMed  CAS  Google Scholar 

  144. Janssens, J. et al. Improvement of gastric emptying in diabetic gastroparesis by erythromycin. Preliminary studies. N. Engl. J. Med. 322, 1028–1031 (1990).

    Article  CAS  PubMed  Google Scholar 

  145. Erbas, T., Varoglu, E., Erbas, B., Tastekin, G. & Akalin, S. Comparison of metoclopramide and erythromycin in the treatment of diabetic gastroparesis. Diabetes Care 16, 1511–1514 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Richards, R. D., Davenport, K. & McCallum, R. W. The treatment of idiopathic and diabetic gastroparesis with acute intravenous and chronic oral erythromycin. Am. J. Gastroenterol. 88, 203–207 (1993).

    CAS  PubMed  Google Scholar 

  147. Fiorucci, S. et al. Effect of erythromycin administration on upper gastrointestinal motility in scleroderma patients. Scand. J. Gastroenterol. 29, 807–813 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. Stacher, G. et al. Erythromycin effects on gastric emptying, antral motility and plasma motilin and pancreatic polypeptide concentrations in anorexia nervosa. Gut 34, 166–172 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Minami, T., Nishibayashi, H., Shinomura, Y. & Matsuzawa, Y. Effects of erythromycin in chronic idiopathic intestinal pseudo-obstruction. J. Gastroenterol. 31, 855–859 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Emmanuel, A. V., Shand, A. G. & Kamm, M. A. Erythromycin for the treatment of chronic intestinal pseudo-obstruction: description of six cases with a positive response. Aliment. Pharmacol. Ther. 19, 687–694 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Mozwecz, H. et al. Erythromycin stearate as prokinetic agent in postvagotomy gastroparesis. Dig. Dis. Sci. 35, 902–905 (1990).

    Article  CAS  PubMed  Google Scholar 

  152. Janssen, P. et al. The relation between symptom improvement and gastric emptying in the treatment of diabetic and idiopathic gastroparesis. Am. J. Gastroenterol. 108, 1382–1391 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Boivin, M. A., Carey, M. C. & Levy, H. Erythromycin accelerates gastric emptying in a dose-response manner in healthy subjects. Pharmacotherapy 23, 5–8 (2003).

    Article  PubMed  Google Scholar 

  154. Sanger, G. J., Broad, J., Callaghan, B. & Furness, J. B. Ghrelin and motilin control systems in GI physiology and therapeutics. Handb. Exp. Pharmacol. 239, 379–416 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Ter Beek, W. P. et al. Motilin receptor expression in smooth muscle, myenteric plexus, and mucosa of human inflamed and noninflamed intestine. Inflamm. Bowel Dis. 14, 612–619 (2008).

    Article  PubMed  Google Scholar 

  156. Venkatasubramani, N., Rudolph, C. D. & Sood, M. R. Erythromycin lacks colon prokinetic effect in children with functional gastrointestinal disorders: a retrospective study. BMC Gastroenterol. 8, 38 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. Jameson, J. S., Rogers, J., Misiewicz, J. J., Raimundo, A. H. & Henry, M. M. Oral or intravenous erythromycin has no effect on human distal colonic motility. Aliment. Pharmacol. Ther. 6, 589–595 (1992).

    Article  CAS  PubMed  Google Scholar 

  158. Kamerling, I. M. et al. The effect of motilin on the rectum in healthy volunteers. Br. J. Clin. Pharmacol. 55, 538–543 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Catnach, S. M. et al. Effect of oral erythromycin on gallbladder motility in normal subjects and subjects with gallstones. Gastroenterology 102, 2071–2076 (1992).

    Article  CAS  PubMed  Google Scholar 

  160. Luiking, Y. C. et al. Effects of motilin on human interdigestive gastrointestinal and gallbladder motility, and involvement of 5HT3 receptors. Neurogastroenterol. Motil. 14, 151–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Suzuki, H. et al. Motilin controls cyclic release of insulin through vagal cholinergic muscarinic pathways in fasted dogs. Am. J. Physiol. 274, G87–G95 (1998).

    CAS  PubMed  Google Scholar 

  162. Suzuki, H. et al. Effect of motilin on endogenous release of insulin in conscious dogs in the fed state. Dig. Dis. Sci. 48, 2263–2270 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Ueno, N. et al. Erythromycin improves glycaemic control in patients with Type II diabetes mellitus. Diabetologia 43, 411–415 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Funakoshi, A., Schteingart, D. E. & Vinik, A. I. Effect of insulin on motilin release in man. Tohoku J. Exp. Med. 152, 247–251 (1987).

    Article  CAS  PubMed  Google Scholar 

  165. Salminen, E. K. et al. Xylitol versus glucose: effect on the rate of gastric emptying and motilin, insulin, and gastric inhibitory polypeptide release. Am. J. Clin. Nutr. 49, 1228–1232 (1989).

    Article  CAS  PubMed  Google Scholar 

  166. Meyer-Gerspach, A. C. et al. Effects of caloric and noncaloric sweeteners on antroduodenal motility, gastrointestinal hormone secretion and appetite-related sensations in healthy subjects. Am. J. Clin. Nutr. 107, 707–716 (2018).

    Article  PubMed  Google Scholar 

  167. Steinert, R. E., Frey, F., Topfer, A., Drewe, J. & Beglinger, C. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br. J. Nutr. 105, 1320–1328 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Beaumont, W. Nutrition classics. Experiments and observations on the gastric juice and the physiology of digestion. By William Beaumont. Plattsburgh. Printed by F. P. Allen. 1833. Nutr. Rev. 35, 144–145 (1977).

    CAS  Google Scholar 

  169. Cannon, W. & Washburn, A. An explanation of hunger. Am. J. Physiol. 29, 441–454 (1912).

    Article  Google Scholar 

  170. Carlson, A. The Control of Hunger in Health and Disease (Univ. of Chicago Press, 1916).

  171. Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Wren, A. M. et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141, 4325–4328 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Cummings, D. E., Frayo, R. S., Marmonier, C., Aubert, R. & Chapelot, D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am. J. Physiol. Endocrinol. Metab. 287, E297–E304 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Deloose, E., Biesiekierski, J. R., Vanheel, H., Depoortere, I. & Tack, J. Effect of motilin receptor activation on food intake and food timing. Am. J. Clin. Nutr. 107, 537–543 (2018).

    Article  PubMed  Google Scholar 

  176. Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Monti, V., Carlson, J. J., Hunt, S. C. & Adams, T. D. Relationship of ghrelin and leptin hormones with body mass index and waist circumference in a random sample of adults. J. Am. Diet Assoc. 106, 822–828 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Avau, B. et al. Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Sci. Rep. 5, 15985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Labo, G., Bortolotti, M., Vezzadini, P., Bonora, G. & Bersani, G. Interdigestive gastroduodenal motility and serum motilin levels in patients with idiopathic delay in gastric emptying. Gastroenterology 90, 20–26 (1986).

    Article  CAS  PubMed  Google Scholar 

  180. Deloose, E. et al. Higher plasma motilin levels in obese patients decrease after Roux-en-Y gastric bypass surgery and regulate hunger. Gut 65, 1110–1118 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Bonora, G. et al. Interdigestive plasma motilin concentrations in aged adults. J. Gerontol. 41, 723–726 (1986).

    Article  CAS  PubMed  Google Scholar 

  182. Frada, G. et al. Interdigestive gastroduodenal motor activity in the elderly. Ital. J. Gastroenterol. 16, 314 (1984).

    Google Scholar 

  183. Simren, M., Bjornsson, E. S. & Abrahamsson, H. High interdigestive and postprandial motilin levels in patients with the irritable bowel syndrome. Neurogastroenterol. Motil. 17, 51–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Van Der Veek, P. P., Biemond, I. & Masclee, A. A. Proximal and distal gut hormone secretion in irritable bowel syndrome. Scand. J. Gastroenterol. 41, 170–177 (2006).

    Article  CAS  Google Scholar 

  185. Sjolund, K., Ekman, R., Akre, F. & Lindner, P. Motilin in chronic idiopathic constipation. Scand. J. Gastroenterol. 21, 914–918 (1986).

    Article  CAS  PubMed  Google Scholar 

  186. Preston, D. M., Adrian, T. E., Christofides, N. D., Lennard-Jones, J. E. & Bloom, S. R. Positive correlation between symptoms and circulating motilin, pancreatic polypeptide and gastrin concentrations in functional bowel disorders. Gut 26, 1059–1064 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Perdikis, G. et al. Gastroesophageal reflux disease is associated with enteric hormone abnormalities. Am. J. Surg. 167, 186–191; discussion 191–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  188. Kondo, Y., Torii, K., Itoh, Z. & Omura, S. Erythromycin and its derivatives with motilin-like biological activities inhibit the specific binding of 125I-motilin to duodenal muscle. Biochem. Biophys. Res. Commun. 150, 877–882 (1988).

    Article  CAS  PubMed  Google Scholar 

  189. Peeters, T. L. et al. The motilin antagonist ANQ-11125 blocks motilide-induced contractions in vitro in the rabbit. Biochem. Biophys. Res. Commun. 198, 411–416 (1994).

    Article  CAS  PubMed  Google Scholar 

  190. Pehl, C., Pfeiffer, A., Wendl, B., Stellwag, B. & Kaess, H. Effect of erythromycin on postprandial gastroesophageal reflux in reflux esophagitis. Dis. Esophagus 10, 34–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  191. Champion, G., Richter, J. E., Singh, S., Schan, C. & Nellans, H. Effects of oral erythromycin on esophageal pH and pressure profiles in patients with gastroesophageal reflux disease. Dig. Dis. Sci. 39, 129–137 (1994).

    Article  CAS  PubMed  Google Scholar 

  192. Chaussade, S., Michopoulos, S., Sogni, P., Guerre, J. & Couturier, D. Motilin agonist erythromycin increases human lower esophageal sphincter pressure by stimulation of cholinergic nerves. Dig. Dis. Sci. 39, 381–384 (1994).

    Article  CAS  PubMed  Google Scholar 

  193. Broad, J. & Sanger, G. J. The antibiotic azithromycin is a motilin receptor agonist in human stomach: comparison with erythromycin. Br. J. Pharmacol. 168, 1859–1867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Larson, J. M., Tavakkoli, A., Drane, W. E., Toskes, P. P. & Moshiree, B. Advantages of azithromycin over erythromycin in improving the gastric emptying half-time in adult patients with gastroparesis. J. Neurogastroenterol. Motil. 16, 407–413 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Rohof, W. O. et al. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period. Gut 61, 1670–1677 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Ray, W. A. et al. Oral erythromycin and the risk of sudden death from cardiac causes. N. Engl. J. Med. 351, 1089–1096 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Itoh, Z. & Omura, S. Motilide, a new family of macrolide compounds mimicking motilin. Dig. Dis. Sci. 32, 915 (1987).

    Google Scholar 

  198. Verhagen, M. A. et al. Effects of a new motilide, ABT-229, on gastric emptying and postprandial antroduodenal motility in healthy volunteers. Aliment. Pharmacol. Ther. 11, 1077–1086 (1997).

    Article  CAS  PubMed  Google Scholar 

  199. Clark, M. J. et al. Erythromycin derivatives ABT 229 and GM 611 act on motilin receptors in the rabbit duodenum. Clin. Exp. Pharmacol. Physiol. 26, 242–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  200. Cowles, V. E. et al. Effect of novel motilide ABT-229 versus erythromycin and cisapride on gastric emptying in dogs. J. Pharmacol. Exp. Ther. 293, 1106–1111 (2000).

    CAS  PubMed  Google Scholar 

  201. Talley, N. J. et al. Failure of a motilin receptor agonist (ABT-229) to relieve the symptoms of functional dyspepsia in patients with and without delayed gastric emptying: a randomized double-blind placebo-controlled trial. Aliment. Pharmacol. Ther. 14, 1653–1661 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Talley, N. J. et al. Effects of a motilin receptor agonist (ABT-229) on upper gastrointestinal symptoms in type 1 diabetes mellitus: a randomised, double blind, placebo controlled trial. Gut 49, 395–401 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen, C. L. et al. Efficacy of a motilin receptor agonist (ABT-229) for the treatment of gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 16, 749–757 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Sanger, G. J. Motilin, ghrelin and related neuropeptides as targets for the treatment of GI diseases. Drug Discov. Today 13, 234–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Russo, A. et al. Effect of the motilin agonist KC 11458 on gastric emptying in diabetic gastroparesis. Aliment. Pharmacol. Ther. 20, 333–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. McCallum, R. W., Cynshi, O. & US Investigative Team. Efficacy of mitemcinal, a motilin agonist, on gastrointestinal symptoms in patients with symptoms suggesting diabetic gastropathy: a randomized, multi-center, placebo-controlled trial. Aliment. Pharmacol. Ther. 26, 107–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Heightman, T. D. et al. Identification of small molecule agonists of the motilin receptor. Bioorg. Med. Chem. Lett. 18, 6423–6428 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Westaway, S. M. et al. The discovery of biaryl carboxamides as novel small molecule agonists of the motilin receptor. Bioorg. Med. Chem. Lett. 18, 6429–6436 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Westaway, S. M. et al. Discovery of N-(3-fluorophenyl)-1-[(4-([(3S)-3-methyl-1-piperazinyl]methyl)phenyl)acetyl]-4-piperidinamine (GSK962040), the first small molecule motilin receptor agonist clinical candidate. J. Med. Chem. 52, 1180–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Sanger, G. J. et al. GSK962040: a small molecule, selective motilin receptor agonist, effective as a stimulant of human and rabbit gastrointestinal motility. Neurogastroenterol. Motil. 21, 657–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Dukes, G. et al. Pharmacokinetics, safety/tolerability, and effect on gastric emptying of the oral motilin receptor agonist, GSK962040, in healthy male and female volunteers. Neurogastroenterol. Motil. 21, 84 (2009).

    Google Scholar 

  212. Dukes, G. et al. Safety/tolerability, pharmacokinetics (PK), and effect on gastric emptying (GE) with 14-days repeat oral dosing of the motilin receptor agonist, GSK962040, in healthy male and female volunteers. Neurogastroenterol Motil. 22, 14–15 (2010).

    Google Scholar 

  213. Chapman, M. J. et al. The effect of camicinal (GSK962040), a motilin agonist, on gastric emptying and glucose absorption in feed-intolerant critically ill patients: a randomized, blinded, placebo-controlled, clinical trial. Crit. Care 20, 232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Hobson, R. et al. The effects of camicinal, a novel motilin agonist, on gastro-esophageal function in healthy humans-a randomized placebo controlled trial. Neurogastroenterol. Motil. 27, 1629–1637 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Deloose, E. et al. Manometric evaluation of the motilin receptor agonist camicinal (GSK962040) in humans. Neurogastroenterol. Motil. 30, e13173 (2018).

    Article  CAS  Google Scholar 

  216. Marrinan, S. L. et al. A randomized, double-blind, placebo-controlled trial of camicinal in Parkinson’s disease. Mov. Disord. 33, 329–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Barton, M. E. et al. A randomized, double-blind, placebo-controlled phase II study (MOT114479) to evaluate the safety and efficacy and dose response of 28 days of orally administered camicinal, a motilin receptor agonist, in diabetics with gastroparesis. Gastroenterology 146, S20–S20 (2014).

    Article  Google Scholar 

  218. Park, M. I. et al. Effect of atilmotin on gastrointestinal transit in healthy subjects: a randomized, placebo-controlled study. Neurogastroenterol. Motil. 18, 28–36 (2006).

    Article  PubMed  Google Scholar 

  219. Broad, J. et al. RQ-00201894: a motilin receptor agonist causing long-lasting facilitation of human gastric cholinergically-mediated contractions. J. Pharmacol. Sci. 130, 60–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Tsukamoto, K., Kuboyama, N., Yamano, M., Nakazawa, T. & Suzuki, T. In vitro pharmacological profile of SK-896, a new human motilin analogue. Pharmacology 60, 128–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  221. Tsukamoto, K., Tagi, Y., Nakazawa, T. & Takeda, M. Gastroprokinetic effect and mechanism of SK-896, a new motilin analogue, during the interdigestive period in conscious dogs. Pharmacology 63, 95–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  222. Furuta, Y., Takeda, M., Nakayama, Y., Ito, M. & Suzuki, Y. Effects of SK-896, a new human motilin analogue ([Leu13]motilin-Hse), on postoperative ileus in dogs after laparotomy. Biol. Pharm. Bull. 25, 1063–1071 (2002).

    Article  CAS  PubMed  Google Scholar 

  223. Tsukamoto, K., Mizutani, M., Yamano, M., Tagi, Y. & Takeda, M. The effect of SK-896 on post-operative ileus in dogs: gastrointestinal motility pattern and transit. Eur. J. Pharmacol. 401, 97–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  224. Furuta, Y., Nakayama, Y., Nakashima, M. & Suzuki, Y. Pharmacokinetic and pharmacodynamic studies of SK-896, a new human motilin analogue, in healthy male volunteers. Clin. Pharmacokinet. 42, 575–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  225. Dennie, J. et al. A phase 1 study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of single oral doses of DS-3801b, a motilin receptor agonist, in healthy subjects. J. Clin. Pharmacol. 57, 1221–1230 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Sudo, H. et al. Oral administration of MA-2029, a novel selective and competitive motilin receptor antagonist, inhibits motilin-induced intestinal contractions and visceral pain in rabbits. Eur. J. Pharmacol. 581, 296–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  227. Takanashi, H. et al. GM-109: a novel, selective motilin receptor antagonist in the smooth muscle of the rabbit small intestine. J. Pharmacol. Exp. Ther. 273, 624–628 (1995).

    CAS  PubMed  Google Scholar 

  228. Venkova, K., Thomas, H., Fraser, G. L. & Greenwood-Van Meerveld, B. Effect of TZP-201, a novel motilin receptor antagonist, in the colon of the musk shrew (Suncus murinus). J. Pharm. Pharmacol. 61, 367–373 (2009).

    CAS  PubMed  Google Scholar 

  229. Kamerling, I. M. et al. Effects of a nonpeptide motilin receptor antagonist on proximal gastric motor function. Br. J. Clin. Pharmacol. 57, 393–401 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ozaki, K. et al. An orally active motilin receptor antagonist, MA-2029, inhibits motilin-induced gastrointestinal motility, increase in fundic tone, and diarrhea in conscious dogs without affecting gastric emptying. Eur. J. Pharmacol. 615, 185–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  231. Civalleri, D. et al. [Behavior of plasma pancreatic polypeptides and motilin in obese patients subjected to biliopancreatic bypass]. Boll. Soc. Ital. Biol. Sper. 56, 1929–1935 (1980).

    CAS  PubMed  Google Scholar 

  232. Weiss, H. et al. Effects of adjustable gastric banding on altered gut neuropeptide levels in morbidly obese patients. Obes. Surg. 11, 735–739 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.D. is a postdoctoral fellow of the Fonds voor Wetenschappelijk Onderzoek (FWO).

Author information

Authors and Affiliations

Authors

Contributions

E.D., I.D. and J.T. researched data for the article, made a substantial contribution to discussion of content and wrote, reviewed and/or edited the manuscript before submission. W.V. wrote, reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jan Tack.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deloose, E., Verbeure, W., Depoortere, I. et al. Motilin: from gastric motility stimulation to hunger signalling. Nat Rev Endocrinol 15, 238–250 (2019). https://doi.org/10.1038/s41574-019-0155-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0155-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing