Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liver X receptors in lipid signalling and membrane homeostasis

Abstract

Liver X receptors α and β (LXRα and LXRβ) are nuclear receptors with pivotal roles in the transcriptional control of lipid metabolism. Transcriptional activity of LXRs is induced in response to elevated cellular levels of cholesterol. LXRs bind to and regulate the expression of genes that encode proteins involved in cholesterol absorption, transport, efflux, excretion and conversion to bile acids. The coordinated, tissue-specific actions of the LXR pathway maintain systemic cholesterol homeostasis and regulate immune and inflammatory responses. LXRs also regulate fatty acid metabolism by controlling the lipogenic transcription factor sterol regulatory element-binding protein 1c and regulate genes that encode proteins involved in fatty acid elongation and desaturation. LXRs exert important effects on the metabolism of phospholipids, which, along with cholesterol, are major constituents of cellular membranes. LXR activation preferentially drives the incorporation of polyunsaturated fatty acids into phospholipids by inducing transcription of the remodelling enzyme lysophosphatidylcholine acyltransferase 3. The ability of the LXR pathway to couple cellular sterol levels with the saturation of fatty acids in membrane phospholipids has implications for several physiological processes, including lipoprotein production, dietary lipid absorption and intestinal stem cell proliferation. Understanding how LXRs regulate membrane composition and function might provide new therapeutic insight into diseases associated with dysregulated lipid metabolism, including atherosclerosis, diabetes mellitus and cancer.

Key points

  • Liver X receptors (LXRs) are ligand-activated nuclear receptors that modulate lipid homeostasis.

  • Cellular and systemic cholesterol homeostasis is maintained by LXRs through the regulation of cholesterol absorption, cellular uptake, excretion, reverse transport and biosynthesis in multiple tissues and cell types.

  • LXR activation increases lipogenesis through the control of sterol regulatory element-binding protein 1c and its target genes in liver.

  • LXRs modulate membrane phospholipid composition through inducing the expression of lysophosphatidylcholine acyltransferase 3, an enzyme that has important roles in lipid metabolism in liver and intestine.

  • The lipogenic activity of hepatic LXRα is a major limitation for the development of LXR agonists as therapeutics for atherosclerosis or Alzheimer disease.

  • Further basic and translational research is needed to develop novel strategies for manipulating LXRs and their targets in the setting of metabolic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LXRs are lipid-responsive transcription factors.
Fig. 2: LXR signalling pathways in cholesterol and fatty acid metabolism.
Fig. 3: Roles of LXR-dependent phospholipid remodelling in liver.
Fig. 4: LPCAT3 and phospholipid remodelling in lipid absorption and intestinal homeostasis.

Similar content being viewed by others

References

  1. Calkin, A. C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13, 213–224 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710–730 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors, RXR, and the big bang. Cell 157, 255–266 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hong, C. & Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Discov. 13, 433–444 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Apfel, R. et al. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol. Cell. Biol. 14, 7025–7035 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Willy, P. J. et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 9, 1033–1045 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14, 2819–2830 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Seol, W., Choi, H. S. & Moore, D. D. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9, 72–85 (1995).

    PubMed  CAS  Google Scholar 

  9. Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    PubMed  CAS  Google Scholar 

  12. Tamura, K. et al. LXRalpha functions as a cAMP-responsive transcriptional regulator of gene expression. Proc. Natl Acad. Sci. USA 97, 8513–8518 (2000).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Morello, F. et al. Liver X receptors alpha and beta regulate renin expression in vivo. J. Clin. Invest. 115, 1913–1922 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R. & Mangelsdorf, D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383, 728–731 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. Fu, X. et al. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J. Biol. Chem. 276, 38378–38387 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. Lehmann, J. M. et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 272, 3137–3140 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Yang, C. et al. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. J. Biol. Chem. 281, 27816–27826 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Peet, D. J. et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93, 693–704 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. Yu, L. et al. Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J. Biol. Chem. 278, 15565–15570 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, Y. et al. Liver LXRalpha expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J. Clin. Invest. 122, 1688–1699 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Venkateswaran, A. et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc. Natl Acad. Sci. USA 97, 12097–12102 (2000).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kennedy, M. A. et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 1, 121–131 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat. Genet. 22, 352–355 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 22, 347–351 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Qian, H. et al. Structure of the human lipid exporter ABCA1. Cell 169, 1228–1239 e1210 (2017).

    Article  PubMed  CAS  Google Scholar 

  26. Tarling, E. J. & Edwards, P. A. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc. Natl Acad. Sci. USA 108, 19719–19724 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hong, C. et al. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target. J. Lipid Res. 52, 531–539 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Engel, T. et al. ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett. 566, 241–246 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. Mak, P. A. et al. Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role for nuclear liver X receptors alpha and beta. J. Biol. Chem. 277, 31900–31908 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. Laffitte, B. A. et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc. Natl Acad. Sci. USA 98, 507–512 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Hummasti, S. et al. Liver X receptors are regulators of adipocyte gene expression but not differentiation: identification of apoD as a direct target. J. Lipid Res. 45, 616–625 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. Laffitte, B. A. et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol. Cell. Biol. 23, 2182–2191 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Luo, Y. & Tall, A. R. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J. Clin. Invest. 105, 513–520 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhang, Y., Repa, J. J., Gauthier, K. & Mangelsdorf, D. J. Regulation of lipoprotein lipase by the oxysterol receptors, LXRalpha and LXRbeta. J. Biol. Chem. 276, 43018–43024 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. Wong, J., Quinn, C. M. & Brown, A. J. SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1, by generating oxysterol ligands for LXR. Biochem. J. 400, 485–491 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sallam, T. et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 534, 124–128 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang, L. et al. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. eLife 6, e28766 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Russell, D. W. et al. Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell 37, 577–585 (1984).

    Article  PubMed  CAS  Google Scholar 

  39. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  PubMed  CAS  Google Scholar 

  40. Ishibashi, S., Goldstein, J. L., Brown, M. S., Herz, J. & Burns, D. K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J. Clin. Invest. 93, 1885–1893 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hua, X. et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl Acad. Sci. USA 90, 11603–11607 (1993).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Zelcer, N., Hong, C., Boyadjian, R. & Tontonoz, P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325, 100–104 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hong, C. et al. The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2. J. Biol. Chem. 285, 19720–19726 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Scotti, E. et al. IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol. Cell. Biol. 33, 1503–1514 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhang, L. et al. The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor. Genes Dev. 25, 1262–1274 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Calkin, A. C. et al. FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors. Proc. Natl Acad. Sci. USA 108, 20107–20112 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hong, C. et al. The LXR-Idol axis differentially regulates plasma LDL levels in primates and mice. Cell Metab. 20, 910–918 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kirchgessner, T. G. et al. Beneficial and adverse effects of an LXR Agonist on human lipid and lipoprotein metabolism and circulating neutrophils. Cell Metab. 24, 223–233 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Weissglas-Volkov, D. et al. The N342S MYLIP polymorphism is associated with high total cholesterol and increased LDL receptor degradation in humans. J. Clin. Invest. 121, 3062–3071 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chasman, D. I. et al. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ. Cardiovasc. Genet. 5, 257–264 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Altmann, S. W. et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. Brunham, L. R. et al. Tissue-specific induction of intestinal ABCA1 expression with a liver X receptor agonist raises plasma HDL cholesterol levels. Circ. Res. 99, 672–674 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. Brunham, L. R. et al. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest. 116, 1052–1062 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lo Sasso, G. et al. Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab. 12, 187–193 (2010).

    Article  PubMed  CAS  Google Scholar 

  56. Graf, G. A. et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem. 278, 48275–48282 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. Graf, G. A. et al. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J. Clin. Invest. 110, 659–669 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jakulj, L. et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab. 24, 783–794 (2016).

    Article  PubMed  CAS  Google Scholar 

  59. Berge, K. E. et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290, 1771–1775 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. Lu, K. et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am. J. Hum. Genet. 69, 278–290 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Duval, C. et al. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem. Biophys. Res. Commun. 340, 1259–1263 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. Yu, L. et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Invest. 110, 671–680 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tontonoz, P. & Mangelsdorf, D. J. Liver X receptor signaling pathways in cardiovascular disease. Mol. Endocrinol. 17, 985–993 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. Schultz, J. R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831–2838 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Joseph, S. B. et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277, 11019–11025 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. Chu, K., Miyazaki, M., Man, W. C. & Ntambi, J. M. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol. Cell. Biol. 26, 6786–6798 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Cha, J. Y. & Repa, J. J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J. Biol. Chem. 282, 743–751 (2007).

    Article  PubMed  CAS  Google Scholar 

  68. Chen, G., Liang, G., Ou, J., Goldstein, J. L. & Brown, M. S. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl Acad. Sci. USA 101, 11245–11250 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Tian, J., Goldstein, J. L. & Brown, M. S. Insulin induction of SREBP-1c in rodent liver requires LXRalpha-C/EBPbeta complex. Proc. Natl Acad. Sci. USA 113, 8182–8187 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Yoshikawa, T. et al. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J. Biol. Chem. 277, 1705–1711 (2002).

    Article  PubMed  CAS  Google Scholar 

  71. Hannah, V. C., Ou, J., Luong, A., Goldstein, J. L. & Brown, M. S. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol. Chem. 276, 4365–4372 (2001).

    Article  PubMed  CAS  Google Scholar 

  72. Yahagi, N. et al. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J. Biol. Chem. 274, 35840–35844 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. Ross, S. E. et al. Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol. Cell. Biol. 22, 5989–5999 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Stenson, B. M. et al. Activation of liver X receptor regulates substrate oxidation in white adipocytes. Endocrinology 150, 4104–4113 (2009).

    Article  PubMed  CAS  Google Scholar 

  75. Korach-Andre, M., Archer, A., Barros, R. P., Parini, P. & Gustafsson, J. A. Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc. Natl Acad. Sci. USA 108, 403–408 (2011).

    Article  PubMed  Google Scholar 

  76. Kalaany, N. Y. et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab. 1, 231–244 (2005).

    Article  PubMed  CAS  Google Scholar 

  77. Beaven, S. W. et al. Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab. 18, 106–117 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Spector, A. A. & Yorek, M. A. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985).

    PubMed  CAS  Google Scholar 

  79. Holzer, R. G. et al. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell 147, 173–184 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lands, W. E. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J. Biol. Chem. 235, 2233–2237 (1960).

    PubMed  CAS  Google Scholar 

  81. Lands, W. E. & Merkl, I. Metabolism of glycerolipids. III. Reactivity of various acyl esters of coenzyme A with alpha’-acylglycerophosphorylcholine, and positional specificities in lecithin synthesis. J. Biol. Chem. 238, 898–904 (1963).

    PubMed  CAS  Google Scholar 

  82. Rong, X. et al. LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18, 685–697 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Demeure, O. et al. Regulation of LPCAT3 by LXR. Gene 470, 7–11 (2011).

    Article  PubMed  CAS  Google Scholar 

  84. Ishibashi, M. et al. Liver x receptor regulates arachidonic acid distribution and eicosanoid release in human macrophages: a key role for lysophosphatidylcholine acyltransferase 3. Arterioscler Thromb. Vasc. Biol. 33, 1171–1179 (2013).

    Article  PubMed  CAS  Google Scholar 

  85. Grefhorst, A. & Parks, E. J. Reduced insulin-mediated inhibition of VLDL secretion upon pharmacological activation of the liver X receptor in mice. J. Lipid Res. 50, 1374–1383 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Okazaki, H., Goldstein, J. L., Brown, M. S. & Liang, G. LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J. Biol. Chem. 285, 6801–6810 (2010).

    Article  PubMed  CAS  Google Scholar 

  87. Vance, D. E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol 19, 229–234 (2008).

    Article  PubMed  CAS  Google Scholar 

  88. Rong, X. et al. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. eLife 4, e06557 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  89. Hashidate-Yoshida, T. et al. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. eLife 4, e06328 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  90. Wang, B. et al. Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet. Cell Metab. 23, 492–504 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li, Z. et al. Deficiency in lysophosphatidylcholine acyltransferase 3 reduces plasma levels of lipids by reducing lipid absorption in mice. Gastroenterology 149, 1519–1529 (2015).

    Article  PubMed  CAS  Google Scholar 

  92. Rong, X. et al. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J. Clin. Invest. 127, 3640–3651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang, B. et al. Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell 22, 206–220 e204 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Pommier, A. J. et al. Liver X Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 29, 2712–2723 (2010).

    Article  PubMed  CAS  Google Scholar 

  95. Koeberle, A. et al. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc. Natl Acad. Sci. USA 110, 2546–2551 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Tabas, I., Garcia-Cardena, G. & Owens, G. K. Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209, 13–22 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  PubMed  CAS  Google Scholar 

  100. Tangirala, R. K. et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc. Natl Acad. Sci. USA 99, 11896–11901 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Joseph, S. B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl Acad. Sci. USA 99, 7604–7609 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Calkin, A. C. & Tontonoz, P. Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb. Vasc. Biol. 30, 1513–1518 (2010).

    Article  PubMed  CAS  Google Scholar 

  103. Verschuren, L., de Vries-van der Weij, J., Zadelaar, S., Kleemann, R. & Kooistra, T. LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apoE*3Leiden mice: time course and mechanisms. J. Lipid Res. 50, 301–311 (2009).

    Article  PubMed  CAS  Google Scholar 

  104. Levin, N. et al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler. Thromb. Vasc. Biol. 25, 135–142 (2005).

    Article  PubMed  CAS  Google Scholar 

  105. Teupser, D. et al. Effect of macrophage overexpression of murine liver X receptor-alpha (LXR-alpha) on atherosclerosis in LDL-receptor deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 2009–2015 (2008).

    Article  PubMed  CAS  Google Scholar 

  106. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  PubMed  CAS  Google Scholar 

  107. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    Article  PubMed  CAS  Google Scholar 

  108. Castrillo, A. et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol. Cell 12, 805–816 (2003).

    Article  PubMed  CAS  Google Scholar 

  109. Castrillo, A., Joseph, S. B., Marathe, C., Mangelsdorf, D. J. & Tontonoz, P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J. Biol. Chem. 278, 10443–10449 (2003).

    Article  PubMed  CAS  Google Scholar 

  110. Ghisletti, S. et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 23, 681–693 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ghisletti, S. et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol. Cell 25, 57–70 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lee, J. H. et al. Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol. Cell 35, 806–817 (2009).

    Article  PubMed  CAS  Google Scholar 

  113. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Rajamaki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ito, A. et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 4, e08009 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kidani, Y. & Bensinger, S. J. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol. Rev. 249, 72–83 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Spann, N. J. & Glass, C. K. Sterols and oxysterols in immune cell function. Nat. Immunol. 14, 893–900 (2013).

    Article  PubMed  CAS  Google Scholar 

  118. Joseph, S. B., Castrillo, A., Laffitte, B. A., Mangelsdorf, D. J. & Tontonoz, P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9, 213–219 (2003).

    Article  PubMed  CAS  Google Scholar 

  119. Glass, C. K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010).

    Article  PubMed  CAS  Google Scholar 

  120. Joseph, S. B. et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119, 299–309 (2004).

    Article  PubMed  CAS  Google Scholar 

  121. N., A. G. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  CAS  Google Scholar 

  122. Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ito, A. et al. Cholesterol accumulation in CD11c(+) immune cells is a causal and targetable factor in autoimmune disease. Immunity 45, 1311–1326 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Westerterp, M. et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 25, 1294–1304 e1296 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dietschy, J. M. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol. Chem. 390, 287–293 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Courtney, R. & Landreth, G. E. LXR regulation of brain cholesterol: from development to disease. Trends Endocrinol. Metab. 27, 404–414 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wang, L. et al. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc. Natl Acad. Sci. USA 99, 13878–13883 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  128. Zelcer, N. et al. Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc. Natl Acad. Sci. USA 104, 10601–10606 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  129. Burns, M. P. et al. The effects of ABCA1 on cholesterol efflux and Abeta levels in vitro and in vivo. J. Neurochem. 98, 792–800 (2006).

    Article  PubMed  CAS  Google Scholar 

  130. Choi, J. et al. The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Abeta amyloidosis. Sci. Transl Med. 7, 314ra184 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Riddell, D. R. et al. The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol. Cell Neurosci. 34, 621–628 (2007).

    Article  PubMed  CAS  Google Scholar 

  132. Lane-Donovan, C. & Herz, J. ApoE, ApoE receptors, and the synapse in Alzheimer’s Disease. Trends Endocrinol. Metab. 28, 273–284 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Svensson, S. et al. Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. EMBO J. 22, 4625–4633 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Janowski, B. A. et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc. Natl Acad. Sci. USA 96, 266–271 (1999).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  135. Quinet, E. M. et al. Gene-selective modulation by a synthetic oxysterol ligand of the liver X receptor. J. Lipid Res. 45, 1929–1942 (2004).

    Article  PubMed  CAS  Google Scholar 

  136. Katz, A. et al. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J. Clin. Pharmacol. 49, 643–649 (2009).

    Article  PubMed  CAS  Google Scholar 

  137. Ratni, H. et al. Discovery of tetrahydro-cyclopenta[b]indole as selective LXRs modulator. Bioorg. Med. Chem. Lett. 19, 1654–1657 (2009).

    Article  PubMed  CAS  Google Scholar 

  138. Hu, B. et al. Identification of phenylsulfone-substituted quinoxaline (WYE-672) as a tissue selective liver X-receptor (LXR) agonist. J. Med. Chem. 53, 3296–3304 (2010).

    Article  PubMed  CAS  Google Scholar 

  139. Quinet, E. M. et al. LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse. J. Lipid Res. 50, 2358–2370 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00796575 (2015).

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00836602 (2011).

  142. Nomura, S., Endo-Umeda, K., Makishima, M., Hashimoto, Y. & Ishikawa, M. Development of tetrachlorophthalimides as Liver X Receptor beta (LXRbeta)-selective agonists. ChemMedChem 11, 2347–2360 (2016).

    Article  PubMed  CAS  Google Scholar 

  143. Zheng, Y. et al. Discovery of a novel, orally efficacious liver X receptor (LXR) beta agonist. J. Med. Chem. 59, 3264–3271 (2016).

    Article  PubMed  CAS  Google Scholar 

  144. Stachel, S. J. et al. Identification and in vivo evaluation of liver X receptor beta-selective agonists for the potential treatment of Alzheimer’s disease. J. Med. Chem. 59, 3489–3498 (2016).

    Article  PubMed  CAS  Google Scholar 

  145. Kaneko, E. et al. Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist. J. Biol. Chem. 278, 36091–36098 (2003).

    Article  PubMed  CAS  Google Scholar 

  146. Yasuda, T. et al. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb. Vasc. Biol. 30, 781–786 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00366522 (2009).

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00385489 (2009).

  149. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00379860 (2007).

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00613431 (2008).

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01651273 (2013).

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.W. and P.T. discussed the content, researched the data and contributed to writing the article and to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Peter Tontonoz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 14, 452–463 (2018). https://doi.org/10.1038/s41574-018-0037-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0037-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing