Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic strategies for thrombosis: new targets and approaches

Abstract

Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of an occlusive arterial thrombosis.
Fig. 2: Targets of current antithrombotic drugs.
Fig. 3: Targets of antiplatelet agents in development.
Fig. 4: Targets of anticoagulant agents in development.

Similar content being viewed by others

References

  1. Wendelboe, A. M. & Raskob, G. E. Global burden of thrombosis: epidemiologic aspects. Circ. Res. 118, 1340–1347 (2016).

    CAS  PubMed  Google Scholar 

  2. Prandoni, P. Venous and arterial thrombosis: two aspects of the same disease? Eur. J. Intern. Med. 20, 660–661 (2009).

    PubMed  Google Scholar 

  3. Prandoni, P. et al. Venous thromboembolism and the risk of subsequent symptomatic atherosclerosis. J. Thromb. Haemost. 4, 1891–1896 (2006).

    CAS  PubMed  Google Scholar 

  4. Reich, L. M. et al. Prospective study of subclinical atherosclerosis as a risk factor for venous thromboembolism. J. Thromb. Haemost. 4, 1909–1913 (2006).

    CAS  PubMed  Google Scholar 

  5. Braekkan, S. K. et al. Family history of myocardial infarction is an independent risk factor for venous thromboembolism: the Tromso study. J. Thromb. Haemost. 6, 1851–1857 (2008).

    CAS  PubMed  Google Scholar 

  6. Bova, C. et al. Incidence of arterial cardiovascular events in patients with idiopathic venous thromboembolism. A retrospective cohort study. Thromb. Haemost. 96, 132–136 (2006).

    CAS  PubMed  Google Scholar 

  7. Mackman, N. Triggers, targets and treatments for thrombosis. Nature 451, 914–918 (2008). The paper describes the mechanisms of arterial and venous thrombosis and targets for antithrombotics.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Previtali, E., Bucciarelli, P., Passamonti, S. M. & Martinelli, I. Risk factors for venous and arterial thrombosis. Blood Transfus. 9, 120–138 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Owens, A. P. III & Mackman, N. Role of tissue factor in atherothrombosis. Curr. Atheroscler. Rep. 14, 394–401 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wolberg, A. S. et al. Venous thrombosis. Nat. Rev. Dis. Prim. 1, 15006 (2015).

    PubMed  Google Scholar 

  11. Khan, A. A. & Lip, G. Y. H. The prothrombotic state in atrial fibrillation: pathophysiological and management implications. Cardiovasc. Res. 115, 31–45 (2019).

    CAS  PubMed  Google Scholar 

  12. Watson, T., Shantsila, E. & Lip, G. Y. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 373, 155–166 (2009).

    CAS  PubMed  Google Scholar 

  13. Medcalf, R. L. Fibrinolysis: from blood to the brain. J. Thromb. Haemost. 15, 2089–2098 (2017).

    CAS  PubMed  Google Scholar 

  14. Lin, L. et al. Clinical and safety outcomes of oral antithrombotics for stroke prevention in atrial fibrillation: a systematic review and network meta-analysis. J. Am. Med. Dir. Assoc. 16, 1103.e1–19 (2015).

    PubMed  Google Scholar 

  15. Doktorova, M. & Motovska, Z. Clinical review: bleeding–a notable complication of treatment in patients with acute coronary syndromes: incidence, predictors, classification, impact on prognosis, and management. Crit. Care 17, 239 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Marzec, L. N. et al. Influence of direct oral anticoagulants on rates of oral anticoagulation for atrial fibrillation. J. Am. Coll. Cardiol. 69, 2475–2484 (2017).

    CAS  PubMed  Google Scholar 

  17. Plow, E. F., Wang, Y. & Simon, D. I. The search for new antithrombotic mechanisms and therapies that may spare hemostasis. Blood 131, 1899–1902 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grover, S. P., Bergmeier, W. & Mackman, N. Platelet signaling pathways and new inhibitors. Arterioscler. Thromb. Vasc. Biol. 38, e28–e35 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fredenburgh, J. C., Gross, P. L. & Weitz, J. I. Emerging anticoagulant strategies. Blood 129, 147–154 (2017).

    CAS  PubMed  Google Scholar 

  20. McFadyen, J. D., Schaff, M. & Peter, K. Current and future antiplatelet therapies: emphasis on preserving haemostasis. Nat. Rev. Cardiol. 15, 181–191 (2018). The paper summarizes antiplatelet trials in patients with cardiovascular disease and new antiplatelet agents.

    CAS  PubMed  Google Scholar 

  21. Grover, S. P. & Mackman, N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler. Thromb. Vasc. Biol. 38, 709–725 (2018).

    CAS  PubMed  Google Scholar 

  22. Gremmel, T., Frelinger, A. L. III & Michelson, A. D. Platelet physiology. Semin. Thromb. Hemost. 42, 191–204 (2016).

    CAS  PubMed  Google Scholar 

  23. Ten Cate, H., Hackeng, T. M. & Garcia de Frutos, P. Coagulation factor and protease pathways in thrombosis and cardiovascular disease. Thromb. Haemost. 117, 1265–1271 (2017). The paper describes the coagulation protease cascade and its role in thrombosis, thrombo-inflammation and atherosclerosis.

    PubMed  Google Scholar 

  24. Broos, K., Feys, H. B., De Meyer, S. F., Vanhoorelbeke, K. & Deckmyn, H. Platelets at work in primary hemostasis. Blood Rev. 25, 155–167 (2011).

    CAS  PubMed  Google Scholar 

  25. Stalker, T. J., Welsh, J. D. & Brass, L. F. Shaping the platelet response to vascular injury. Curr. Opin. Hematol. 21, 410–417 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Stegner, D. & Nieswandt, B. Platelet receptor signaling in thrombus formation. J. Mol. Med. 89, 109–121 (2011).

    CAS  PubMed  Google Scholar 

  27. Bergmeier, W. & Stefanini, L. Platelets at the vascular interface. Res. Pract. Thromb. Haemost. 2, 27–33 (2018).

    PubMed  Google Scholar 

  28. Esmon, C. T. Regulation of blood coagulation. Biochim. Biophys. Acta 1477, 349–360 (2000).

    CAS  PubMed  Google Scholar 

  29. Esmon, C. T. The endothelial cell protein C receptor. Thromb. Haemost. 83, 639–643 (2000).

    CAS  PubMed  Google Scholar 

  30. Mackman, N. Tissue-specific hemostasis in mice. Arterioscler. Thromb. Vasc. Biol. 25, 2273–2281 (2005).

    CAS  PubMed  Google Scholar 

  31. Rosenberg, R. D. & Aird, W. C. Vascular-bed-specific hemostasis and hypercoagulable states. N. Engl. J. Med. 340, 1555–1564 (1999).

    CAS  PubMed  Google Scholar 

  32. Stefanini, L. & Bergmeier, W. Negative regulators of platelet activation and adhesion. J. Thromb. Haemost. 16, 220–230 (2018).

    CAS  PubMed  Google Scholar 

  33. Robson, S. C. et al. Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Semin. Thromb. Hemost. 31, 217–233 (2005).

    CAS  PubMed  Google Scholar 

  34. Wood, J. P., Ellery, P. E., Maroney, S. A. & Mast, A. E. Biology of tissue factor pathway inhibitor. Blood 123, 2934–2943 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosenberg, R. D. & Rosenberg, J. S. Natural anticoagulant mechanisms. J. Clin. Invest. 74, 1–6 (1984). Overview of how anticoagulant mechanisms balance procoagulants in different vascular beds.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bryckaert, M., Rosa, J. P., Denis, C. V. & Lenting, P. J. Of von Willebrand factor and platelets. Cell Mol. Life Sci. 72, 307–326 (2015).

    CAS  PubMed  Google Scholar 

  37. Nieswandt, B. & Watson, S. P. Platelet-collagen interaction: is GPVI the central receptor? Blood 102, 449–461 (2003). The paper describes the role of platelet GPVI in haemostasis and arterial thrombosis.

    CAS  PubMed  Google Scholar 

  38. Stefanini, L. & Bergmeier, W. RAP GTPases and platelet integrin signaling. Platelets 30, 41–47 (2019).

    CAS  PubMed  Google Scholar 

  39. Shattil, S. J. & Newman, P. J. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 104, 1606–1615 (2004).

    CAS  PubMed  Google Scholar 

  40. Huang, Y. et al. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking. Blood 127, 1459–1467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Drake, T. A., Morrissey, J. H. & Edgington, T. S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am. J. Pathol. 134, 1087–1097 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoffman, M. et al. Tissue factor around dermal vessels has bound factor VII in the absence of injury. J. Thromb. Haemost. 5, 1403–1408 (2007).

    CAS  PubMed  Google Scholar 

  43. Hoffman, M. & Monroe, D. M. Tissue factor in brain is not saturated with factor VIIa: implications for factor VIIa dosing in intracerebral hemorrhage. Stroke 40, 2882–2884 (2009).

    PubMed  Google Scholar 

  44. Gailani, D. & Renne, T. The intrinsic pathway of coagulation: a target for treating thromboembolic disease? J. Thromb. Haemost. 5, 1106–1112 (2007). The paper provides an overview of the intrinsic pathway of coagulation and the potential for FXI and FXII as targets for new anticoagulants.

    CAS  PubMed  Google Scholar 

  45. Puy, C., Rigg, R. A. & McCarty, O. J. The hemostatic role of factor XI. Thromb. Res. 141, S8–S11 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lillicrap, D. The molecular pathology of hemophilia A. Transfus. Med. Rev. 5, 196–206 (1991).

    CAS  PubMed  Google Scholar 

  47. Tjarnlund-Wolf, A. & Lassila, R. Phenotypic characterization of haemophilia B - Understanding the underlying biology of coagulation factor IX. Haemophilia 25, 567–574 (2019).

    PubMed  Google Scholar 

  48. Bolton-Maggs, P. H. & Pasi, K. J. Haemophilias A and B. Lancet 361, 1801–1809 (2003).

    CAS  PubMed  Google Scholar 

  49. Mann, K. G. Thrombin formation. Chest 124 (Suppl. 3), 4–10 (2003).

    Google Scholar 

  50. Loskutoff, D. J. & Curriden, S. A. The fibrinolytic system of the vessel wall and its role in the control of thrombosis. Ann. N. Y. Acad. Sci. 598, 238–247 (1990).

    CAS  PubMed  Google Scholar 

  51. Wiman, B. & Collen, D. On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin. J. Biol. Chem. 254, 9291–9297 (1979).

    CAS  PubMed  Google Scholar 

  52. Johnson, G. J., Leis, L. A. & Bach, R. R. Tissue factor activity of blood mononuclear cells is increased after total knee arthroplasty. Thromb. Haemost. 102, 728–734 (2009).

    CAS  PubMed  Google Scholar 

  53. Grover, S. P. & Mackman, N. Intrinsic pathway of coagulation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 39, 331–338 (2019).

    CAS  PubMed  Google Scholar 

  54. Thalin, C., Hisada, Y., Lundstrom, S., Mackman, N. & Wallen, H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler. Thromb. Vasc. Biol. 39, 1724–1738 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Martinod, K. & Wagner, D. D. Thrombosis: tangled up in NETs. Blood 123, 2768–2776 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Martinod, K. et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc. Natl Acad. Sci. USA 110, 8674–8679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kokoye, Y. et al. A comparison of the effects of factor XII deficiency and prekallikrein deficiency on thrombus formation. Thromb. Res. 140, 118–124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuijpers, M. J. et al. Factor XII regulates the pathological process of thrombus formation on ruptured plaques. Arterioscler. Thromb. Vasc. Biol. 34, 1674–1680 (2014).

    CAS  PubMed  Google Scholar 

  59. van Montfoort, M. L. et al. Factor XI regulates pathological thrombus formation on acutely ruptured atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 34, 1668–1673 (2014).

    PubMed  Google Scholar 

  60. Mackman, N. New targets for atherothrombosis. Arterioscler. Thromb. Vasc. Biol. 34, 1607–1608 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yau, J. W. et al. Selective depletion of factor XI or factor XII with antisense oligonucleotides attenuates catheter thrombosis in rabbits. Blood 123, 2102–2107 (2014). The paper shows that knockdown of either FXII or FXI but not FVII prolonged the time to catheter occlusion in a rabbit model.

    CAS  PubMed  Google Scholar 

  62. Larsson, M. et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci. Transl. Med. 6, 222ra217 (2014). The paper shows that a FXII antibody inhibited thrombosis in an extracorporeal circuit as effectively as heparin without increasing bleeding in a rabbit model.

    Google Scholar 

  63. Vilahur, G., Ben-Aicha, S. & Badimon, L. New insights into the role of adipose tissue in thrombosis. Cardiovasc. Res. 113, 1046–1054 (2017).

    CAS  PubMed  Google Scholar 

  64. Dellas, C. & Loskutoff, D. J. Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb. Haemost. 93, 631–640 (2005).

    CAS  PubMed  Google Scholar 

  65. Huang, G., Wang, P., Li, T. & Deng, X. Genetic association between plasminogen activator inhibitor-1 rs1799889 polymorphism and venous thromboembolism: evidence from a comprehensive meta-analysis. Clin. Cardiol. 42, 1232–1238 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. Patrono, C. et al. Antiplatelet agents for the treatment and prevention of coronary atherothrombosis. J. Am. Coll. Cardiol. 70, 1760–1776 (2017).

    PubMed  Google Scholar 

  67. Serebruany, V. L., Malinin, A. I., Eisert, R. M. & Sane, D. C. Risk of bleeding complications with antiplatelet agents: meta-analysis of 338,191 patients enrolled in 50 randomized controlled trials. Am. J. Hematol. 75, 40–47 (2004).

    CAS  PubMed  Google Scholar 

  68. Raimondi, P., Hylek, E. M. & Aronis, K. N. Reversal agents for oral antiplatelet and anticoagulant treatment during bleeding events: current strategies. Curr. Pharm. Des. 23, 1406–1423 (2017).

    CAS  PubMed  Google Scholar 

  69. Nagalla, S. & Sarode, R. Role of platelet transfusion in the reversal of anti-platelet therapy. Transfus. Med. Rev. 33, 92–97 (2019).

    PubMed  Google Scholar 

  70. Bhatt, D. L. et al. Antibody-based ticagrelor reversal agent in healthy volunteers. N. Engl. J. Med. 380, 1825–1833 (2019).

    CAS  PubMed  Google Scholar 

  71. Taylor, G., Osinski, D., Thevenin, A. & Devys, J. M. Is platelet transfusion efficient to restore platelet reactivity in patients who are responders to aspirin and/or clopidogrel before emergency surgery? J. Trauma. Acute Care Surg. 74, 1367–1369 (2013).

    CAS  PubMed  Google Scholar 

  72. Baharoglu, M. I. et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet 387, 2605–2613 (2016).

    PubMed  Google Scholar 

  73. O’Donoghue, M. & Wiviott, S. D. Clopidogrel response variability and future therapies: clopidogrel: does one size fit all? Circulation 114, e600–e606 (2006).

    PubMed  Google Scholar 

  74. Angiolillo, D. J. et al. Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. J. Am. Coll. Cardiol. 48, 298–304 (2006).

    CAS  PubMed  Google Scholar 

  75. Dayoub, E. J. et al. Trends in platelet adenosine diphosphate P2Y12 receptor inhibitor use and adherence among antiplatelet-naive patients after percutaneous coronary intervention, 2008–2016. JAMA Intern. Med. 178, 943–950 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Paniccia, R., Priora, R., Liotta, A. A. & Abbate, R. Platelet function tests: a comparative review. Vasc. Health Risk Manag. 11, 133–148 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Aradi, D. et al. Efficacy and safety of intensified antiplatelet therapy on the basis of platelet reactivity testing in patients after percutaneous coronary intervention: systematic review and meta-analysis. Int. J. Cardiol. 167, 2140–2148 (2013).

    PubMed  Google Scholar 

  78. Hulot, J. S. et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 108, 2244–2247 (2006).

    CAS  PubMed  Google Scholar 

  79. Claassens, D. M. F. et al. A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI. N. Engl. J. Med. 381, 1621–1631 (2019). The paper shows a benefit of using a CYP2C19 genotype-guided strategy for the selection of P2Y 12 inhibitor therapy.

    CAS  PubMed  Google Scholar 

  80. McFadden, E. P. et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364, 1519–1521 (2004).

    CAS  PubMed  Google Scholar 

  81. Levine, G. N. et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 68, 1082–1115 (2016).

    PubMed  Google Scholar 

  82. Collet, J. P. et al. Case-based implementation of the 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease. Eur. Heart J. 39, e1–e33 (2018).

    PubMed  Google Scholar 

  83. Watanabe, H. et al. Very short dual antiplatelet therapy after drug-eluting stent implantation in patients with high bleeding risk: insight from the STOPDAPT-2 trial. Circulation 140, 1957–1959 (2019).

    PubMed  Google Scholar 

  84. Kuruvilla, M. & Gurk-Turner, C. A review of warfarin dosing and monitoring. Proceedings 14, 305–306 (2001).

    CAS  Google Scholar 

  85. Zhu, Y. et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin. Chem. 53, 1199–1205 (2007).

    CAS  PubMed  Google Scholar 

  86. Weitz, J. I., Jaffer, I. H. & Fredenburgh, J. C. Recent advances in the treatment of venous thromboembolism in the era of the direct oral anticoagulants. F1000Res 6, 985 (2017). The paper describes the benefits of direct oral anticoagulants over vitamin K antagonists for the treatment of venous thromboembolism.

    PubMed  PubMed Central  Google Scholar 

  87. Kearon, C. et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 149, 315–352 (2016).

    PubMed  Google Scholar 

  88. Al-Samkari, H. & Connors, J. M. The role of direct oral anticoagulants in treatment of cancer-associated thrombosis. Cancers 10, E271 (2018).

    PubMed  Google Scholar 

  89. Levi, M. Management of bleeding in patients treated with direct oral anticoagulants. Crit. Care 20, 249 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Mavrakanas, T. A., Samer, C. F., Nessim, S. J., Frisch, G. & Lipman, M. L. Apixaban pharmacokinetics at steady state in hemodialysis patients. J. Am. Soc. Nephrol. 28, 2241–2248 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Eikelboom, J. W. et al. Dabigatran versus warfarin in patients with mechanical heart valves. N. Engl. J. Med. 369, 1206–1214 (2013). The trial comparing dabigatran with warfarin in patients with mechanical heart valves was stopped early owing to increased rates of thromboembolic and bleeding complications with dabigatran.

    CAS  PubMed  Google Scholar 

  92. Pengo, V. et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood 132, 1365–1371 (2018). The trial showed that the use of rivaroxaban in high-risk patients with antiphospholipid syndrome was associated with increased rates of thrombosis compared with warfarin.

    CAS  PubMed  Google Scholar 

  93. Leentjens, J., Peters, M., Esselink, A. C., Smulders, Y. & Kramers, C. Initial anticoagulation in patients with pulmonary embolism: thrombolysis, unfractionated heparin, LMWH, fondaparinux, or DOACs? Br. J. Clin. Pharmacol. 83, 2356–2366 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    CAS  PubMed  Google Scholar 

  95. Morrow, D. A. et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 366, 1404–1413 (2012).

    CAS  PubMed  Google Scholar 

  96. Tricoci, P. et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N. Engl. J. Med. 366, 20–33 (2012).

    CAS  PubMed  Google Scholar 

  97. Rothberg, M. B., Celestin, C., Fiore, L. D., Lawler, E. & Cook, J. R. Warfarin plus aspirin after myocardial infarction or the acute coronary syndrome: meta-analysis with estimates of risk and benefit. Ann. Intern. Med. 143, 241–250 (2005).

    CAS  PubMed  Google Scholar 

  98. Alexander, J. H. et al. Apixaban with antiplatelet therapy after acute coronary syndrome. N. Engl. J. Med. 365, 699–708 (2011).

    CAS  PubMed  Google Scholar 

  99. Mega, J. L. et al. Rivaroxaban in patients with a recent acute coronary syndrome. N. Engl. J. Med. 366, 9–19 (2012). This trial shows that low-dose rivaroxaban reduced cardiovascular events in patients with a recent acute cardiovascular event treated with antiplatelet agents.

    CAS  PubMed  Google Scholar 

  100. Eikelboom, J. W. et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 377, 1319–1330 (2017). The trial shows that the combination of low-dose rivaroxaban and aspirin reduced cardiovascular events in patients with stable atherosclerotic vascular disease compared with aspirin alone.

    CAS  PubMed  Google Scholar 

  101. Connolly, S. J. et al. Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 391, 205–218 (2018).

    CAS  PubMed  Google Scholar 

  102. Anand, S. S. et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 391, 219–229 (2018).

    CAS  PubMed  Google Scholar 

  103. Lopes, R. D. et al. Safety and efficacy of antithrombotic strategies in patients with atrial fibrillation undergoing percutaneous coronary intervention: a network meta-analysis of randomized controlled trials. JAMA Cardiol. 4, 747–755 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Yasuda, S. et al. Antithrombotic therapy for atrial fibrillation with stable coronary disease. N. Engl. J. Med. 381, 1103–1113 (2019).

    CAS  PubMed  Google Scholar 

  105. Powers, W. J. et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49, e46–e110 (2018).

    PubMed  Google Scholar 

  106. Gurwitz, J. H. et al. Risk for intracranial hemorrhage after tissue plasminogen activator treatment for acute myocardial infarction. Participants in the National Registry of Myocardial Infarction 2. Ann. Intern. Med. 129, 597–604 (1998).

    CAS  PubMed  Google Scholar 

  107. Chatterjee, S. et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. JAMA 311, 2414–2421 (2014).

    PubMed  Google Scholar 

  108. Griffin, J. H., Zlokovic, B. V. & Mosnier, L. O. Activated protein C, protease activated receptor 1, and neuroprotection. Blood 132, 159–169 (2018). The paper describes the beneficial effects of an activated protein C variant in stroke.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Griffin, J. H., Mosnier, L. O., Fernandez, J. A. & Zlokovic, B. V. 2016 Scientific Sessions Sol Sherry distinguished lecturer in thrombosis: thrombotic stroke: neuroprotective therapy by recombinant-activated protein C. Arterioscler. Thromb. Vasc. Biol. 36, 2143–2151 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mosnier, L. O., Zlokovic, B. V. & Griffin, J. H. Cytoprotective-selective activated protein C therapy for ischaemic stroke. Thromb. Haemost. 112, 883–892 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Lyden, P. et al. Randomized, controlled, dose escalation trial of a protease-activated receptor-1 agonist in acute ischemic stroke: Final results of the RHAPSODY trial: a multi-center, phase 2 trial using a continual reassessment method to determine the safety and tolerability of 3K3A-APC, a recombinant variant of human activated protein C, in combination with tissue plasminogen activator, mechanical thrombectomy or both in moderate to severe acute ischemic stroke. Ann. Neurol. 85, 125–136 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sharifi, M. et al. Moderate pulmonary embolism treated with thrombolysis (from the “MOPETT” Trial). Am. J. Cardiol. 111, 273–277 (2013).

    PubMed  Google Scholar 

  113. Sharifi, M. et al. Retrospective comparison of ultrasound facilitated catheter-directed thrombolysis and systemically administered half-dose thrombolysis in treatment of pulmonary embolism. Vasc. Med. 24, 103–109 (2019).

    PubMed  Google Scholar 

  114. Piazza, G. et al. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II study. JACC Cardiovasc. Interv. 8, 1382–1392 (2015).

    PubMed  Google Scholar 

  115. Nakanishi-Matsui, M. et al. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609–613 (2000).

    CAS  PubMed  Google Scholar 

  116. Nieman, M. T. Protease-activated receptors in hemostasis. Blood 128, 169–177 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Coughlin, S. R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    CAS  PubMed  Google Scholar 

  118. Covic, L., Misra, M., Badar, J., Singh, C. & Kuliopulos, A. Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat. Med. 8, 1161–1165 (2002).

    CAS  PubMed  Google Scholar 

  119. Kuliopulos, A. & Covic, L. Blocking receptors on the inside: pepducin-based intervention of PAR signaling and thrombosis. Life Sci. 74, 255–262 (2003).

    CAS  PubMed  Google Scholar 

  120. Gurbel, P. A. et al. Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 36, 189–197 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Aisiku, O. et al. Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood 125, 1976–1985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. De Ceunynck, K. et al. PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proc. Natl Acad. Sci. USA 115, E982–E991 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Wong, P. C. et al. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci. Transl. Med. 9, eaaf5294 (2017). Strong data in animal models supporting PAR4 as an antiplatelet target.

    PubMed  Google Scholar 

  124. Wilson, S. J. et al. PAR4 (Protease-Activated Receptor 4) antagonism with BMS-986120 inhibits human ex vivo thrombus formation. Arterioscler. Thromb. Vasc. Biol. 38, 448–456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. French, S. L. et al. A function-blocking PAR4 antibody is markedly antithrombotic in the face of a hyperreactive PAR4 variant. Blood Adv. 2, 1283–1293 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Martins Lima, A., Martins Cavaco, A. C., Fraga-Silva, R. A., Eble, J. A. & Stergiopulos, N. From patients to platelets and back again: pharmacological approaches to glycoprotein VI, a thrilling antithrombotic target with minor bleeding risks. Thromb. Haemost. 119, 1720–1739 (2019).

    PubMed  Google Scholar 

  127. Rayes, J., Watson, S. P. & Nieswandt, B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J. Clin. Invest. 129, 12–23 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Mammadova-Bach, E. et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood 126, 683–691 (2015).

    CAS  PubMed  Google Scholar 

  129. Alshehri, O. M. et al. Fibrin activates GPVI in human and mouse platelets. Blood 126, 1601–1608 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Slater, A. et al. Does fibrin(ogen) bind to monomeric or dimeric GPVI, or not at all? Platelets 30, 281–289 (2019).

    CAS  PubMed  Google Scholar 

  131. Onselaer, M. B. et al. Fibrin and D-dimer bind to monomeric GPVI. Blood Adv. 1, 1495–1504 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ebrahim, M. et al. Dimeric glycoprotein VI binds to collagen but not to fibrin. Thromb. Haemost. 118, 351–361 (2018).

    PubMed  Google Scholar 

  133. Induruwa, I. et al. Platelet collagen receptor glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during thrombus formation. J. Thromb. Haemost. 16, 389–404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Schulz, C. et al. Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic. Res. Cardiol. 103, 356–367 (2008).

    CAS  PubMed  Google Scholar 

  135. Reininger, A. J. et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J. Am. Coll. Cardiol. 55, 1147–1158 (2010).

    CAS  PubMed  Google Scholar 

  136. Kuijpers, M. J. et al. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model. J. Thromb. Haemost. 7, 152–161 (2009).

    CAS  PubMed  Google Scholar 

  137. Nurden, A. T. Clinical significance of altered collagen-receptor functioning in platelets with emphasis on glycoprotein VI. Blood Rev. 38, 100592 (2019).

    PubMed  Google Scholar 

  138. Arthur, J. F., Dunkley, S. & Andrews, R. K. Platelet glycoprotein VI-related clinical defects. Br. J. Haematol. 139, 363–372 (2007).

    CAS  PubMed  Google Scholar 

  139. Gruner, S. et al. Relative antithrombotic effect of soluble GPVI dimer compared with anti-GPVI antibodies in mice. Blood 105, 1492–1499 (2005).

    PubMed  Google Scholar 

  140. Reimann, A. et al. Combined administration of the GPVI-Fc fusion protein Revacept with low-dose thrombolysis in the treatment of stroke. Heart Int. 11, e10–e16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ungerer, M. et al. Novel antiplatelet drug revacept (dimeric glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation 123, 1891–1899 (2011).

    CAS  PubMed  Google Scholar 

  142. Schupke, S. et al. Revacept, a novel inhibitor of platelet adhesion, in patients undergoing elective PCI-Design and rationale of the randomized ISAR-PLASTER Trial. Thromb. Haemost. 119, 1539–1545 (2019).

    PubMed  Google Scholar 

  143. Lebozec, K., Jandrot-Perrus, M., Avenard, G., Favre-Bulle, O. & Billiald, P. Design, development and characterization of ACT017, a humanized Fab that blocks platelet’s glycoprotein VI function without causing bleeding risks. MAbs 9, 945–958 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Voors-Pette, C. et al. Safety and tolerability, pharmacokinetics, and pharmacodynamics of ACT017, an antiplatelet GPVI (Glycoprotein VI) Fab. Arterioscler. Thromb. Vasc. Biol. 39, 956–964 (2019).

    CAS  PubMed  Google Scholar 

  145. Bergmeier, W., Chauhan, A. K. & Wagner, D. D. Glycoprotein Ibα and von Willebrand factor in primary platelet adhesion and thrombus formation: lessons from mutant mice. Thromb. Haemost. 99, 264–270 (2008).

    CAS  PubMed  Google Scholar 

  146. Denorme, F. & De Meyer, S. F. The VWF-GPIb axis in ischaemic stroke: lessons from animal models. Thromb. Haemost. 116, 597–604 (2016).

    PubMed  Google Scholar 

  147. Kremer Hovinga, J. A. et al. Thrombotic thrombocytopenic purpura. Nat. Rev. Dis. Primers 3, 17020 (2017).

    PubMed  Google Scholar 

  148. Mikhail, S., Aldin, E. S., Streiff, M. & Zeidan, A. An update on type 2B von Willebrand disease. Expert. Rev. Hematol. 7, 217–231 (2014).

    CAS  PubMed  Google Scholar 

  149. Firbas, C., Siller-Matula, J. M. & Jilma, B. Targeting von Willebrand factor and platelet glycoprotein Ib receptor. Expert. Rev. Cardiovasc. Ther. 8, 1689–1701 (2010).

    CAS  PubMed  Google Scholar 

  150. Gilbert, J. C. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 116, 2678–2686 (2007).

    CAS  PubMed  Google Scholar 

  151. Bartunek, J. et al. Novel antiplatelet agents: ALX-0081, a nanobody directed towards von Willebrand factor. J. Cardiovasc. Transl. Res. 6, 355–363 (2013).

    PubMed  Google Scholar 

  152. Kageyama, S., Matsushita, J. & Yamamoto, H. Effect of a humanized monoclonal antibody to von Willebrand factor in a canine model of coronary arterial thrombosis. Eur. J. Pharmacol. 443, 143–149 (2002).

    CAS  PubMed  Google Scholar 

  153. Kageyama, S. et al. Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arterioscler. Thromb. Vasc. Biol. 22, 187–192 (2002).

    CAS  PubMed  Google Scholar 

  154. Scully, M. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N. Engl. J. Med. 380, 335–346 (2019).

    CAS  PubMed  Google Scholar 

  155. Markus, H. S. et al. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke 42, 2149–2153 (2011).

    CAS  PubMed  Google Scholar 

  156. Zheng, L. et al. Therapeutic efficacy of the platelet glycoprotein Ib antagonist anfibatide in murine models of thrombotic thrombocytopenic purpura. Blood Adv. 1, 75–83 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, T. T. et al. A novel snake venom-derived GPIb antagonist, anfibatide, protects mice from acute experimental ischaemic stroke and reperfusion injury. Br. J. Pharmacol. 172, 3904–3916 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lei, X. et al. Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb. Haemost. 111, 279–289 (2014).

    CAS  PubMed  Google Scholar 

  159. Quach, M. E., Chen, W. & Li, R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood 131, 1512–1521 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Gratacap, M. P. et al. Regulation and roles of PI3Kbeta, a major actor in platelet signaling and functions. Adv. Enzyme Regul. 51, 106–116 (2011).

    CAS  PubMed  Google Scholar 

  161. Martin, V. et al. Deletion of the p110β isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood 115, 2008–2013 (2010).

    CAS  PubMed  Google Scholar 

  162. Nylander, S. et al. Human target validation of phosphoinositide 3-kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J. Thromb. Haemost. 10, 2127–2136 (2012).

    CAS  PubMed  Google Scholar 

  163. Zheng, Z. et al. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922). Eur. J. Med. Chem. 122, 339–351 (2016).

    CAS  PubMed  Google Scholar 

  164. Nylander, S., Wagberg, F., Andersson, M., Skarby, T. & Gustafsson, D. Exploration of efficacy and bleeding with combined phosphoinositide 3-kinase β inhibition and aspirin in man. J. Thromb. Haemost. 13, 1494–1502 (2015).

    CAS  PubMed  Google Scholar 

  165. Bekendam, R. H. & Flaumenhaft, R. Inhibition of protein disulfide isomerase in thrombosis. Basic Clin. Pharmacol. Toxicol. 119, 42–48 (2016).

    CAS  PubMed  Google Scholar 

  166. Jasuja, R. et al. Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. J. Clin. Invest. 122, 2104–2113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Stopa, J. D. et al. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI Insight 2, e89373 (2017).

    PubMed  PubMed Central  Google Scholar 

  168. Zwicker, J. I. et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight 4, 125851 (2019).

    PubMed  Google Scholar 

  169. Schwarz, M. et al. Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ. Res. 99, 25–33 (2006).

    CAS  PubMed  Google Scholar 

  170. Hanjaya-Putra, D. et al. Platelet-targeted dual pathway antithrombotic inhibits thrombosis with preserved hemostasis. JCI Insight 3, 99329 (2018).

    PubMed  Google Scholar 

  171. Shen, B. et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 503, 131–135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ikei, K. N. et al. Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation. J. Lipid Res. 53, 2546–2559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Yeung, J. et al. 12-lipoxygenase activity plays an important role in PAR4 and GPVI-mediated platelet reactivity. Thromb. Haemost. 110, 569–581 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Yeung, J. et al. Platelet 12-LOX is essential for FcgγRIIa-mediated platelet activation. Blood 124, 2271–2279 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Adili, R. et al. First selective 12-LOX inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis. Arterioscler. Thromb. Vasc. Biol. 37, 1828–1839 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl Acad. Sci. USA 107, 13075–13080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Brown, J. R. et al. Incidence of and risk factors for major haemorrhage in patients treated with ibrutinib: an integrated analysis. Br. J. Haematol. 184, 558–569 (2019).

    CAS  PubMed  Google Scholar 

  178. Busygina, K. et al. Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 131, 2605–2616 (2018).

    CAS  PubMed  Google Scholar 

  179. Giugliano, R. P. et al. Recombinant nematode anticoagulant protein c2 in patients with non-ST-segment elevation acute coronary syndrome: the ANTHEM-TIMI-32 trial. J. Am. Coll. Cardiol. 49, 2398–2407 (2007).

    CAS  PubMed  Google Scholar 

  180. Vincent, J. L., Artigas, A., Petersen, L. C. & Meyer, C. A multicenter, randomized, double-blind, placebo-controlled, dose-escalation trial assessing safety and efficacy of active site inactivated recombinant factor VIIa in subjects with acute lung injury or acute respiratory distress syndrome. Crit. Care Med. 37, 1874–1880 (2009).

    CAS  PubMed  Google Scholar 

  181. Wheeler, A. P. & Gailani, D. The intrinsic pathway of coagulation as a target for antithrombotic therapy. Hematol. Oncol. Clin. North Am. 30, 1099–1114 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. Nickel, K. F., Long, A. T., Fuchs, T. A., Butler, L. M. & Renne, T. Factor XII as a therapeutic target in thromboembolic and inflammatory diseases. Arterioscler. Thromb. Vasc. Biol. 37, 13–20 (2017).

    CAS  PubMed  Google Scholar 

  183. Weitz, J. I. & Fredenburgh, J. C. Platelet polyphosphate: the long and the short of it. Blood 129, 1574–1575 (2017).

    CAS  PubMed  Google Scholar 

  184. Kenne, E. & Renne, T. Factor XII: a drug target for safe interference with thrombosis and inflammation. Drug. Discov. Today 19, 1459–1464 (2014).

    CAS  PubMed  Google Scholar 

  185. Verhamme, P. et al. Tolerability and pharmacokinetics of TB-402 in healthy male volunteers. Clin. Ther. 32, 1205–1220 (2010).

    CAS  PubMed  Google Scholar 

  186. Verhamme, P. et al. Single intravenous administration of TB-402 for the prophylaxis of venous thromboembolism after total knee replacement: a dose-escalating, randomized, controlled trial. J. Thromb. Haemost. 9, 664–671 (2011).

    CAS  PubMed  Google Scholar 

  187. Eriksson, B. I. et al. Partial factor IXa inhibition with TTP889 for prevention of venous thromboembolism: an exploratory study. J. Thromb. Haemost. 6, 457–463 (2008).

    CAS  PubMed  Google Scholar 

  188. Toomey, J. R. et al. Comparing the antithrombotic efficacy of a humanized anti-factor IX(a) monoclonal antibody (SB 249417) to the low molecular weight heparin enoxaparin in a rat model of arterial thrombosis. Thromb. Res. 100, 73–79 (2000).

    CAS  PubMed  Google Scholar 

  189. Toomey, J. R. et al. Inhibition of factor IX(a) is protective in a rat model of thromboembolic stroke. Stroke 33, 578–585 (2002).

    CAS  PubMed  Google Scholar 

  190. Benincosa, L. J. et al. Pharmacokinetics and pharmacodynamics of a humanized monoclonal antibody to factor IX in cynomolgus monkeys. J. Pharmacol. Exp. Ther. 292, 810–816 (2000).

    CAS  PubMed  Google Scholar 

  191. Chow, F. S. et al. Pharmacokinetic and pharmacodynamic modeling of humanized anti-factor IX antibody (SB 249417) in humans. Clin. Pharmacol. Ther. 71, 235–245 (2002).

    CAS  PubMed  Google Scholar 

  192. Dyke, C. K. et al. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation 114, 2490–2497 (2006).

    CAS  PubMed  Google Scholar 

  193. Povsic, T. J. et al. A phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: results of the RADAR trial. Eur. Heart J. 34, 2481–2489 (2013).

    CAS  PubMed  Google Scholar 

  194. Lincoff, A. M. et al. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet 387, 349–356 (2016).

    CAS  PubMed  Google Scholar 

  195. Povsic, T. J. et al. Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J. Allergy Clin. Immunol. 138, 1712–1715 (2016).

    CAS  PubMed  Google Scholar 

  196. Weitz, J. I. & Harenberg, J. New developments in anticoagulants: past, present and future. Thromb. Haemost. 117, 1283–1288 (2017).

    PubMed  Google Scholar 

  197. Weitz, J. I. & Fredenburgh, J. C. 2017 scientific sessions sol sherry distinguished lecture in thrombosis: factor xi as a target for new anticoagulants. Arterioscler. Thromb. Vasc. Biol. 38, 304–310 (2018).

    CAS  PubMed  Google Scholar 

  198. Younis, H. S. et al. Antisense inhibition of coagulation factor XI prolongs APTT without increased bleeding risk in cynomolgus monkeys. Blood 119, 2401–2408 (2012).

    CAS  PubMed  Google Scholar 

  199. Buller, H. R. et al. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med. 372, 232–240 (2015). The trial shows that reducing levels of FXI using an antisense oligonucleotide is associated with reduced venous thrombosis in patients undergoing total knee arthroplasty without increasing bleeding.

    PubMed  Google Scholar 

  200. Gomez-Outes, A., Garcia-Fuentes, M. & Suarez-Gea, M. L. Discovery methods of coagulation-inhibiting drugs. Expert. Opin. Drug. Discov. 12, 1195–1205 (2017).

    CAS  PubMed  Google Scholar 

  201. Weitz, J. I. et al. Effect of Osocimab in preventing venous thromboembolism among patients undergoing knee arthroplasty. JAMA 323, 130–139 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Koch, A. W. et al. MAA868, a novel FXI antibody with a unique binding mode, shows durable effects on markers of anticoagulation in humans. Blood 133, 1507–1516 (2019).

    CAS  PubMed  Google Scholar 

  203. Cheng, Q. et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 116, 3981–3989 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Lorentz, C. U. et al. Contact activation inhibitor and factor XI antibody, AB023, produces safe, dose-dependent anticoagulation in a phase 1 first-in-human trial. Arterioscler. Thromb. Vasc. Biol. 39, 799–809 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Lakbakbi, S. et al. Tissue factor expressed by adherent cells contributes to hemodialysis-membrane thrombogenicity. Thromb. Res. 144, 218–223 (2016).

    CAS  PubMed  Google Scholar 

  206. Bjorkqvist, J. et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J. Clin. Invest. 125, 3132–3146 (2015).

    PubMed  PubMed Central  Google Scholar 

  207. Jain, S. et al. Nucleic acid scavengers inhibit thrombosis without increasing bleeding. Proc. Natl Acad. Sci. USA 109, 12938–12943 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Travers, R. J., Shenoi, R. A., Kalathottukaren, M. T., Kizhakkedathu, J. N. & Morrissey, J. H. Nontoxic polyphosphate inhibitors reduce thrombosis while sparing hemostasis. Blood 124, 3183–3190 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. von Bruhl, M. L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209, 819–835 (2012).

    Google Scholar 

  210. Brill, A. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 10, 136–144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Leal, A. C. et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci. Rep. 7, 6438 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Hisada, Y. et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica 105, 218–225 (2020).

    PubMed  PubMed Central  Google Scholar 

  213. Davis, J. C. Jr. et al. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus 8, 68–76 (1999).

    PubMed  Google Scholar 

  214. Konigsbrugge, O. & Ay, C. Atrial fibrillation in patients with end-stage renal disease on hemodialysis: magnitude of the problem and new approach to oral anticoagulation. Res. Pract. Thromb. Haemost. 3, 578–588 (2019).

    PubMed  PubMed Central  Google Scholar 

  215. Dentali, F. et al. JAK2V617F mutation for the early diagnosis of Ph-myeloproliferative neoplasms in patients with venous thromboembolism: a meta-analysis. Blood 113, 5617–5623 (2009).

    CAS  PubMed  Google Scholar 

  216. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    CAS  PubMed  Google Scholar 

  217. Weber, W. et al. Noninvasive follow-up of GDC-treated saccular aneurysms by MR angiography. Eur. Radiol. 11, 1792–1797 (2001).

    CAS  PubMed  Google Scholar 

  218. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).

    CAS  PubMed  Google Scholar 

  219. Brighton, T. A. et al. Low-dose aspirin for preventing recurrent venous thromboembolism. N. Engl. J. Med. 367, 1979–1987 (2012).

    CAS  PubMed  Google Scholar 

  220. Becattini, C. et al. Aspirin for preventing the recurrence of venous thromboembolism. N. Engl. J. Med. 366, 1959–1967 (2012).

    CAS  PubMed  Google Scholar 

  221. Marik, P. E. & Cavallazzi, R. Extended anticoagulant and aspirin treatment for the secondary prevention of thromboembolic disease: a systematic review and meta-analysis. PLoS One 10, e0143252 (2015).

    PubMed  PubMed Central  Google Scholar 

  222. Weitz, J. I. et al. Rivaroxaban or aspirin for extended treatment of venous thromboembolism. N. Engl. J. Med. 376, 1211–1222 (2017).

    CAS  PubMed  Google Scholar 

  223. Elwood, P. C. et al. A randomized controlled trial of acetyl salicylic acid in the secondary prevention of mortality from myocardial infarction. Br. Med. J. 1, 436–440 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Janzon, L. et al. Prevention of myocardial infarction and stroke in patients with intermittent claudication; effects of ticlopidine. Results from STIMS, the Swedish Ticlopidine Multicentre Study. J. Intern. Med. 227, 301–308 (1990).

    CAS  PubMed  Google Scholar 

  225. Pettersen, A. A., Arnesen, H., Opstad, T. B. & Seljeflot, I. The influence of CYP 2C19*2 polymorphism on platelet function testing during single antiplatelet treatment with clopidogrel. Thromb. J. 9, 4 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Montalescot, G. et al. Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial. Lancet 373, 723–731 (2009).

    CAS  PubMed  Google Scholar 

  227. Bonaca, M. P., Braunwald, E. & Sabatine, M. S. Long-term use of ticagrelor in patients with prior myocardial infarction. N. Engl. J. Med. 373, 1271–1275 (2015).

    Google Scholar 

  228. Vranckx, P. et al. Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomised superiority trial. Lancet 392, 940–949 (2018).

    CAS  PubMed  Google Scholar 

  229. Coller, B. S. Anti-GPIIb/IIIa drugs: current strategies and future directions. Thromb. Haemost. 86, 427–443 (2001).

    CAS  PubMed  Google Scholar 

  230. Bennett, J. S. Structure and function of the platelet integrin αIIbβ3. J. Clin. Invest. 115, 3363–3369 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Chew, D. P., Bhatt, D. L. & Topol, E. J. Oral glycoprotein IIb/IIIa inhibitors: why don’t they work? Am. J. Cardiovasc. Drugs 1, 421–428 (2001).

    CAS  PubMed  Google Scholar 

  232. Cox, D. Oral GPIIb/IIIa antagonists: what went wrong? Curr. Pharm. Des. 10, 1587–1596 (2004).

    CAS  PubMed  Google Scholar 

  233. Kahn, M. L. et al. A dual thrombin receptor system for platelet activation. Nature 394, 690–694 (1998).

    CAS  PubMed  Google Scholar 

  234. Franchi, F., Rollini, F., Park, Y. & Angiolillo, D. J. Platelet thrombin receptor antagonism with vorapaxar: pharmacology and clinical trial development. Future Cardiol. 11, 547–564 (2015).

    CAS  PubMed  Google Scholar 

  235. O’Donoghue, M. L. et al. Safety and tolerability of atopaxar in the treatment of patients with acute coronary syndromes: the lessons from antagonizing the cellular effects of thrombin-acute coronary syndromes trial. Circulation 123, 1843–1853 (2011).

    PubMed  Google Scholar 

  236. Wiviott, S. D. et al. Randomized trial of atopaxar in the treatment of patients with coronary artery disease: the lessons from antagonizing the cellular effect of thrombin-coronary artery disease trial. Circulation 123, 1854–1863 (2011).

    CAS  PubMed  Google Scholar 

  237. Goto, S. et al. Double-blind, placebo-controlled Phase II studies of the protease-activated receptor 1 antagonist E5555 (atopaxar) in Japanese patients with acute coronary syndrome or high-risk coronary artery disease. Eur. Heart J. 31, 2601–2613 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Kernan, W. N. et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45, 2160–2236 (2014).

    PubMed  Google Scholar 

  239. Antithrombotic Trialists Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324, 71–86 (2002).

    Google Scholar 

  240. Hemker, H. C. A century of heparin: past, present and future. J. Thromb. Haemost. 14, 2329–2338 (2016).

    CAS  PubMed  Google Scholar 

  241. Lim, G. B. Milestone 1: discovery and purification of heparin. Nat. Rev. Cardiol. https://doi.org/10.1038/nrcardio.2017.171 (2017).

  242. Best, C. H. Heparin and thrombosis. Br. Med. J. 2, 977–981 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Best, C. H., Cowan, C. & Maclean, D. L. Heparin and the formation of white thrombi. Science 85, 338–339 (1937).

    CAS  PubMed  Google Scholar 

  244. Walenga, J. M. et al. Fondaparinux: a synthetic heparin pentasaccharide as a new antithrombotic agent. Expert. Opin. Investig. Drugs 11, 397–407 (2002).

    CAS  PubMed  Google Scholar 

  245. Garcia, D. A., Baglin, T. P., Weitz, J. I. & Samama, M. M. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141 (Suppl. 2), e24–e43 (2012).

    Google Scholar 

  246. Lee, S. et al. Scientific considerations in the review and approval of generic enoxaparin in the United States. Nat. Biotechnol. 31, 220–226 (2013).

    CAS  PubMed  Google Scholar 

  247. Wienbergen, H. & Zeymer, U. Management of acute coronary syndromes with fondaparinux. Vasc. Health Risk Manag. 3, 321–329 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Arepally, G. M. Heparin-induced thrombocytopenia. Blood 129, 2864–2872 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Nutescu, E. A., Burnett, A., Fanikos, J., Spinler, S. & Wittkowsky, A. Pharmacology of anticoagulants used in the treatment of venous thromboembolism. J. Thromb. Thrombolysis 41, 15–31 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Barrowcliffe, T. W., Mulloy, B., Johnson, E. A. & Thomas, D. P. The anticoagulant activity of heparin: measurement and relationship to chemical structure. J. Pharm. Biomed. Anal. 7, 217–226 (1989).

    CAS  PubMed  Google Scholar 

  251. Schroeder, M. et al. Protamine neutralisation of low molecular weight heparins and their oligosaccharide components. Anal. Bioanal. Chem. 399, 763–771 (2011).

    CAS  PubMed  Google Scholar 

  252. Link, K. P. The discovery of dicumarol and its sequels. Circulation 19, 97–107 (1959).

    CAS  PubMed  Google Scholar 

  253. Pirmohamed, M. Warfarin: almost 60 years old and still causing problems. Br. J. Clin. Pharmacol. 62, 509–511 (2006).

    PubMed  PubMed Central  Google Scholar 

  254. Presnell, S. R. & Stafford, D. W. The vitamin K-dependent carboxylase. Thromb. Haemost. 87, 937–946 (2002).

    CAS  PubMed  Google Scholar 

  255. Tie, J. K. & Stafford, D. W. Structural and functional insights into enzymes of the vitamin K cycle. J. Thromb. Haemost. 14, 236–247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Moualla, H. & Garcia, D. Vitamin K antagonists–current concepts and challenges. Thromb. Res. 128, 210–215 (2011).

    CAS  PubMed  Google Scholar 

  257. Hanley, J. P. Warfarin reversal. J. Clin. Pathol. 57, 1132–1139 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Gage, B. F. & Lesko, L. J. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J. Thromb. Thrombolysis 25, 45–51 (2008).

    CAS  PubMed  Google Scholar 

  259. Futatani, T., Watanabe, C., Baba, Y., Tsukada, S. & Ochs, H. D. Bruton’s tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. Br. J. Haematol. 114, 141–149 (2001).

    CAS  PubMed  Google Scholar 

  260. Bain, J. & Meyer, A. Comparison of bivalirudin to lepirudin and argatroban in patients with heparin-induced thrombocytopenia. Am. J. Health Syst. Pharm. 72 (Suppl. 2), 104–109 (2015).

    Google Scholar 

  261. Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009). The trial shows that, in patients with atrial fibrillation, dabigatran was associated with similar rates of stroke and systemic embolism to those associated with warfarin but with lower rates of major haemorrhage.

    CAS  PubMed  Google Scholar 

  262. Pollack, C. V. Jr. et al. Idarucizumab for dabigatran reversal. N. Engl. J. Med. 373, 511–520 (2015).

    CAS  PubMed  Google Scholar 

  263. Pollack, C. V. Jr. et al. Idarucizumab for dabigatran reversal – full cohort analysis. N. Engl. J. Med. 377, 431–441 (2017).

    CAS  PubMed  Google Scholar 

  264. Hutcherson, T. C., Cieri-Hutcherson, N. E. & Bhatt, R. Evidence for idarucizumab (Praxbind) in the reversal of the direct thrombin inhibitor dabigatran: review following the RE-VERSE AD full cohort analysis. P. T. 42, 692–698 (2017).

    PubMed  PubMed Central  Google Scholar 

  265. Pour-Ghaz, I. et al. Transcatheter aortic valve replacement with a focus on transcarotid: a review of the current literature. Ann. Transl. Med. 7, 420 (2019).

    PubMed  PubMed Central  Google Scholar 

  266. Joppa, S. A. et al. A practical review of the emerging direct anticoagulants, laboratory monitoring, and reversal agents. J. Clin. Med. 7, E29 (2018).

    PubMed  Google Scholar 

  267. Lu, G. et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat. Med. 19, 446–451 (2013).

    CAS  PubMed  Google Scholar 

  268. Connolly, S. J. et al. Full study report of andexanet alfa for bleeding associated with factor Xa Inhibitors. N. Engl. J. Med. 380, 1326–1335 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Heo, Y. A. Andexanet Alfa: first global approval. Drugs 78, 1049–1055 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Ruff, C. T. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383, 955–962 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cihan Ay, Jonathan Erlich, Steven Grover, Raj Kasthuri, Carolyn Mackman and Dougald Monroe III for helpful comments and Yohei Hisada for help with preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel Mackman.

Ethics declarations

Competing interests

G.A.S. and W.B. have no competing interests. N.M. has a grant from Bayer and is a consultant for Bayer. J.I.W. is a consultant for Bristol-Myers Squibb, Pfizer, Daiichi Sankyo, Bayer, Janssen, Boehringer Ingelheim, IONIS Pharmaceuticals, Merck, Portola, Perosphere, Servier, Anthos and Tetherex.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cardiovascular disease

Disorders of the heart and blood vessels.

Platelets

Small enucleate cells in the blood involved in clotting.

Haemostasis

Arrest of bleeding after damage to a blood vessel.

Antisense oligonucleotides

(ASOs). Antisense oligonucleotides reduce protein expression by binding to mRNA and increasing its degradation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackman, N., Bergmeier, W., Stouffer, G.A. et al. Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 19, 333–352 (2020). https://doi.org/10.1038/s41573-020-0061-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0061-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research