Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting autophagy in obesity: from pathophysiology to management

Abstract

Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.

Key points

  • Autophagy regulates cellular energy as well as amino acid, glucose and lipid metabolism; conversely, levels of ATP, amino acids, fatty acids and glucose govern autophagy regulation.

  • Autophagy might be either enhanced or suppressed in obesity owing to dyslipidaemia or overnutrition, respectively, and dysregulation of autophagy promotes the onset and development of metabolic disorders.

  • Dysregulation of autophagy exhibits tissue specificity and chronological biphasic changes throughout the course of overnutrition and, consequently, obesogenesis.

  • Loss of autophagy homeostasis in adipose tissue (for example, diminished adipocyte autophagy despite elevated expression of autophagy genes) has unfavourable effects on local and/or global metabolism that promote metabolic disorders.

  • Lifestyle modification (such as exercise and dietary restriction) and pharmacological modulation of autophagy have been proved beneficial for the prevention and treatment of obesity and its complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signalling cascades regulating autophagy during nutrient stress and obesity.
Fig. 2: Changes in autophagy in metabolic organs during overnutrition and obesity.

Similar content being viewed by others

References

  1. Bastien, M., Poirier, P., Lemieux, I. & Despres, J. P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis. 56, 369–381 (2014).

    Article  PubMed  Google Scholar 

  2. Maiano, C., Hue, O., Morin, A. J. & Moullec, G. Prevalence of overweight and obesity among children and adolescents with intellectual disabilities: a systematic review and meta-analysis. Obes. Rev. 17, 599–611 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Zylke, J. W. & Bauchner, H. The unrelenting challenge of obesity. JAMA 315, 2277–2278 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315, 2284–2291 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Ogden, C. L. et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA 315, 2292–2299 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Curfman, G. D., Morrissey, S. & Drazen, J. M. Sibutramine — another flawed diet pill. N. Engl. J. Med. 363, 972–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Vetter, M. L., Faulconbridge, L. F., Webb, V. L. & Wadden, T. A. Behavioral and pharmacologic therapies for obesity. Nat. Rev. Endocrinol. 6, 578–588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ochner, C. N., Barrios, D. M., Lee, C. D. & Pi-Sunyer, F. X. Biological mechanisms that promote weight regain following weight loss in obese humans. Physiol. Behav. 120, 106–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Afshin, A. et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

    Article  PubMed  Google Scholar 

  10. Jacome-Sosa, M. M. & Parks, E. J. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr. Opin. Lipidol. 25, 213–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Hubler, M. J. & Kennedy, A. J. Role of lipids in the metabolism and activation of immune cells. J. Nutr. Biochem. 34, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Ortega, F. B., Lavie, C. J. & Blair, S. N. Obesity and cardiovascular disease. Circ. Res. 118, 1752–1770 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Y. & Ren, J. Epigenetics and obesity cardiomyopathy: from pathophysiology to prevention and management. Pharmacol. Ther. 161, 52–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y. P., Zhang, Y. Y. & Duan, D. D. From genome-wide association study to phenome-wide association study: new paradigms in obesity research. Prog. Mol. Biol. Transl Sci. 140, 185–231 (2016).

    Article  PubMed  Google Scholar 

  15. Levine, B., Packer, M. & Codogno, P. Development of autophagy inducers in clinical medicine. J. Clin. Invest. 125, 14–24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Galluzzi, L., Pietrocola, F., Levine, B. & Kroemer, G. Metabolic control of autophagy. Cell 159, 1263–1276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Rubinsztein, D. C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709–730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ignacio-Souza, L. M. et al. Defective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male mice. Endocrinology 155, 2831–2844 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Jaishy, B. et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J. Lipid Res. 56, 546–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Juarez-Rojas, J. G., Reyes-Soffer, G., Conlon, D. & Ginsberg, H. N. Autophagy and cardiometabolic risk factors. Rev. Endocr. Metabol. Disord. 15, 307–315 (2014).

    Article  CAS  Google Scholar 

  22. Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkB kinase β (IKKβ)/NF-kB pathway. J. Biol. Chem. 286, 32324–32332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kovsan, J. et al. Altered autophagy in human adipose tissues in obesity. J. Clin. Endocrinol. Metab. 96, E268–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Jansen, H. J. et al. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 153, 5866–5874 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Kosacka, J. et al. Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol. Cell. Endocrinol. 409, 21–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Mu, Y. et al. Diet-induced obesity impairs spermatogenesis: a potential role for autophagy. Sci. Rep. 7, 43475 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yamahara, K. et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J. Am. Soc. Nephrol. 24, 1769–1781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soussi, H., Clement, K. & Dugail, I. Adipose tissue autophagy status in obesity: Expression and flux — two faces of the picture. Autophagy 12, 588–589 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim, K. H. & Lee, M. S. Autophagy — a key player in cellular and body metabolism. Nat. Rev. Endocrinol. 10, 322–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, H. Y. et al. Autophagy deficiency in myeloid cells increases susceptibility to obesity-induced diabetes and experimental colitis. Autophagy 12, 1390–1403 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sinha, R. A., Singh, B. K. & Yen, P. M. Reciprocal crosstalk between autophagic and endocrine signaling in metabolic homeostasis. Endocr. Rev. 38, 69–102 (2017).

    PubMed  Google Scholar 

  33. Cheng, Y., Ren, X., Hait, W. N. & Yang, J. M. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol. Rev. 65, 1162–1197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harding, T. M., Morano, K. A., Scott, S. V. & Klionsky, D. J. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 131, 591–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y. & Levine, B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 22, 367–376 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Madrigal-Matute, J. & Cuervo, A. M. Regulation of liver metabolism by autophagy. Gastroenterology 150, 328–339 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Evans, T. D., Sergin, I., Zhang, X. & Razani, B. Target acquired: selective autophagy in cardiometabolic disease. Sci. Signal. 10, eaag2298 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gatica, D., Lahiri, V. & Klionsky, D. J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20, 233–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lavallard, V. J., Meijer, A. J., Codogno, P. & Gual, P. Autophagy, signaling and obesity. Pharmacol. Res. 66, 513–525 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Botti-Millet, J., Nascimbeni, A. C., Dupont, N., Morel, E. & Codogno, P. Fine-tuning autophagy: from transcriptional to posttranslational regulation. Am. J. Physiol. Cell Physiol. 311, C351–C362 (2016).

    Article  PubMed  Google Scholar 

  43. Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Broer, S. & Broer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 474, 1935–1963 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sciarretta, S. et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 125, 1134–1146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han, J. M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Yuan, W. et al. General control nonderepressible 2 (GCN2) kinase inhibits target of rapamycin complex 1 in response to amino acid starvation in Saccharomyces cerevisiae. J. Biol. Chem. 292, 2660–2669 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shimobayashi, M. & Hall, M. N. Multiple amino acid sensing inputs to mTORC1. Cell Res. 26, 7–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Meijer, A. J., Lorin, S., Blommaart, E. F. & Codogno, P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 47, 2037–2063 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, F. et al. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. EBioMedicine 13, 157–167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou, J. et al. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging. Aging 9, 583–599 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Tan, H. W. S., Sim, A. Y. L. & Long, Y. C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun. 8, 338 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. James, H. A., O’Neill, B. T. & Nair, K. S. Insulin regulation of proteostasis and clinical implications. Cell. Metab. 26, 310–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Ng, F. & Tang, B. L. Sirtuins’ modulation of autophagy. J. Cell. Physiol. 228, 2262–2270 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, K. Molecular mechanism of hepatic steatosis: pathophysiological role of autophagy. Expert Rev. Mol. Med. 18, e14 (2016).

    Article  PubMed  CAS  Google Scholar 

  56. Koga, H., Kaushik, S. & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052–3065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Engin, A. Non-alcoholic fatty liver disease. Adv. Exp. Med. Biol. 960, 443–467 (2017).

    Article  PubMed  CAS  Google Scholar 

  58. Komiya, K. et al. Free fatty acids stimulate autophagy in pancreatic beta-cells via JNK pathway. Biochem. Biophys. Res. Commun. 401, 561–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Tan, S. H. et al. Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J. Biol. Chem. 287, 14364–14376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen, T. B. & Olzmann, J. A. Lipid droplets and lipotoxicity during autophagy. Autophagy 13, 2002–2003 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cabandugama, P. K., Gardner, M. J. & Sowers, J. R. The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med. Clin. North Am. 101, 129–137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Oga, E. A. & Eseyin, O. R. The obesity paradox and heart failure: a systematic review of a decade of evidence. J. Obes. 2016, 9040248 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. He, C. et al. Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell 154, 1085–1099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y. et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci. Rep. 6, 20453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yasuda-Yamahara, M. et al. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure. Biochem. Biophys. Res. Commun. 465, 249–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Halban, P. A., Mutkoski, R., Dodson, G. & Orci, L. Resistance of the insulin crystal to lysosomal proteases: implications for pancreatic B cell crinophagy. Diabetologia 30, 348–353 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell. Metab. 11, 467–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329–3339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860–19865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shibata, M. et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382, 419–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Quan, W. et al. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology 153, 1817–1826 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Lim, Y. M. et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat. Commun. 5, 4934 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lapierre, L. R., Kumsta, C., Sandri, M., Ballabio, A. & Hansen, M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11, 867–880 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Mader, B. J. et al. Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem. Neurosci. 3, (1063–1072 (2012).

    Google Scholar 

  78. Shin, H. J. et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534, 553–557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, S. et al. ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1 and PGC-1α deacetylation. Int. J. Obes. https://doi.org/10.1038/s41366-018-0030-4 (2018).

  80. Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).

    Article  PubMed  Google Scholar 

  81. Krishan, P., Singh, G. & Bedi, O. Carbohydrate restriction ameliorates nephropathy by reducing oxidative stress and upregulating HIF-1alpha levels in type-1 diabetic rats. J. Diabetes Metab. Disord. 16, 47 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bellot, G. et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29, 2570–2581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alexander, A., Kim, J. & Walker, C. L. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy 6, 672–673 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749–1760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Madeo, F., Pietrocola, F., Eisenberg, T. & Kroemer, G. Caloric restriction mimetics: towards a molecular definition. Nat. Rev. Drug Discov. 13, 727–740 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Tao, J. et al. Downregulation of Nrf2 promotes autophagy-dependent osteoblastic differentiation of adipose-derived mesenchymal stem cells. Exp. Cell Res. 349, 221–229 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Maixner, N. et al. Transcriptional dysregulation of adipose tissue autophagy in obesity. Physiology 31, 270–282 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Jia, G., Aroor, A. R. & Sowers, J. R. The role of mineralocorticoid receptor signaling in the cross-talk between adipose tissue and the vascular wall. Cardiovasc. Res. 113, 1055–1063 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Shiau, M. Y. et al. Role of PARL-PINK1-Parkin pathway in adipocyte differentiation. Metabolism 72, 1–17 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Mandviwala, T., Khalid, U. & Deswal, A. Obesity and cardiovascular disease: a risk factor or a risk marker? Curr. Atheroscler. Rep. 18, 21 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Haim, Y. et al. Elevated autophagy gene expression in adipose tissue of obese humans: a potential non-cell-cycle-dependent function of E2F1. Autophagy 11, 2074–2088 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Soussi, H. et al. DAPK2 downregulation associates with attenuated adipocyte autophagic clearance in human obesity. Diabetes 64, 3452–3463 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Haim, Y. et al. ASK1 (MAP3K5) is transcriptionally upregulated by E2F1 in adipose tissue in obesity, molecularly defining a human dys-metabolic obese phenotype. Mol. Metab. 6, 725–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Slutsky, N. et al. Decreased adiponectin links elevated adipose tissue autophagy with adipocyte endocrine dysfunction in obesity. Int. J. Obes. 40, 912–920 (2016).

    Article  CAS  Google Scholar 

  95. Mizunoe, Y. et al. Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice. Autophagy 13, 642–653 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, K. et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11, 271–284 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell. Metab. 18, 816–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kang, Y. H. et al. Impaired macrophage autophagy induces systemic insulin resistance in obesity. Oncotarget 7, 35577–35591 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Bechor, S. et al. Adipose tissue conditioned media support macrophage lipid-droplet biogenesis by interfering with autophagic flux. Biochim. Biophys. Acta 1862, 1001–1012 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Grijalva, A., Xu, X. & Ferrante, A. W. Jr. Autophagy is dispensable for macrophage-mediated lipid homeostasis in adipose tissue. Diabetes 65, 967–980 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell. Metabolism 13, 655–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678–692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ye, J. Mechanisms of insulin resistance in obesity. Front. Med. 7, 14–24 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Goginashvili, A. et al. Insulin granules. Insulin secretory granules control autophagy in pancreatic beta cells. Science 347, 878–882 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Yamaguchi, H. et al. Golgi membrane-associated degradation pathway in yeast and mammals. EMBO J. 35, 1991–2007 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jia, G., DeMarco, V. G. & Sowers, J. R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 12, 144–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Li, R. et al. 1,25(OH)2 D3 attenuates hepatic steatosis by inducing autophagy in mice. Obesity 25, 561–571 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Song, Y. M. et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 11, 46–59 (2015).

    Article  PubMed  CAS  Google Scholar 

  109. Jia, G., Hill, M. A. & Sowers, J. R. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122, 624–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Quan, W. et al. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55, 392–403 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell. Metab. 8, 325–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Jung, H. S. et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell. Metab. 8, 318–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Chang, H. H. et al. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS ONE 12, e0184455 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Liu, H. et al. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 13, 1952–1968 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Aoyagi, K. et al. VAMP7 regulates autophagy to maintain mitochondrial homeostasis and to control insulin secretion in pancreatic beta-cells. Diabetes 65, 1648–1659 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Abe, H. et al. Exendin-4 improves beta-cell function in autophagy-deficient beta-cells. Endocrinology 154, 4512–4524 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Chu, K. Y., O’Reilly, L., Ramm, G. & Biden, T. J. High-fat diet increases autophagic flux in pancreatic beta cells in vivo and ex vivo in mice. Diabetologia 58, 2074–2078 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Sun, Q. et al. Factors that affect pancreatic islet cell autophagy in adult rats: evaluation of a calorie-restricted diet and a high-fat diet. PLoS ONE 11, e0151104 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Marsh, B. J. et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells. Mol. Endocrinol. 21, 2255–2269 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Fujitani, Y., Ueno, T. & Watada, H. Autophagy in health and disease. 4. The role of pancreatic beta-cell autophagy in health and diabetes. American journal of physiology. Cell Physiol. 299, C1–C6 (2010).

    Article  CAS  Google Scholar 

  122. Inoki, K., Kim, J. & Guan, K. L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Fujitani, Y., Kawamori, R. & Watada, H. The role of autophagy in pancreatic beta-cell and diabetes. Autophagy 5, 280–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664–671 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, (1640–1645 (2009).

    Google Scholar 

  127. Despres, J. P. Abdominal obesity and cardiovascular disease: is inflammation the missing link? Can. J. Cardiol. 28, 642–652 (2012).

    Article  PubMed  Google Scholar 

  128. van Greevenbroek, M. M., Schalkwijk, C. G. & Stehouwer, C. D. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth. J. Med. 71, 174–187 (2013).

    PubMed  Google Scholar 

  129. Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 127, 1–4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Joven, J., Guirro, M., Marine-Casado, R., Rodriguez-Gallego, E. & Menendez, J. A. Autophagy is an inflammation-related defensive mechanism against disease. Adv. Exp. Med. Biol. 824, 43–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Cordero, M. D., Williams, M. R. & Ryffel, B. AMP-activated protein kinase regulation of the NLRP3 inflammasome during aging. Trends Endocrinol. Metab. 29, 8–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Cosin-Roger, J. et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat. Commun. 8, 98 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166, 288–298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lapaquette, P., Guzzo, J., Bretillon, L. & Bringer, M. A. Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm. 2015, 398483 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Jounai, N. et al. NLRP4 negatively regulates autophagic processes through an association with beclin1. J. Immunol. 186, 1646–1655 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Cao, L. et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J. Mol. Cell. Cardiol. 92, 185–195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. An, M. et al. ULK1 prevents cardiac dysfunction in obesity through autophagy-meditated regulation of lipid metabolism. Cardiovasc. Res. 113, 1137–1147 (2017).

    Article  PubMed  Google Scholar 

  138. Hu, N. & Zhang, Y. TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-kappaB/JNK-dependent activation of autophagy. Biochim. Biophys. Acta 1863, 2001–2011 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Xu, X., Hua, Y., Nair, S., Zhang, Y. & Ren, J. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J. Mol. Cell Biol. 5, 61–63 (2013).

    Article  PubMed  Google Scholar 

  140. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

    Article  Google Scholar 

  141. Zhang, Y., Xu, X. & Ren, J. MTOR overactivation and interrupted autophagy flux in obese hearts: a dicey assembly? Autophagy 9, 939–941 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, Z. L. et al. Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler. Thromb. Vasc. Biol. 32, 1132–1141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, Z. L. et al. Obesity-metabolic derangement exacerbates cardiomyocyte loss distal to moderate coronary artery stenosis in pigs without affecting global cardiac function. Am. J. Physiol.Heart Circ. Physiol. 306, H1087–H1101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xu, X. & Ren, J. Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity. Int. J. Obes. 39, 387–396 (2015).

    Article  CAS  Google Scholar 

  146. Kandadi, M. R. et al. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: role of AMPK-dependent autophagy. Biochim. Biophys. Acta 1852, 299–309 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Liang, L. et al. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK-dependent regulation of autophagy. Biochim. Biophys. Acta 1852, 343–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Guo, R., Zhang, Y., Turdi, S. & Ren, J. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Biochim. Biophys. Acta 1832, 1136–1148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lai, C. H. et al. Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats. Int. J. Med. Sci. 13, 277–285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yan, Z. et al. Exercise leads to unfavourable cardiac remodelling and enhanced metabolic homeostasis in obese mice with cardiac and skeletal muscle autophagy deficiency. Sci. Rep. 7, 7894 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Dong, Q. et al. Tetrahydroxystilbene glycoside improves microvascular endothelial dysfunction and ameliorates obesity-associated hypertension in obese ZDF rats via inhibition of endothelial autophagy. Cell. Physiol. Biochem. 43, 293–307 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Cheng, C. I. et al. Free fatty acids induce autophagy and LOX-1 upregulation in cultured aortic vascular smooth muscle cells. J. Cell. Biochem. 118, 1249–1261 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Messerli, F. H., Rimoldi, S. F. & Bangalore, S. The transition from hypertension to heart failure: contemporary update. JACC Heart Fail. 5, 543–551 (2017).

    Article  PubMed  Google Scholar 

  154. Pfeifer, U., Föhr, J., Wilhelm, W. & Dämmrich, J. Short-term inhibition of cardiac cellular autophagy by isoproterenol. J. Mol. Cell. Cardiol. 19, 1179–1184 (1987).

    Article  CAS  PubMed  Google Scholar 

  155. Shirakabe, A. et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133, 1249–1263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. De Meyer, G. R. et al. Autophagy in vascular disease. Circ. Res. 116, 468–479 (2015).

    Article  PubMed  CAS  Google Scholar 

  157. Nielsen, J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell. Metab. 25, 572–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Yu, W. et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochim. Biophys. Acta 1863, 1973–1983 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Negri, T. et al. Chromosome band 17q21 in breast cancer: significant association between beclin 1 loss and HER2/NEU amplification. Genes Chromosomes Cancer 49, 901–909 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Li, S. et al. SIRT3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 66, 936–952 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shen, C. et al. Nicotinamide protects hepatocytes against palmitate-induced lipotoxicity via SIRT1-dependent autophagy induction. Nutr. Res. 40, 40–47 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ueno, T. & Komatsu, M. Autophagy in the liver: functions in health and disease. Nat. Rev. Gastroenterol. Hepatol. 14, 170–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Aijala, M. et al. Long-term fructose feeding changes the expression of leptin receptors and autophagy genes in the adipose tissue and liver of male rats: a possible link to elevated triglycerides. Genes Nutr. 8, 623–635 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. He, Q., Sha, S., Sun, L., Zhang, J. & Dong, M. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway. Biochem. Biophys. Res. Commun. 476, 196–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Chang, E. et al. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats. World J. Gastroenterol. 21, 7754–7763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Guo, R., Nair, S., Zhang, Y. & Ren, J. Adiponectin deficiency rescues high-fat diet-induced hepatic injury, apoptosis and autophagy loss despite persistent steatosis. Int. J. Obes. 41, 1403–1412 (2017).

    Article  CAS  Google Scholar 

  167. Kim, S. H. et al. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 13, 1767–1781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu, J. & Debnath, J. The evolving, multifaceted roles of autophagy in cancer. Adv. Cancer Res. 130, 1–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Tanaka, S. et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64, 1994–2014 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Kaushik, S. & Cuervo, A. M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Martinez-Vicente, M. Neuronal Mitophagy in neurodegenerative diseases. Front. Mol. Neurosci. 10, 64 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Chen, Y., Xu, C., Yan, T., Yu, C. & Li, Y. Omega-3 fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease. Nutrition 31, 1423–1429.e2 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Hsu, H. C. et al. Time-dependent cellular response in the liver and heart in a dietary-induced obese mouse model: the potential role of ER stress and autophagy. Eur. J. Nutr. 55, 2031–2043 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Mao, Y., Yu, F., Wang, J., Guo, C. & Fan, X. Autophagy: a new target for nonalcoholic fatty liver disease therapy. Hepat. Med. 8, 27–37 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lin, C. W. et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J. Hepatol. 58, 993–999 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Guo, R., Xu, X., Babcock, S. A., Zhang, Y. & Ren, J. Aldehyde dedydrogenase-2 plays a beneficial role in ameliorating chronic alcohol-induced hepatic steatosis and inflammation through regulation of autophagy. J. Hepatol. 62, 647–656 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Bani Mohammad, M. & Majdi Seghinsara, A. Polycystic ovary syndrome (PCOS), diagnostic criteria, and AMH. Asian Pac. J. Cancer Prev. 18, 17–21 (2017).

    PubMed  Google Scholar 

  178. Sumarac-Dumanovic, M. et al. Downregulation of autophagy gene expression in endometria from women with polycystic ovary syndrome. Mol. Cell. Endocrinol. 440, 116–124 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Su, Y. et al. High insulin impaired ovarian function in early pregnant mice and the role of autophagy in this process. Endocr. J. 64, 613–621 (2017).

    Article  PubMed  Google Scholar 

  180. Gao, L. et al. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome. Endocrine 52, 363–373 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Zhang, Y. et al. Metformin ameliorates uterine defects in a rat model of polycystic ovary syndrome. EBioMedicine 18, 157–170 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Dong, M., Zheng, Q., Ford, S. P., Nathanielsz, P. W. & Ren, J. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J. Mol. Cell. Cardiol. 55, 111–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Muralimanoharan, S., Gao, X., Weintraub, S., Myatt, L. & Maloyan, A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy 12, 752–769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Reginato, A. et al. Autophagy proteins are modulated in the liver and hypothalamus of the offspring of mice with diet-induced obesity. J. Nutr. Biochem. 34, 30–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Boudoures, A. L. et al. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Dev. Biol. 426, 126–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Navarro, E., Funtikova, A. N., Fito, M. & Schroder, H. Prenatal nutrition and the risk of adult obesity: long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J. Nutr. Biochem. 39, 1–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Zhu, S., Eclarinal, J., Baker, M. S., Li, G. & Waterland, R. A. Developmental programming of energy balance regulation: is physical activity more ‘programmable’ than food intake? Proc. Nutr. Soc. 75, 73–77 (2016).

    Article  PubMed  Google Scholar 

  188. Wong, A. K. et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur. J. Heart Fail. 14, 1303–1310 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Jia, G., Jia, Y. & Sowers, J. R. Contribution of maladaptive adipose tissue expansion to development of cardiovascular disease. Compr. Physiol. 7, 253–262 (2016).

    Article  PubMed  Google Scholar 

  190. Jiang, Y. et al. Metformin plays a dual role in MIN6 pancreatic beta cell function through AMPK-dependent autophagy. Int. J. Biol. Sci. 10, 268–277 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Hsiao, P. J. et al. Pioglitazone enhances cytosolic lipolysis, beta-oxidation and autophagy to ameliorate hepatic steatosis. Sci. Rep. 7, 9030 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Liu, Y. et al. Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes 64, 36–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Hussain, Z. & Khan, J. A. Food intake regulation by leptin: mechanisms mediating gluconeogenesis and energy expenditure. Asian Pac. J. Trop. Med. 10, 940–944 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Sun, F. et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss in patients with type 2 diabetes: a systematic review and network meta-analysis. J. Diabetes Res. 2015, 157201 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Tomlinson, B., Hu, M., Zhang, Y., Chan, P. & Liu, Z. M. Investigational glucagon-like peptide-1 agonists for the treatment of obesity. Expert Opin. Invest. Drugs 25, 1167–1179 (2016).

    Article  CAS  Google Scholar 

  196. Sharma, S., Mells, J. E., Fu, P. P., Saxena, N. K. & Anania, F. A. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE 6, e25269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Venkatanarayan, A. et al. IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature 517, 626–630 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Alcocer-Gomez, E. et al. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in major depressive disorder. Pharmacol. Res. 121, 114–121 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Morissette, G., Lodge, R., Bouthillier, J. & Marceau, F. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: possible origin of pharmacological distortions and side effects. Toxicol. Appl. Pharmacol. 229, 320–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Hiebel, C., Kromm, T., Stark, M. & Behl, C. Cannabinoid receptor 1 modulates the autophagic flux independent of mTOR- and BECLIN1-complex. J. Neurochem. 131, 484–497 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Choi, S. S. et al. PPARgamma antagonist gleevec improves insulin sensitivity and promotes the browning of white adipose tissue. Diabetes 65, 829–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Paech, F., Bouitbir, J. & Krahenbuhl, S. Hepatocellular toxicity associated with tyrosine kinase inhibitors: mitochondrial damage and inhibition of glycolysis. Front. Pharmacol. 8, 367 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Courtney, H., Nayar, R., Rajeswaran, C. & Jandhyala, R. Long-term management of type 2 diabetes with glucagon-like peptide-1 receptor agonists. Diabetes Metab. Syndr. Obes. 10, 79–87 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Xu, L. et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 20, 137–149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Guo, H. et al. Glucagon-like peptide-1 analog prevents obesity-related glomerulopathy by inhibiting excessive autophagy in podocytes. Am. J. Physiol. Renal Physiol. 314, F181–F189 (2018).

    Article  PubMed  CAS  Google Scholar 

  206. Parray, H. A. & Yun, J. W. Combined inhibition of autophagy protein 5 and galectin-1 by thiodigalactoside reduces diet-induced obesity through induction of white fat browning. IUBMB Life 69, 510–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Wang, S. & Peng, D. Regulation of adipocyte autophagy — the potential anti-obesity mechanism of high density lipoprotein and ApolipoproteinA-I. Lipids Health Dis. 11, 131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Quatraro, A. et al. Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug? Ann. Intern. Med. 112, 678–681 (1990).

    Article  CAS  PubMed  Google Scholar 

  209. Gerstein, H. C., Thorpe, K. E., Taylor, D. W. & Haynes, R. B. The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas — a randomized trial. Diabetes Res. Clin. Pract. 55, 209–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Wasko, M. C. et al. Antidiabetogenic effects of hydroxychloroquine on insulin sensitivity and beta cell function: a randomised trial. Diabetologia 58, 2336–2343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Alrushud, A. S., Rushton, A. B., Kanavaki, A. M. & Greig, C. A. Effect of physical activity and dietary restriction interventions on weight loss and the musculoskeletal function of overweight and obese older adults with knee osteoarthritis: a systematic review and mixed method data synthesis. BMJ Open 7, e014537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Webb, V. L. & Wadden, T. A. Intensive lifestyle intervention for obesity: principles, practices, and results. Gastroenterology 152, 1752–1764 (2017).

    Article  PubMed  Google Scholar 

  213. Han, X. et al. Influence of long-term caloric restriction on myocardial and cardiomyocyte contractile function and autophagy in mice. J. Nutr. Biochem. 23, 1592–1599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kitzman, D. W. et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315, 36–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ludwig, D. S. Lifespan weighed down by diet. JAMA 315, 2269–2270 (2016).

    Article  CAS  PubMed  Google Scholar 

  216. Halling, J. F. & Pilegaard, H. Autophagy-dependent beneficial effects of exercise. Cold Spring Harb. Perspect. Med. 7, a029777 (2017).

    Article  PubMed  Google Scholar 

  217. Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell. Metab. 26, 547–557.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Roberts, M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell. Metab. 26, 539–546 e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Pyo, J. O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Ma, D. et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol. Endocrinol. 27, 1643–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jaber, N. et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl Acad. Sci. USA 109, 2003–2008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Shigihara, N. et al. Human IAPP-induced pancreatic beta cell toxicity and its regulation by autophagy. J. Clin. Invest. 124, 3634–3644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fernandez, A. F. et al. Autophagy couteracts weight gain, lipotoxicity and pancreatic beta-cell death upon hypercaloric pro-diabetic regimens. Cell Death Dis. 8, e2970 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Liu, L., Liu, J. & Yu, X. Dipeptidyl peptidase-4 inhibitor MK-626 restores insulin secretion through enhancing autophagy in high fat diet-induced mice. Biochem. Biophys. Res. Commun. 470, 516–520 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Gao, X., Yan, D., Zhao, Y., Tao, H. & Zhou, Y. Moderate calorie restriction to achieve normal weight reverses beta-cell dysfunction in diet-induced obese mice: involvement of autophagy. Nutr. Metab. 12, 34 (2015).

    Article  CAS  Google Scholar 

  227. Soeda, J. et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J. Physiol. Biochem. 72, 281–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lopez-Vicario, C. et al. Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: role for omega-3 epoxides. Proc. Natl Acad. Sci. USA 112, 536–541 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. He, B., Liu, L., Yu, C., Wang, Y. & Han, P. Roux-en-Y gastric bypass reduces lipid overaccumulation in liver by upregulating hepatic autophagy in obese diabetic rats. Obes. Surg. 25, 109–118 (2015).

    Article  PubMed  Google Scholar 

  230. Rodriguez-Navarro, J. A. et al. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 109, E705–E714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Liu, H. Y. et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284, 31484–31492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Inami, Y. et al. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem. Biophys. Res. Commun. 412, 618–625 (2011).

    Article  CAS  PubMed  Google Scholar 

  233. Parafati, M. et al. Bergamot polyphenol fraction prevents nonalcoholic fatty liver disease via stimulation of lipophagy in cafeteria diet-induced rat model of metabolic syndrome. J. Nutr. Biochem. 26, 938–948 (2015).

    Article  CAS  PubMed  Google Scholar 

  234. Xiao, J. et al. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Sci. Rep. 4, 5587 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yan, H., Gao, Y. & Zhang, Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. Mol. Med. Rep. 15, 180–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Xu, Q. et al. Adipose tissue autophagy related gene expression is associated with glucometabolic status in human obesity. Adipocyte https://doi.org/10.1080/21623945.2017.1394537 (2018).

  237. Matsuura, N. et al. Effects of pioglitazone on cardiac and adipose tissue pathology in rats with metabolic syndrome. Int. J. Cardiol. 179, 360–369 (2015).

    Article  PubMed  Google Scholar 

  238. Mao, Y. et al. Ghrelin attenuated lipotoxicity via autophagy induction and nuclear factor-kappaB inhibition. Cell. Physiol. Biochem. 37, 563–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Uchinaka, A., Yoneda, M., Yamada, Y., Murohara, T. & Nagata, K. Effects of mTOR inhibition on cardiac and adipose tissue pathology and glucose metabolism in rats with metabolic syndrome. Pharmacol. Res. Perspect. 5, e00331 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  240. Kwak, H. J. et al. Bortezomib attenuates palmitic acid-induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism. Cell. Signal. 28, 788–797 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. Bhattacharya, B. et al. Increased drug resistance is associated with reduced glucose levels and an enhanced glycolysis phenotype. Br. J. Pharmacol. 171, 3255–3267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Borriello, A. et al. Resveratrol: from basic studies to bedside. Cancer Treat. Res. 159, 167–184 (2014).

    Article  CAS  PubMed  Google Scholar 

  243. Liu, L., Gao, C., Yao, P. & Gong, Z. Quercetin alleviates high-fat diet-induced oxidized low-density lipoprotein accumulation in the liver: implication for autophagy regulation. BioMed Res. Int. 2015, 607531 (2015).

    PubMed  PubMed Central  Google Scholar 

  244. Necela, B. M. et al. The antineoplastic drug, trastuzumab, dysregulates metabolism in iPSC-derived cardiomyocytes. Clin. Transl Med. 6, 5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Bursch, W. et al. Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology 254, 147–157 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors received support in part from the National Key R&D Program of China (2017YFA0506000), the American Diabetes Association (7-13-BS-142-BR, NSFC 81522004, NSFC81570225, NSFC81521001, R01 HL73101-01 A and R01 HL107910-01) and the US Veterans Affairs Merit System (0018). The authors express their sincere apology to those authors whose important work cannot be included owing to space limitations.

Reviewer information

Nature Reviews Endocrinology thanks H. Watada, and the other anonymous reviewers, for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding authors

Correspondence to Yingmei Zhang or Jun Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Nonselective autophagy

Involves the random uptake of portions of the cytoplasm (cytosol and organelles) in the vacuole and/or lysosome for degradation and recycling.

Cargo-specific autophagy

Selective autophagy characterized by a degradation process that is highly regulated by an autophagy receptor, with sequestration cargo specificity for cytoplasmic contents.

Adipokines

Peptide hormones or cytokines secreted by adipose tissues (including leptin, adiponectin and tumour necrosis factor) that have major roles in multiple biological processes such as glucose and fatty acid metabolism, insulin sensitivity and adipocyte differentiation.

Starvation-induced nascent granule degradation

(SINGD). Refers to the lysosomal degradation of nascent secretory insulin granules when β-cells are subjected to glucose deprivation; this process triggers lysosomal recruitment and activation of mTOR to suppress autophagy.

Golgi membrane-associated degradation

(GOMED). Characterized by the generation of Golgi membrane-associated structures accompanied by proteolysis and is activated when Golgi-to-plasma-membrane anterograde trafficking is disrupted in autophagy-deficient yeast and mammalian cells.

Lipoapoptosis

Apoptosis caused by exposure to an excess of fatty acids.

Metabolic inflexibility

Occurs with an inability to adapt fuel oxidation to fuel availability and is characterized by nutrient overload and increased substrate competition, resulting in impaired fuel switching and energy dysregulation.

Ketogenic diets

High-fat, protein-adequate, low-carbohydrate diets that are used primarily to treat difficult-to-control (refractory) epilepsy in children.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sowers, J.R. & Ren, J. Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14, 356–376 (2018). https://doi.org/10.1038/s41574-018-0009-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0009-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing