Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Epidermolysis bullosa

Abstract

Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which — and also the leading cause of mortality — is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cutaneous dermal–epidermal junction.
Fig. 2: Tumorigenesis in recurrently blistered and chronically inflamed EB skin.
Fig. 3: Clinical images of EB.
Fig. 4: Diagnostic algorithm for EB.
Fig. 5: TEM of EB biopsy specimens.
Fig. 6: Immunofluorescence microscopy and genetic analysis in EB.
Fig. 7: Extracutaneous manifestations in EB.

Similar content being viewed by others

References

  1. Fine, J.-D. et al. The classification of inherited epidermolysis bullosa (EB): report of the third international consensus meeting on diagnosis and classification of EB. J. Am. Acad. Dermatol. 58, 931–950 (2008).

    PubMed  Google Scholar 

  2. Fine, J.-D. et al. Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J. Am. Acad. Dermatol. 70, 1103–1126 (2014).

    PubMed  Google Scholar 

  3. Has, C. et al. Consensus re-classification of inherited epidermolysis bullosa and other disorders with skin fragility. Br. J. Dermatol. https://doi.org/10.1111/bjd.18921. (2020). The latest international consensus guidelines for the diagnosis and classification of EB.

  4. Fine, J.-D. Epidemiology of inherited epidermolysis bullosa based on incidence and prevalence estimates from the National Epidermolysis Bullosa Registry. JAMA Dermatol. 152, 1231–1238 (2016). The single largest global registry and source of epidemiological data for patients with EB.

    PubMed  Google Scholar 

  5. Kho, Y. C. et al. Epidemiology of epidermolysis bullosa in the antipodes: the Australasian Epidermolysis Bullosa Registry with a focus on Herlitz junctional epidermolysis bullosa. Arch. Dermatol. 146, 635–640 (2010).

    PubMed  Google Scholar 

  6. Fine, J. D. et al. in Epidermolysis bullosa: clinical, epidemiologic, and laboratory advances, and the findings of the National Epidermolysis Bullosa Registry (eds Fine, J. D., Bauer, E. A., McGuire, J., & Moshell, A.). 101–111 (Johns Hopkins University Press, 1999).

  7. Tadini, G. et al. The Italian registry of hereditary epidermolysis bullosa. G. Ital. Dermatol. Venereol. 140, 359–372 (2005).

    Google Scholar 

  8. Pavicic´, Z., Kmet-Vizintin, P., Kansky, A. & Dobric´, I. Occurrence of hereditary bullous epidermolyses in Croatia. Pediatr. Dermatol. 7, 108–110 (1990).

    PubMed  Google Scholar 

  9. Shinkuma, S., Natsuga, K., Nishie, W. & Shimizu, H. Epidermolysis bullosa in Japan. Dermatol. Clin. 28, 431–432 (2010).

    CAS  PubMed  Google Scholar 

  10. Da˘nescu, S., Has, C., Senila, S., Ungureanu, L. & Cosgarea, R. Epidemiology of inherited epidermolysis bullosa in Romania and genotype–phenotype correlations in patients with dystrophic epidermolysis bullosa. J. Eur. Acad. Dermatol. Venereol. 29, 899–903 (2015).

    PubMed  Google Scholar 

  11. Horn, H. M., Priestley, G. C., Eady, R. A. & Tidman, M. J. The prevalence of epidermolysis bullosa in Scotland. Br. J. Dermatol. 136, 560–564 (1997).

    CAS  PubMed  Google Scholar 

  12. Yuen, W. Y., Lemmink, H. H., van Dijk-Bos, K. K., Sinke, R. J. & Jonkman, M. F. Herlitz junctional epidermolysis bullosa: diagnostic features, mutational profile, incidence and population carrier frequency in the Netherlands. Br. J. Dermatol. 165, 1314–1322 (2011).

    CAS  PubMed  Google Scholar 

  13. Vahlquist, A. & Kasia., T. Epidermolysis bullosa care in Scandinavia. Dermatol. Clin. 28, 425–427 (2010).

    CAS  PubMed  Google Scholar 

  14. Castiglia, D. & Zambruno, G. Epidermolysis bullosa care in Italy. Dermatol. Clin. 28, 407–409 (2010).

    CAS  PubMed  Google Scholar 

  15. Hammersen, J. et al. Genotype, clinical course, and therapeutic decision making in 76 infants with severe generalized junctional epidermolysis bullosa. J. Invest. Dermatol. 136, 2150–2157 (2016).

    CAS  PubMed  Google Scholar 

  16. Fuentes, I. et al. Molecular epidemiology of junctional epidermolysis bullosa: discovery of novel and frequent LAMB3 mutations in Chilean patients with diagnostic significance. Br. J. Dermatol. 176, 1090–1092 (2017).

    CAS  PubMed  Google Scholar 

  17. Abu, Sa’d,J. et al. Molecular epidemiology of hereditary epidermolysis bullosa in a Middle Eastern population. J. Invest. Dermatol. 126, 777–781 (2006).

    Google Scholar 

  18. Abahussein, A. A., al-Zayir, A. A., Mostafa, W. Z. & Okoro, A. N. Epidermolysis bullosa in the eastern province of Saudi Arabia. Int. J. Dermatol. 32, 579–581 (1993).

    CAS  PubMed  Google Scholar 

  19. Fine, J.-D., Johnson, L. B., Weiner, M., Li, K.-P. & Suchindran, C. Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986–2006. J. Am. Acad. Dermatol. 60, 203–211 (2009).

    PubMed  Google Scholar 

  20. Fine, J. D. & Lanschuetzer, C. M. in Life with Epidermolysis Bullosa (EB) (eds Fine, J. D. & Hintner H.) 116–131 (SpringerWein, 2009).

  21. Cancer Research UK. Melanoma skin cancer incidence statistics. CRUK http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/skin-cancer/incidence#heading-Eleven (2019).

  22. Kim, M. et al. Epidemiology and outcome of squamous cell carcinoma in epidermolysis bullosa in Australia and New Zealand. Acta Derm. Venereol. 98, 70–76 (2018).

    PubMed  Google Scholar 

  23. Fine, J.-D., Johnson, L. B., Weiner, M. & Suchindran, C. Cause-specific risks of childhood death in inherited epidermolysis bullosa. J. Pediatr. 152, 276–280 (2008).

    PubMed  Google Scholar 

  24. Yuen, W. Y. et al. Long-term follow-up of patients with Herlitz-type junctional epidermolysis bullosa. Br. J. Dermatol. 167, 374–382 (2012).

    CAS  PubMed  Google Scholar 

  25. Fine, J. D., Hall, M., Weiner, M., Li, K. P. & Suchindran, C. The risk of cardiomyopathy in inherited epidermolysis bullosa. Br. J. Dermatol. 159, 677–682 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Fine, J.-D. et al. Inherited epidermolysis bullosa and the risk of death from renal disease: experience of the National Epidermolysis Bullosa Registry. Am. J. Kidney Dis. 44, 651–660 (2004).

    PubMed  Google Scholar 

  27. Fine, J.-D. et al. Eye involvement in inherited epidermolysis bullosa: experience of the National Epidermolysis Bullosa Registry. Am. J. Ophthalmol. 138, 254–262 (2004).

    PubMed  Google Scholar 

  28. J. E., L.-C. et al. Kindler syndrome: a focal adhesion genodermatosis. Br. J. Dermatol. 160, 233–242 (2009).

    Google Scholar 

  29. Guerrero-Aspizua, S. et al. Assessment of the risk and characterization of non-melanoma skin cancer in Kindler syndrome: study of a series of 91 patients. Orphanet J. Rare Dis. 14, 183 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Mizutani, H. et al. Cutaneous and laryngeal squamous cell carcinoma in mixed epidermolysis bullosa, kindler syndrome. Case Rep. Dermatol. 4, 133–138 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Lane, E. B. et al. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature 356, 244–246 (1992).

    CAS  PubMed  Google Scholar 

  32. Homberg, M. & Magin, T. M. Beyond expectations: novel insights into epidermal keratin function and regulation. Int. Rev. Cell Mol. Biol. 311, 265–306 (2014).

    CAS  PubMed  Google Scholar 

  33. Coulombe, P. A. & Lee, C.-H. Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J. Invest. Dermatol. 132, 763–775 (2012). A review article describing the function of keratin intermediate filaments in basal epidermal keratinocytes.

    CAS  PubMed  Google Scholar 

  34. Bruckner-Tuderman, L. & Has, C. Disorders of the cutaneous basement membrane zone — the paradigm of epidermolysis bullosa. Matrix Biol. 33, 29–34 (2014).

    CAS  PubMed  Google Scholar 

  35. Castañón, M. J., Walko, G., Winter, L. & Wiche, G. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem. Cell Biol. 140, 33–53 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Bolling, M. C. et al. Plectin mutations underlie epidermolysis bullosa simplex in 8% of patients. J. Invest. Dermatol. 134, 273–276 (2014).

    CAS  PubMed  Google Scholar 

  37. Natsuga, K. et al. Plectin deficiency leads to both muscular dystrophy and pyloric atresia in epidermolysis bullosa simplex. Hum. Mutat. 31, E1687–E1698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. He, Y. et al. Monoallelic mutations in the translation initiation codon of KLHL24 cause skin fragility. Am. J. Hum. Genet. 99, 1395–1404 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, Z. et al. Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nat. Genet. 48, 1508–1516 (2016).

    PubMed  Google Scholar 

  40. Lee, J. Y. W. et al. Mutations in KLHL24 add to the molecular heterogeneity of epidermolysis bullosa simplex. J. Invest. Dermatol. 137, 1378–1380 (2017). This paper describes KLHL24 mutations in EB simplex.

    CAS  PubMed  Google Scholar 

  41. Herrmann, H. & Aebi, U. Intermediate filaments: structure and assembly. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a018242 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Coulombe, P. A., Kerns, M. L. & Fuchs, E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J. Clin. Invest. 119, 1784–1793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fine, J.-D. Inherited epidermolysis bullosa. Orphanet J. Rare Dis. 5, 12 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Bohnekamp, J. et al. A drosophila model of epidermolysis bullosa simplex. J. invest. Dermatol. 135, 2031–2039 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Löffek, S. et al. The ubiquitin ligase CHIP/STUB1 targets mutant keratins for degradation. Hum. Mutat. 31, 466–476 (2010).

    PubMed  Google Scholar 

  46. Ramms, L. et al. Keratins as the main component for the mechanical integrity of keratinocytes. Proc. Natl Acad. Sci. USA 110, 18513–18518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Homberg, M. et al. Distinct impact of two keratin mutations causing epidermolysis bullosa simplex on keratinocyte adhesion and stiffness. J. Investig. Dermatol. 135, 2437–2445 (2015).

    CAS  PubMed  Google Scholar 

  48. Beriault, D. R. et al. The mechanical behavior of mutant K14-R125P keratin bundles and networks in NEB-1 keratinocytes. PLoS ONE 7, e31320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Seltmann, K., Cheng, F., Wiche, G., Eriksson, J. E. & Magin, T. M. Keratins stabilize hemidesmosomes through regulation of β4-integrin turnover. J. Invest. Dermatol. 135, 1609–1620 (2015).

    CAS  PubMed  Google Scholar 

  50. McGrath, J. A. et al. Germline mutation in EXPH5 implicates the Rab27B effector protein slac20b in inherited skin fragility. Am. J. Hum. Genet. 91, 1115–1121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sawant, M. et al. Threonine 150 phosphorylation of keratin 5 is linked to epidermolysis bullosa simplex and regulates filament assembly and cell viability. J. Invest. Dermatol. 138, 627–636 (2018).

    CAS  PubMed  Google Scholar 

  52. Morley, S. M. et al. Temperature sensitivity of the keratin cytoskeleton and delayed spreading of keratinocyte lines derived from EBS patients. J. Cell Sci. 108, 3463–3471 (1995). This paper demonstrates thermolability of the keratin cytoskeleton, which manifests clinically as increased blistering and skin fragility in warm conditions.

    CAS  PubMed  Google Scholar 

  53. Lu, H. et al. Induction of inflammatory cytokines by a keratin mutation and their repression by a small molecule in a mouse model for EBS. J. Invest. Dermatol. 127, 2781–2789 (2007).

    CAS  PubMed  Google Scholar 

  54. Castela, E. et al. Epidermolysis bullosa simplex generalized severe induces a T helper 17 response and is improved by apremilast treatment. Br. J. Dermatol. 180, 357–364 (2019).

    CAS  PubMed  Google Scholar 

  55. Yoneda, K. et al. An autocrine/paracrine loop linking keratin 14 aggregates to tumor necrosis factor alpha-mediated cytotoxicity in a keratinocyte model of epidermolysis bullosa simplex. J. Biol. Chem. 279, 7296–7303 (2004).

    CAS  PubMed  Google Scholar 

  56. Roth, W., Reuter, U., Wohlenberg, C., Bruckner-Tuderman, L. & Magin, T. M. Cytokines as genetic modifiers in K5–/– mice and in human epidermolysis bullosa simplex. Hum. Mutat. 30, 832–841 (2009).

    CAS  PubMed  Google Scholar 

  57. Castiglia, D. et al. T-lymphocytes are directly involved in the clinical expression of migratory circinate erythema in epidermolysis bullosa simplex patients. Acta Derm. Venereol. 94, 307–311 (2014).

    PubMed  Google Scholar 

  58. Jariwala, S. P., Abrams, E., Benson, A., Fodeman, J. & Zheng, T. The role of thymic stromal lymphopoietin in the immunopathogenesis of atopic dermatitis. Clin. Exp. Allergy 41, 1515–1520 (2011).

    CAS  PubMed  Google Scholar 

  59. Kumar, V. et al. Keratin-dependent thymic stromal lymphopoietin expression suggests a link between skin blistering and atopic disease. J. Allergy Clin. Immunol. 138, 1461–1464.e6 (2016).

    CAS  PubMed  Google Scholar 

  60. Kana, Y. et al. Keratotic lesions in epidermolysis bullosa simplex with mottled pigmentation. J. Am. Acad. Dermatol. 52, 172–173 (2005).

    Google Scholar 

  61. Pan, B. et al. Peripheral neuropathic changes in pachyonychia congenita. Pain 157, 2843–2853 (2016).

    PubMed  Google Scholar 

  62. Kroeger, J. K., Hofmann, S. C., Leppert, J., Has, C. & Franzke, C.-W. Amino acid duplication in the coiled-coil structure of collagen XVII alters its maturation and trimerization causing mild junctional epidermolysis bullosa. Hum. Mol. Genet. 26, 479–488 (2017).

    CAS  PubMed  Google Scholar 

  63. Pasmooij, A. M. G., Pas, H. H., Deviaene, F. C. L., Nijenhuis, M. & Jonkman, M. F. Multiple correcting COL17A1 mutations in patients with revertant mosaicism of epidermolysis bullosa. Am. J. Hum. Genet. 77, 727–740 (2005). Revertant mosaicism (‘natural gene therapy’) in junctional EB is a phenomenon with the potential to be harnessed as a therapeutic strategy, as described in this paper.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakano, A. et al. Laminin 5 mutations in junctional epidermolysis bullosa: molecular basis of Herlitz vs. non-Herlitz phenotypes. Hum. Genet. 110, 41–51 (2002).

    CAS  PubMed  Google Scholar 

  65. Posteraro, P. et al. Laminin-5 mutational analysis in an Italian cohort of patients with junctional epidermolysis bullosa. J. Invest. Dermatol. 123, 639–648 (2004).

    CAS  PubMed  Google Scholar 

  66. Wright, J. T., Carrion, I. A. & Morris, C. The molecular basis of hereditary enamel defects in humans. J. Dent. Res. 94, 52–61 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tanimura, S. et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8, 177–187 (2011).

    CAS  PubMed  Google Scholar 

  68. Watanabe, M. et al. Type XVII collagen coordinates proliferation in the interfollicular epidermis. eLife https://doi.org/10.7554/eLife.26635 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).

    PubMed  Google Scholar 

  70. Franzke, C.-W., Bruckner-Tuderman, L. & Blobel, C. P. Shedding of collagen XVII/BP180 in skin depends on both ADAM10 and ADAM9. J. Biol. Chem. 284, 23386–23396 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nishie, W., Kiritsi, D., Nyström, A., Hofmann, S. C. & Bruckner-Tuderman, L. Dynamic interactions of epidermal collagen XVII with the extracellular matrix: laminin 332 as a major binding partner. Am. J. Pathol. 179, 829–837 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nishie, W., Jackow, J., Hofmann, S. C., Franzke, C.-W. & Bruckner-Tuderman, L. Coiled coils ensure the physiological ectodomain shedding of collagen XVII. J. Biol. Chem. 287, 29940–29948 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jacków, J., Löffek, S., Nyström, A., Bruckner-Tuderman, L. & Franzke, C.-W. Collagen XVII shedding suppresses re-epithelialization by directing keratinocyte migration and dampening mTOR signaling. J. Invest. Dermatol. 136, 1031–1041 (2016).

    PubMed  Google Scholar 

  74. Nishie, W. et al. Context-dependent regulation of collagen XVII ectodomain shedding in skin. Am. J. Pathol. 185, 1361–1371 (2015).

    CAS  PubMed  Google Scholar 

  75. Galiger, C. et al. Targeting of cell surface proteolysis of collagen XVII impedes squamous cell carcinoma progression. Mol. Ther. 26, 17–30 (2018).

    CAS  PubMed  Google Scholar 

  76. Has, C. & Nyström, A. Epidermal basement membrane in health and disease. Curr. Top. Membr. 76, 117–170 (2015).

    CAS  PubMed  Google Scholar 

  77. Reimer, A. et al. Natural history and clinical outcome of junctional epidermolysis bullosa generalized intermediate due to a LAMA3 mutation. Br. J. Dermatol. 178, 973–975 (2018).

    CAS  PubMed  Google Scholar 

  78. Hirsch, T. et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 551, 327–332 (2017). A case of successfully applied ex vivo gene therapy in a 7-year-old boy with laminin 332-deficient junctional EB via treatment with virally integrated transgenic autologous epidermal grafts.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Borradori, L. & Sonnenberg, A. Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest. Dermatol. 112, 411–418 (1999).

    CAS  Google Scholar 

  80. Viquez, O. M. et al. Integrin alpha6 maintains the structural integrity of the kidney collecting system. Matrix Biol. 57–58, 244–257 (2017).

    PubMed  Google Scholar 

  81. De Arcangelis, A. et al. Hemidesmosome integrity protects the colon against colitis and colorectal cancer. Gut 66, 1748–1760 (2017).

    PubMed  Google Scholar 

  82. Has, C. et al. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Has, C. & He, Y. Renal-skin syndromes. Cell Tissue Res. 369, 63–73 (2017).

    PubMed  Google Scholar 

  84. Borza, C. M., Chen, X., Zent, R. & Pozzi, A. Cell receptor-basement membrane interactions in health and disease: a kidney-centric view. Curr. Top. Membr. 76, 231–253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pozzi, A. & Zent, R. Integrins in kidney disease. J. Am. Soc. Nephrol. 24, 1034–1039 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nicolaou, N. et al. Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome. J. Clin. Invest. 122, 4375–4387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yalcin, E. G. et al. Crucial role of posttranslational modifications of integrin α3 in interstitial lung disease and nephrotic syndrome. Hum. Mol. Genet. 24, 3679–3688 (2015).

    CAS  PubMed  Google Scholar 

  88. Yamada, M. & Sekiguchi, K. Disease-associated single amino acid mutation in the calf-1 domain of integrin α3 leads to defects in its processing and cell surface expression. Biochem. Biophys. Res. Commun. 441, 988–993 (2013).

    CAS  PubMed  Google Scholar 

  89. Lunstrum, G. P., Sakai, L. Y., Keene, D. R., Morris, N. P. & Burgeson, R. E. Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils. J. Biol. Chem. 261, 9042–9048 (1986).

    CAS  PubMed  Google Scholar 

  90. Sakai, L. Y., Keene, D. R., Morris, N. P. & Burgeson, R. E. Type VII collagen is a major structural component of anchoring fibrils. J. Cell Biol. 103, 1577–1586 (1986).

    CAS  PubMed  Google Scholar 

  91. Keene, D. R. et al. Collagen forms an extended network of anchoring fibrils. J. Cell Biol. 104, 611–621 (1987).

    CAS  PubMed  Google Scholar 

  92. Lunstrum, G. P. et al. Anchoring fibrils contain the carboxyl-terminal globular domain of type VII procollagen, but lack the amino-terminal globular domain. J. Biol. Chem. 262, 13706–13712 (1987).

    CAS  PubMed  Google Scholar 

  93. Palade, G. E. & Farquhar, M. G. A special fibril of the dermis. J. Cell Biol. 27, 215–224 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tidman, M. J. & Eady, R. A. Evaluation of anchoring fibrils and other components of the dermal–epidermal junction in dystrophic epidermolysis bullosa by a quantitative ultrastructural technique. J. Invest. Dermatol. 84, 374–377 (1985).

    CAS  PubMed  Google Scholar 

  95. Nyström, A. et al. Collagen VII plays a dual role in wound healing. J. Clin. Invest. 123, 3498–3509 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Bauer, E. A. & Tabas, M. A perspective on the role of collagenase in recessive dystrophic epidermolysis bullosa. Arch. Dermatol. 124, 734–736 (1988).

    CAS  PubMed  Google Scholar 

  97. Bruckner-Tuderman, L., Höpfner, B. & Hammami-Hauasli, N. Biology of anchoring fibrils: lessons from dystrophic epidermolysis bullosa. Matrix Biol. 18, 43–54 (1999).

    CAS  PubMed  Google Scholar 

  98. Cui, Y., Hagan, K. W., Zhang, S. & Peltz, S. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev. 9, 423–436 (1995).

    CAS  PubMed  Google Scholar 

  99. Christiano, A. M., Anhalt, G., Gibbons, S., Bauer, E. A. & Uitto, J. Premature termination codons in the type VII collagen gene (COL7A1) underlie severe, mutilating recessive dystrophic epidermolysis bullosa. Genomics 21, 160–168 (1994).

    CAS  PubMed  Google Scholar 

  100. Has, C., Nyström, A., Saeidian, A. H., Bruckner-Tuderman, L. & Uitto, J. Epidermolysis bullosa: molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol. 71–72, 313–329 (2018).

    PubMed  Google Scholar 

  101. Sakuntabhai, A. et al. Deletions within COL7A1 exons distant from consensus splice sites alter splicing and produce shortened polypeptides in dominant dystrophic epidermolysis bullosa. Am. J. Hum. Genet. 63, 737–748 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hammami-Hauasli, N. et al. Some, but not all, glycine substitution mutations in COL7A1 result in intracellular accumulation of collagen VII, loss of anchoring fibrils, and skin blistering. J. Biol. Chem. 273, 19228–19234 (1998).

    CAS  PubMed  Google Scholar 

  103. Hatta, N., Takata, M. & Shimizu, H. Spontaneous disappearance of intraepidermal type VII collagen in a patient with dystrophic epidermolysis bullosa. Br. J. Dermatol. 133, 619–624 (1995).

    CAS  PubMed  Google Scholar 

  104. Has, C. et al. Kindler syndrome: extension of FERMT1 mutational spectrum and natural history. Hum. Mutat. 32, 1204–1212 (2011).

    CAS  PubMed  Google Scholar 

  105. Jobard, F. et al. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet. 12, 925–935 (2003). This paper describes the initial identification of FERMT1 in Kindler EB.

    CAS  PubMed  Google Scholar 

  106. Siegel, D. H. et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174–187 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rognoni, E., Ruppert, R. & Fässler, R. The kindlin family: functions, signaling properties and implications for human disease. J. Cell Sci. 129, 17–27 (2016).

    CAS  PubMed  Google Scholar 

  108. Heinemann, A. et al. Induction of phenotype modifying cytokines by FERMT1 mutations. Hum. Mutat. 32, 397–406 (2011).

    CAS  PubMed  Google Scholar 

  109. Qu, H., Wen, T., Pesch, M. & Aumailley, M. Partial loss of epithelial phenotype in kindlin-1-deficient keratinocytes. Am. J. Pathol. 180, 1581–1592 (2012).

    CAS  PubMed  Google Scholar 

  110. Rognoni, E. et al. Kindlin-1 controls Wnt and TGF-β availability to regulate cutaneous stem cell proliferation. Nat. Med. 20, 350–359 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Maier, K. et al. UV-B-induced cutaneous inflammation and prospects for antioxidant treatment in Kindler syndrome. Hum. Mol. Genet. 25, 5339–5352 (2016).

    CAS  PubMed  Google Scholar 

  112. Fuentes, I. et al. Reduced microbial diversity is a feature of recessive dystrophic epidermolysis bullosa-involved skin and wounds. J. Invest. Dermatol. 138, 2492–2495 (2018).

    CAS  PubMed  Google Scholar 

  113. Atanasova, V. S. et al. Thrombospondin-1 is a major activator of TGF-beta signaling in recessive dystrophic epidermolysis bullosa fibroblasts. J. Invest. Dermatol. 139, 1497–1505.e5 (2019).

    CAS  PubMed  Google Scholar 

  114. Cianfarani, F., Zambruno, G., Castiglia, D. & Odorisio, T. Pathomechanisms of altered wound healing in recessive dystrophic epidermolysis bullosa. Am. J. Pathol. 187, 1445–1453 (2017).

    CAS  PubMed  Google Scholar 

  115. Guerra, L., Odorisio, T., Zambruno, G. & Castiglia, D. Stromal microenvironment in type VII collagen-deficient skin: the ground for squamous cell carcinoma development. Matrix Biol. 63, 1–10 (2017).

    CAS  PubMed  Google Scholar 

  116. Reed, W. B. et al. Epidermolysis bullosa dystrophica with epidermal neoplasms. Arch. Dermatol. 110, 894–902 (1974).

    CAS  PubMed  Google Scholar 

  117. Watt, S. A. et al. Integrative mRNA profiling comparing cultured primary cells with clinical samples reveals PLK1 and C20orf20 as therapeutic targets in cutaneous squamous cell carcinoma. Oncogene 30, 4666–4677 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ng, Y.-Z. et al. Fibroblast-derived dermal matrix drives development of aggressive cutaneous squamous cell carcinoma in patients with recessive dystrophic epidermolysis bullosa. Cancer Res. 72, 3522–3534 (2012).

    CAS  PubMed  Google Scholar 

  119. Cho, R. J. et al. APOBEC mutation drives early-onset squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. Sci. Transl Med. 10, eaas9668 (2018).

    PubMed  Google Scholar 

  120. Thannickal, V. J. et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J. Biol. Chem. 278, 12384–12389 (2003).

    CAS  PubMed  Google Scholar 

  121. Khan, Z. & Marshall, J. F. The role of integrins in TGFβ activation in the tumour stroma. Cell Tissue Res. 365, 657–673 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Martins, V. L. et al. Increased invasive behaviour in cutaneous squamous cell carcinoma with loss of basement-membrane type VII collagen. J. Cell Sci. 122, 1788–1799 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fritsch, A. et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J. Clin. Invest. 118, 1669–1679 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Küttner, V. et al. Global remodelling of cellular microenvironment due to loss of collagen VII. Mol. Syst. Biol. 9, 657 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Martins, V. L. et al. Suppression of TGFβ and angiogenesis by type VII collagen in cutaneous SCC. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djv293 (2016).

    Article  PubMed  Google Scholar 

  126. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kendall, R. T. & Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol. 5, 123 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Samuel, M. S. et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19, 776–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mittapalli, V. R. et al. Injury-driven stiffening of the dermis expedites skin carcinoma progression. Cancer Res. 76, 940–951 (2016).

    CAS  PubMed  Google Scholar 

  130. Hoste, E. et al. Innate sensing of microbial products promotes wound-induced skin cancer. Nat. Commun. 6, 5932 (2015).

    CAS  PubMed  Google Scholar 

  131. Has, C. et al. Clinical practice guidelines for laboratory diagnosis of epidermolysis bullosa. Br. J. Dermatol. 182, 574–592 (2020). Recent expert guidance for the laboratory diagnosis of EB.

    CAS  PubMed  Google Scholar 

  132. Has, C. & He, Y. Research techniques made simple: immunofluorescence antigen mapping in epidermolysis bullosa. J. Invest. Dermatol. 136, e65–e71 (2016). The application of monoclonal antibodies to dermal–epidermal junction proteins to determine the site of pathology in EB.

    CAS  PubMed  Google Scholar 

  133. Intong, L. R. A. & Murrell, D. F. How to take skin biopsies for epidermolysis bullosa. Dermatol. Clin. 28, 197–200 (2010).

    CAS  PubMed  Google Scholar 

  134. Hintner, H. et al. Immunofluorescence mapping of antigenic determinants within the dermal–epidermal junction in the mechanobullous diseases. J. Invest. Dermatol. 76, 113–118 (1981).

    CAS  PubMed  Google Scholar 

  135. Heagerty, A. H., Kennedy, A. R., Leigh, I. M., Purkis, P. & Eady, R. A. Identification of an epidermal basement membrane defect in recessive forms of dystrophic epidermolysis bullosa by LH 7:2 monoclonal antibody: use in diagnosis. Br. J. Dermatol. 115, 125–131 (1986).

    CAS  PubMed  Google Scholar 

  136. Heagerty, A. H. et al. GB3 monoclonal antibody for diagnosis of junctional epidermolysis bullosa. Lancet 1, 860 (1986).

    CAS  PubMed  Google Scholar 

  137. Yiasemides, E., Walton, J., Marr, P., Villanueva, E. V. & Murrell, D. F. A comparative study between transmission electron microscopy and immunofluorescence mapping in the diagnosis of epidermolysis bullosa. Am. J. Dermatopathol. 28, 387–394 (2006).

    PubMed  Google Scholar 

  138. Petronius, D., Bergman, R., Ben Izhak, O., Leiba, R. & Sprecher, E. A comparative study of immunohistochemistry and electron microscopy used in the diagnosis of epidermolysis bullosa. Am. J. Dermatopathol. 25, 198–203 (2003).

    PubMed  Google Scholar 

  139. Hiremagalore, R., Kubba, A., Bansel, S. & Jerajani, H. Immunofluorescence mapping in inherited epidermolysis bullosa: a study of 86 cases from India. Br. J. Dermatol. 172, 384–391 (2015).

    CAS  PubMed  Google Scholar 

  140. Takeichi, T. et al. Whole-exome sequencing improves mutation detection in a diagnostic epidermolysis bullosa laboratory. Br. J. Dermatol. 172, 94–100 (2015). This article highlights the evolving landscape for mutational testing in EB.

    CAS  PubMed  Google Scholar 

  141. Tenedini, E. et al. Amplicon-based next-generation sequencing: an effective approach for the molecular diagnosis of epidermolysis bullosa. Br. J. Dermatol. 173, 731–738 (2015).

    CAS  PubMed  Google Scholar 

  142. Christiano, A. M., Pulkkinen, L., McGrath, J. A. & Uitto, J. Mutation-based prenatal diagnosis of Herlitz junctional epidermolysis bullosa. Prenat. Diagn. 17, 343–354 (1997).

    CAS  PubMed  Google Scholar 

  143. Vahidnezhad, H. et al. Multigene next-generation sequencing panel identifies pathogenic variants in patients with unknown subtype of epidermolysis bullosa: subclassification with prognostic implications. J. Invest. Dermatol. 137, 2649–2652 (2017).

    CAS  PubMed  Google Scholar 

  144. Vahidnezhad, H. et al. Dystrophic epidermolysis bullosa: COL7A1 mutation landscape in a multi-ethnic cohort of 152 extended families with high degree of customary consanguineous marriages. J. Invest. Dermatol. 137, 660–669 (2017).

    CAS  PubMed  Google Scholar 

  145. Nagai, M. et al. Localised dominant dystrophic epidermolysis bullosa with a novel de novo mutation in COL7A1 diagnosed by next-generation sequencing. Acta Derm. Venereol. 95, 629–631 (2015).

    PubMed  Google Scholar 

  146. Bauer, J. A. in Life with Epidermolysis Bullosa: Etiology, Diagnosis, and Multidisciplinary Care and Therapy (eds Fine, J. D. & Hintner, H.) 89–95 (Springer Verlag, 2009).

  147. Christiano, A. M. et al. Prenatal diagnosis for recessive dystrophic epidermolysis bullosa in 10 families by mutation and haplotype analysis in the type VII collagen gene (COL7A1). Mol. Med. 2, 59–76 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Has, C. et al. Monoallelic large intragenic KRT5 deletions account for genetically unsolved cases of epidermolysis bullosa simplex. J. Invest. Dermatol. 137, 2231–2234 (2017).

    CAS  PubMed  Google Scholar 

  149. Rehm, H. L. et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 15, 733–747 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. Eady, R. A., Gunner, D. B., Tidman, M. J., Nicolaides, K. H. & Rodeck, C. H. Rapid processing of fetal skin for prenatal diagnosis by light and electron microscopy. J. Clin. Pathol. 37, 633–638 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Heagerty, A. H., Kennedy, A. R., Gunner, D. B. & Eady, R. A. Rapid prenatal diagnosis and exclusion of epidermolysis bullosa using novel antibody probes. J. Invest. Dermatol. 86, 603–605 (1986).

    CAS  PubMed  Google Scholar 

  152. Heagerty, A. H. et al. Rapid prenatal diagnosis of epidermolysis bullosa letalis using GB3 monoclonal antibody. Br. J. Dermatol. 117, 271–275 (1987).

    CAS  PubMed  Google Scholar 

  153. Fassihi, H. et al. Prenatal diagnosis for severe inherited skin disorders: 25 years’ experience. Br. J. Dermatol. 154, 106–113 (2006).

    CAS  PubMed  Google Scholar 

  154. Fassihi, H., Renwick, P. J., Black, C. & McGrath, J. A. Single cell PCR amplification of microsatellites flanking the COL7A1 gene and suitability for preimplantation genetic diagnosis of Hallopeau–Siemens recessive dystrophic epidermolysis bullosa. J. Dermatol. Sci. 42, 241–248 (2006).

    CAS  PubMed  Google Scholar 

  155. Fassihi, H. et al. Preimplantation genetic diagnosis of skin fragility-ectodermal dysplasia syndrome. Br. J. Dermatol. 154, 546–550 (2006).

    CAS  PubMed  Google Scholar 

  156. Fine, J.-D. & Mellerio, J. E. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part I. Epithelial associated tissues. J. Am. Acad. Dermatol. 61, 367–386 (2009).

    PubMed  Google Scholar 

  157. Fine, J.-D. & Mellerio, J. E. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part II. Other organs. J. Am. Acad. Dermatol. 61, 387–404 (2009).

    PubMed  Google Scholar 

  158. Denyer, J. Management of severe blistering disorders. Semin. Neonatol. 5, 321–324 (2000).

    CAS  PubMed  Google Scholar 

  159. Denyer, J., Pillay, E. & Clapham, J. Best practice guidelines for skin and wound care in epidermolysis bullosa. An International Consensus. Wounds International https://www.woundsinternational.com/download/resource/5921 (2017). Best practice guidelines for wound management in EB.

  160. Singer, H. M. et al. Wound culture isolated antibiograms and caregiver-reported skin care practices in children with epidermolysis bullosa. Pediatr. Dermatol. 35, 92–96 (2018).

    PubMed  Google Scholar 

  161. Mellerio, J. E. et al. Management of cutaneous squamous cell carcinoma in patients with epidermolysis bullosa: best clinical practice guidelines. Br. J. Dermatol. 174, 56–67 (2016). Best practice guidelines for management of squamous cell carcinoma arising in EB.

    PubMed  Google Scholar 

  162. Piccerillo, A., El Hachem, M., De Vito, R., De Luca, E. V. & Peris, K. Pembrolizumab for treatment of a patient with multiple cutaneous squamous cell carcinomas and recessive dystrophic epidermolysis bullosa. JAMA Dermatol. 156, 708–710 (2020).

    PubMed  Google Scholar 

  163. Atanasova, V. S. et al. Identification of rigosertib for the treatment of recessive dystrophic epidermolysis bullosa-associated squamous cell carcinoma. Clin. Cancer Res. 25, 3384–3391 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Fine, J.-D., Johnson, L. B., Weiner, M. & Suchindran, C. Gastrointestinal complications of inherited epidermolysis bullosa: cumulative experience of the National Epidermolysis Bullosa Registry. J. Pediatr. Gastroenterol. Nutr. 46, 147–158 (2008).

    PubMed  Google Scholar 

  165. Freeman, E. B. et al. Gastrointestinal complications of epidermolysis bullosa in children. Br. J. Dermatol. 158, 1308–1314 (2008).

    CAS  PubMed  Google Scholar 

  166. Montaudié, H., Chiaverini, C., Sbidian, E., Charlesworth, A. & Lacour, J. P. Inherited epidermolysis bullosa and squamous cell carcinoma: a systematic review of 117 cases. Orphanet J. Rare Dis. 11, 117 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. Azizkhan, R. G. et al. Esophageal strictures in children with recessive dystrophic epidermolysis bullosa: an 11-year experience with fluoroscopically guided balloon dilatation. J. Pediatr. Surg. 41, 55–60 (2006).

    PubMed  Google Scholar 

  168. Haynes, L. Nutrition for children with epidermolysis bullosa. Dermatol. Clin. 28, 289–301 (2010).

    CAS  PubMed  Google Scholar 

  169. Haynes, L., Mellerio, J. E. & Martinez, A. E. Gastrostomy tube feeding in children with epidermolysis bullosa: consideration of key issues. Pediatr. Dermatol. 29, 277–284 (2012).

    PubMed  Google Scholar 

  170. Hubbard, L., Haynes, L., Sklar, M., Martinez, A. E. & Mellerio, J. E. The challenges of meeting nutritional requirements in children and adults with epidermolysis bullosa: proceedings of a multidisciplinary team study day. Clin. Exp. Dermatol. 36, 579–584 (2011).

    CAS  PubMed  Google Scholar 

  171. Hwang, S. J. E., Daniel, B. S., Fergie, B., Davey, J. & Murrell, D. F. Prevalence of anemia in patients with epidermolysis bullosa registered in Australia. Int. J. Womens Dermatol. 1, 37–40 (2015).

    PubMed  PubMed Central  Google Scholar 

  172. Kuo, D. J., Bruckner, A. L. & Jeng, M. R. Darbepoetin alfa and ferric gluconate ameliorate the anemia associated with recessive dystrophic epidermolysis bullosa. Pediatr. Dermatol. 23, 580–585 (2006).

    PubMed  Google Scholar 

  173. Fewtrell, M. S. et al. Bone mineralization in children with epidermolysis bullosa. Br. J. Dermatol. 154, 959–962 (2006).

    CAS  PubMed  Google Scholar 

  174. Bruckner, A. L. et al. Correlates of low bone mass in children with generalized forms of epidermolysis bullosa. J. Am. Acad. Dermatol. 65, 1001–1009 (2011).

    PubMed  Google Scholar 

  175. Martinez, A. E. & Mellerio, J. E. Osteopenia and osteoporosis in epidermolysis bullosa. Dermatol. Clin. 28, 353–355 (2010).

    CAS  PubMed  Google Scholar 

  176. Fine, J. D. et al. Pseudosyndactyly and musculoskeletal contractures in inherited epidermolysis bullosa: experience of the National Epidermolysis Bullosa Registry, 1986–2002. J. Hand Surg. Br. 30, 14–22 (2005).

    PubMed  Google Scholar 

  177. Bernardis, C. & Box, R. Surgery of the hand in recessive dystrophic epidermolysis bullosa. Dermatol. Clin. 28, 335–341 (2010).

    CAS  PubMed  Google Scholar 

  178. Khan, M. T. et al. Foot care in epidermolysis bullosa: evidence-based guideline. Br. J. Dermatol. https://doi.org/10.1111/bjd.18381 (2019). Best practice podiatry guidelines in EB.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bolling, M. C. et al. PLEC1 mutations underlie adult-onset dilated cardiomyopathy in epidermolysis bullosa simplex with muscular dystrophy. J. Invest. Dermatol. 130, 1178–1181 (2010).

    CAS  PubMed  Google Scholar 

  180. Fine, J.-D., Johnson, L. B., Weiner, M. & Suchindran, C. Tracheolaryngeal complications of inherited epidermolysis bullosa: cumulative experience of the national epidermolysis bullosa registry. Laryngoscope. 117, 1652–1660 (2007).

    PubMed  Google Scholar 

  181. Hore, I. et al. The management of general and disease specific ENT problems in children with epidermolysis bullosa — a retrospective case note review. Int. J. Pediatr. Otorhinolaryngol. 71, 385–391 (2007).

    CAS  PubMed  Google Scholar 

  182. Fine, J.-D. et al. Genitourinary complications of inherited epidermolysis bullosa: experience of the National Epidermylosis Bullosa Registry and review of the literature. J. Urol. 172, 2040–2044 (2004).

    PubMed  Google Scholar 

  183. Chan, S. M. H., Dillon, M. J., Duffy, P. G. & Atherton, D. J. Nephro-urological complications of epidermolysis bullosa in paediatric patients. Br. J. Dermatol. 156, 143–147 (2007).

    CAS  PubMed  Google Scholar 

  184. Iida, H. et al. Successfully maintained hemodialysis for the treatment of chronic renal failure in a patient with Hallopeau–Siemens type recessive dystrophic epidermolysis bullosa. J. Dermatol. 39, 1088–1089 (2012).

    PubMed  Google Scholar 

  185. Ahmadi, J. & Antaya, R. Successful peritoneal dialysis in a patient with recessive dystrophic epidermolysis bullosa. Pediatr. Dermatol. 24, 589–590 (2007).

    PubMed  Google Scholar 

  186. Ungureanu, S., Adni, T., Brown, T., Inston, N. & Heagerty, A. Successful renal transplant in a patient with non-Herlitz junctional epidermolysis bullosa. Clin. Exp. Dermatol. 39, 330–332 (2014).

    CAS  PubMed  Google Scholar 

  187. Schwieger-Briel, A. et al. Epidermolysis bullosa simplex with KLHL24 mutations is associated with dilated cardiomyopathy. J. Invest. Dermatol. 139, 244–249 (2019).

    CAS  PubMed  Google Scholar 

  188. Ryan, T. D. et al. Ventricular dysfunction and aortic dilation in patients with recessive dystrophic epidermolysis bullosa. Br. J. Dermatol. 174, 671–673 (2016).

    CAS  PubMed  Google Scholar 

  189. Davila-Seijo, P. et al. Prioritization of therapy uncertainties in dystrophic epidermolysis bullosa: where should research direct to? An example of priority setting partnership in very rare disorders. Orphanet J. Rare Dis. 8, 61 (2013).

    PubMed  PubMed Central  Google Scholar 

  190. von Bischhoffshausen, S. et al. Recessive dystrophic epidermolysis bullosa results in painful small fibre neuropathy. Brain 140, 1238–1251 (2017).

    Google Scholar 

  191. Goldschneider, K. R. et al. Pain care for patients with epidermolysis bullosa: best care practice guidelines. BMC Med. 12, 178 (2014).

    PubMed  PubMed Central  Google Scholar 

  192. Schräder, N. H. B., Duipmans, J. C., Molenbuur, B., Wolff, A. P. & Jonkman, M. F. Combined tetrahydrocannabinol and cannabidiol to treat pain in epidermolysis bullosa: a report of three cases. Br. J. Dermatol. 180, 922–924 (2019).

    PubMed  Google Scholar 

  193. Martin, K. et al. Psychosocial recommendations for the care of children and adults with epidermolysis bullosa and their family: evidence based guidelines. Orphanet J. Rare Dis. 14, 133 (2019). Best practice guidelines for psychosocial assessment and support in EB.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Danial, C. et al. Evaluation of treatments for pruritus in epidermolysis bullosa. Pediatr. Dermatol. 32, 628–634 (2015).

    PubMed  Google Scholar 

  195. Shehadeh, W., Sarig, O., Bar, J., Sprecher, E. & Samuelov, L. Treatment of epidermolysis bullosa pruriginosa-associated pruritus with dupilumab. Br. J. Dermatol. https://doi.org/10.1111/bjd.18855 (2020).

    Article  PubMed  Google Scholar 

  196. Peking, P., Koller, U. & Murauer, E. M. Functional therapies for cutaneous wound repair in epidermolysis bullosa. Adv. Drug. Deliv. Rev. 129, 330–343 (2018).

    CAS  PubMed  Google Scholar 

  197. Rashidghamat, E. & McGrath, J. A. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis. Res. 6, 6–20 (2017).

    PubMed  PubMed Central  Google Scholar 

  198. Wong, T. et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 128, 2179–2189 (2008).

    CAS  PubMed  Google Scholar 

  199. Petrof, G., Martinez-Queipo, M., Mellerio, J. E., Kemp, P. & McGrath, J. A. Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial. Br. J. Dermatol. 169, 1025–1033 (2013).

    CAS  PubMed  Google Scholar 

  200. Lwin, S. M. et al. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight https://doi.org/10.1172/jci.insight.126243 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Conget, P. et al. Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cytotherapy 12, 429–431 (2010).

    CAS  PubMed  Google Scholar 

  202. Petrof, G. et al. Potential of systemic allogeneic mesenchymal stromal cell therapy for children with recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 135, 2319–2321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Rashidghamat, E. et al. Phase I/II open-label trial of intravenous allogeneic mesenchymal stromal cell therapy in adults with recessive dystrophic epidermolysis bullosa. J. Am. Acad. Dermatol. https://doi.org/10.1016/j.jaad.2019.11.038 (2020).

    Article  PubMed  Google Scholar 

  204. Wagner, J. E. et al. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N. Engl. J. Med. 363, 629–639 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Ebens, C. L. et al. Bone marrow transplant with post-transplant cyclophosphamide for recessive dystrophic epidermolysis bullosa expands the related donor pool and permits tolerance of nonhaematopoietic cellular grafts. Br. J. Dermatol. 181, 1238–1246 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Mavilio, F. et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat. Med. 12, 1397–1402 (2006).

    CAS  PubMed  Google Scholar 

  207. Eichstadt, S. et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight https://doi.org/10.1172/jci.insight.130554 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Siprashvili, Z. et al. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA 316, 1808–1817 (2016).

    PubMed  Google Scholar 

  209. Pasmooij, A. M. G., Jonkman, M. F. & Uitto, J. Revertant mosaicism in heritable skin diseases: mechanisms of natural gene therapy. Discov. Med. 14, 167–179 (2012).

    PubMed  Google Scholar 

  210. Kiritsi, D. et al. Mechanisms of natural gene therapy in dystrophic epidermolysis bullosa. J. Invest. Dermatol. 134, 2097–2104 (2014).

    CAS  PubMed  Google Scholar 

  211. Gostyn´ski, A., Pasmooij, A. M. G. & Jonkman, M. F. Successful therapeutic transplantation of revertant skin in epidermolysis bullosa. J. Am. Acad. Dermatol. 70, 98–101 (2014).

    PubMed  Google Scholar 

  212. Matsumura, W. et al. Cultured epidermal autografts from clinically revertant skin as a potential wound treatment for recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 139, 2115–2124.e11 (2019).

    CAS  PubMed  Google Scholar 

  213. March, O. P., Kocher, T. & Koller, U. Context-dependent strategies for enhanced genome editing of genodermatoses. Cells https://doi.org/10.3390/cells9010112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Shinkuma, S., Guo, Z. & Christiano, A. M. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc. Natl Acad. Sci. USA 113, 5676–5681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Kocher, T. et al. Cut and paste: efficient homology-directed repair of a dominant negative KRT14 mutation via CRISPR/Cas9 nickases. Mol. Ther. 25, 2585–2598 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Webber, B. R. et al. CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa. NPJ Regen. Med. https://doi.org/10.1038/npjregenmed.2016.14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Jacków, J. et al. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc. Natl Acad. Sci. USA 116, 26846–26852 (2019).

    PubMed Central  Google Scholar 

  218. Bonafont, J. et al. Clinically relevant correction of recessive dystrophic epidermolysis bullosa by dual sgRNA CRISPR/Cas9-mediated gene editing. Mol. Ther. 27, 986–998 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Osborn, M. J. et al. Base editor correction of COL7A1 in recessive dystrophic epidermolysis bullosa patient-derived fibroblasts and iPSCs. J. Invest. Dermatol. 140, 338–347.e5 (2020).

    CAS  PubMed  Google Scholar 

  220. Zhou, D. et al. Highly branched poly(β-amino ester)s for skin gene therapy. J. Control. Release 244, 336–346 (2016).

    CAS  PubMed  Google Scholar 

  221. Liemberger, B. et al. RNA trans-splicing modulation via antisense molecule interference. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19030762 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Hou, Y. et al. Intravenously administered recombinant human type VII collagen derived from Chinese hamster ovary cells reverses the disease phenotype in recessive dystrophic epidermolysis bullosa mice. J. Invest. Dermatol. 135, 3060–3067 (2015).

    CAS  PubMed  Google Scholar 

  223. Woodley, D. T. et al. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients. J. Clin. Invest. 127, 3028–3038 (2017). This paper describes the administration of topical or intradermal gentamicin-induced type VII collagen and anchoring fibril formation via suppression of nonsense mutations in recessive dystrophic EB.

    PubMed  PubMed Central  Google Scholar 

  224. Atanasova, V. S. et al. Amlexanox enhances premature termination codon read-through in COL7A1 and expression of full length type VII collagen: potential therapy for recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 137, 1842–1849 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Moss, C., Wong, A. & Davies, P. The Birmingham epidermolysis bullosa severity score: development and validation. Br. J. Dermatol. 160, 1057–1065 (2009).

    CAS  PubMed  Google Scholar 

  226. Loh, C. C. H. et al. Development, reliability, and validity of a novel epidermolysis bullosa disease activity and scarring index (EBDASI). J. Am. Acad. Dermatol. 70, 89–97.e13 (2014).

    PubMed  Google Scholar 

  227. Bruckner, A. L. et al. Reliability and validity of the instrument for scoring clinical outcomes of research for epidermolysis bullosa (iscorEB). Br. J. Dermatol. 178, 1128–1134 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Horn, H. M. & Tidman, M. J. Quality of life in epidermolysis bullosa. Clin. Exp. Dermatol. 27, 707–710 (2002).

    CAS  PubMed  Google Scholar 

  229. Frew, J. W., Martin, L. K., Nijsten, T. & Murrell, D. F. Quality of life evaluation in epidermolysis bullosa (EB) through the development of the QOLEB questionnaire: an EB-specific quality of life instrument. Br. J. Dermatol. 161, 1323–1330 (2009).

    CAS  PubMed  Google Scholar 

  230. Jeon, I. K., On, H. R. & Kim, S.-C. Quality of life and economic burden in recessive dystrophic epidermolysis bullosa. Ann. Dermatol. 28, 6–14 (2016).

    PubMed  PubMed Central  Google Scholar 

  231. van Scheppingen, C., Lettinga, A. T., Duipmans, J. C., Maathuis, C. G. B. & Jonkman, M. F. Main problems experienced by children with epidermolysis bullosa: a qualitative study with semi-structured interviews. Acta Derm. Venereol. 88, 143–150 (2008).

    PubMed  Google Scholar 

  232. van Scheppingen, C., Lettinga, A. T., Duipmans, J. C., Maathuis, K. G. B. & Jonkman, M. F. The main problems of parents of a child with epidermolysis bullosa. Qual. Health Res. 18, 545–556 (2008).

    PubMed  Google Scholar 

  233. Adni, T., Martin, K. & Mudge, E. The psychosocial impact of chronic wounds on patients with severe epidermolysis bullosa. J. Wound Care 21, 530–536 (2012).

    Google Scholar 

  234. Fine, J. D., Johnson, L. B., Weiner, M. & Suchindran, C. Assessment of mobility, activities and pain in different subtypes of epidermolysis bullosa. Clin. Exp. Dermatol. 29, 122–127 (2004).

    PubMed  Google Scholar 

  235. Brun, J. et al. Pain and quality of life evaluation in patients with localized epidermolysis bullosa simplex. Orphanet J. Rare Dis. 12, 119 (2017).

    PubMed  PubMed Central  Google Scholar 

  236. Fortuna, G., Aria, M., Cepeda-Valdes, R., Moreno Trevino, M. G. & Salas-Alanís, J. C. Pain in patients with dystrophic epidermolysis bullosa: association with anxiety and depression. Psychiatry Investig. 14, 746–753 (2017).

    PubMed  PubMed Central  Google Scholar 

  237. Schräder, N. H. B., Yuen, W. Y. & Jonkman, M. F. Pain quality assessment scale for epidermolysis bullosa. Acta Derm. Venereol. 98, 346–349 (2018).

    PubMed  Google Scholar 

  238. Snauwaert, J. J. L. et al. Burden of itch in epidermolysis bullosa. Br. J. Dermatol. 171, 73–78 (2014).

    CAS  PubMed  Google Scholar 

  239. Davila-Seijo, P., Hernández-Martín, Á., Morcillo-Makow, E., Rajan, C. & García-Doval, I. Current dystrophic epidermolysis bullosa research does not match research needs perceived by patients and clinicians. J. Am. Acad. Dermatol. 71, 1008–1011 (2014).

    PubMed  Google Scholar 

  240. Natsuga, K., Shinkuma, S., Nishie, W. & Shimizu, H. Animal models of epidermolysis bullosa. Dermatol. Clin. 28, 137–142 (2010).

    CAS  PubMed  Google Scholar 

  241. Wenzel, D. et al. Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci. Transl Med. 6, 264ra165 (2014).

    PubMed  Google Scholar 

  242. Bruckner-Tuderman, L., McGrath, J. A., Robinson, E. C. & Uitto, J. Animal models of epidermolysis bullosa: update 2010. J. Invest. Dermatol. 130, 1485–1488 (2010).

    CAS  PubMed  Google Scholar 

  243. Uitto, J., Bruckner-Tuderman, L., McGrath, J. A., Riedl, R. & Robinson, C. EB2017 — progress in epidermolysis bullosa research toward treatment and cure. J. Invest. Dermatol. 138, 1010–1016 (2018).

    CAS  PubMed  Google Scholar 

  244. Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    CAS  PubMed  Google Scholar 

  245. Hahm, K. et al. Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Odorisio, T. et al. Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-β signalling in modifying disease severity. Hum. Mol. Genet. 23, 3907–3922 (2014). A case of monozygotic twins with severe recessive dystrophic EB with identical type VII collagen abnormalities but divergent phenotypes owing to differences in TGFβ signalling pathways.

    CAS  PubMed  Google Scholar 

  247. Cianfarani, F. et al. Decorin counteracts disease progression in mice with recessive dystrophic epidermolysis bullosa. Matrix Biol. 81, 3–16 (2019).

    CAS  PubMed  Google Scholar 

  248. Järvinen, T. A. H. & Prince, S. Decorin: a growth factor antagonist for tumor growth inhibition. Biomed. Res. Int. 2015, 654765 (2015).

    PubMed  PubMed Central  Google Scholar 

  249. Reed, C. C., Gauldie, J. & Iozzo, R. V. Suppression of tumorigenicity by adenovirus-mediated gene transfer of decorin. Oncogene 21, 3688–3695 (2002).

    CAS  PubMed  Google Scholar 

  250. Nyström, A. et al. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms. EMBO Mol. Med. 7, 1211–1228 (2015).

    PubMed  PubMed Central  Google Scholar 

  251. Tolar, J. & Wagner, J. E. A biologic velcro patch. N. Engl. J. Med. 372, 382–384 (2015).

    CAS  PubMed  Google Scholar 

  252. Twaroski, K. et al. Revertant mosaic fibroblasts in recessive dystrophic epidermolysis bullosa. Br. J. Dermatol. 181, 1247–1253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Ortiz-Urda, S. et al. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J. Clin. Invest. 111, 251–255 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Jacków, J. et al. Gene-corrected fibroblast therapy for recessive dystrophic epidermolysis bullosa using a self-inactivating COL7A1 retroviral vector. J. Invest. Dermatol. 136, 1346–1354 (2016).

    PubMed  Google Scholar 

  255. Siprashvili, Z. et al. Phase I/IIa clinical trial for recessive dystrophic epidermolysis bullosa using genetically corrected autologous keratinocytes. J. Invest. Dermatol. 137, S89 (2017).

    Google Scholar 

  256. Woodley, D. T. et al. Intravenously injected recombinant human type VII collagen homes to skin wounds and restores skin integrity of dystrophic epidermolysis bullosa. J. Invest. Dermatol. 133, 1910–1913 (2013). Intravenously administered recombinant type VII collagen in a mouse model restored type VII collagen, anchoring fibrils and dermal–epidermal adhesion.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Bornert, O. et al. RNA-based therapies for genodermatoses. Exp. Dermatol. 26, 3–10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Bremer, J. et al. Antisense oligonucleotide-mediated exon skipping as a systemic therapeutic approach for recessive dystrophic epidermolysis bullosa. Mol. Ther. Nucleic Acids 5, e379 (2016).

    PubMed  Google Scholar 

  259. Turczynski, S. et al. Targeted exon skipping restores type VII collagen expression and anchoring fibril formation in an in vivo RDEB model. J. Invest. Dermatol. 136, 2387–2395 (2016).

    CAS  PubMed  Google Scholar 

  260. Bremer, J. et al. Natural exon skipping sets the stage for exon skipping as therapy for dystrophic epidermolysis bullosa. Mol. Ther. Nucleic Acids 18, 465–475 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Kerns, M. L. et al. Randomized, split-body, single-blinded clinical trial of topical broccoli sprout extract: assessing the feasibility of its use in keratin-based disorders. J. Am. Acad. Dermatol. 76, 449–453.e1 (2017).

    PubMed  Google Scholar 

  262. Wally, V. et al. Diacerein orphan drug development for epidermolysis bullosa simplex: a phase 2/3 randomized, placebo-controlled, double-blind clinical trial. J. Am. Acad. Dermatol. 78, 892–901.e7 (2018).

    CAS  PubMed  Google Scholar 

  263. Tolar, J. et al. Montagna symposium 2017 — precision dermatology: next generation prevention, diagnosis, and treatment. J. Invest. Dermatol. 138, 1243–1248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Tamai, K. et al. PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group Box 1 (HMGB1) to regenerate injured epithelia. Proc. Natl Acad. Sci. USA 108, 6609–6614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Aikawa, E., Fujita, R., Kikuchi, Y., Kaneda, Y. & Tamai, K. Systemic high-mobility group Box 1 administration suppresses skin inflammation by inducing an accumulation of PDGFRα+ mesenchymal cells from bone marrow. Sci. Rep. 5, 11008 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. March, O. P., Reichelt, J. & Koller, U. Gene editing for skin diseases: designer nucleases as tools for gene therapy of skin fragility disorders. Exp. Physiol. 103, 449–455 (2018).

    CAS  PubMed  Google Scholar 

  267. Shipman, A. R., Liu, L., Lai-Cheong, J. E., McGrath, J. A. & Heagerty, A. Somatic forward (nonrevertant) mosaicism in recessive dystrophic epidermolysis bullosa. JAMA Dermatol. 150, 1025–1027 (2014).

    PubMed  Google Scholar 

  268. Wright, J. T. Oral manifestations in the epidermolysis bullosa spectrum. Dermatol. Clin. 28, 159–164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Wiebe, C. B. et al. Clinical and microbiologic study of periodontitis associated with Kindler syndrome. J. Periodontol. 74, 25–31 (2003).

    PubMed  Google Scholar 

  270. Simmer, J. P. & Fincham, A. G. Molecular mechanisms of dental enamel formation. Crit. Rev. Oral. Biol. Med. 6, 84–108 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.B., N.H. and A.H.H.); Epidemiology (J.-D.F.); Mechanisms/pathophysiology (L.B.-T., C.H., T.M.M., M.P.M. and J.F.M.); Diagnosis, screening and prevention (A.B., N.H. and A.H.H.); Management (L.B.-T., M.P.M. and J.E.M.); Quality of life (I.L.C.C., J.E.M. and R.P.); Outlook (J.A.M.); Overview of the Primer (A.B. and A.H.H.).

Corresponding authors

Correspondence to Ajoy Bardhan or Adrian H. Heagerty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 3.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mechanobullous disorder

A group of inherited disorders characterized by skin fragility and blister formation secondary to trauma.

Poikiloderma

A cutaneous change showing concurrent atrophy (thinning), telangiectasia (visible blood vessels), hypopigmentation and hyperpigmentation.

Hemidesmosome

A structure at the lower surface of basal keratinocytes, extending from the intracellular compartment to the lamina lucida, with a critical role in adhesion and implicated in keratinocyte migration.

Desmosome

A specialized junctional complex in the lateral surface of plasma membranes enabling cell–cell adhesion.

Thermolability

The susceptibility of a substance to change (or destruction) in response to heat.

Null mutations

Genetic mutations that result in a complete lack of functional protein product or no protein production at all.

Hyperkeratosis

Abnormal thickening of the stratum corneum, the outermost layer of the skin.

Shave biopsy

A surgical procedure whereby a thin layer of skin is removed with a sharp blade for the purpose of microscopic examination.

Germline mosaicism

Occurs when more than one set of genetic information is present in the gamete cells, arising owing to mutations that occur post-conception.

Uniparental isodisomy

The inheritance of both copies of a chromosome, or part of a chromosome, from a single parent, with no copies received from the other parent.

Chorionic villus sampling

Prenatal sampling of placental tissue during early pregnancy, undertaken via the cervix or through the abdomen to screen for chromosomal or genetic abnormalities in the developing fetus.

Amniocentesis

The sampling of amniotic fluid during pregnancy via insertion of a needle into the uterus to screen for abnormalities in the developing fetus.

Oesophageal webs

Thin mucosal membrane webs that project into the oesophageal lumen causing constriction, making swallowing difficult.

Erythropoietin

A glycoprotein hormone secreted by the kidney in response to hypoxia to stimulate erythrocyte (red blood cell) production or erythropoiesis in the bone marrow.

Blepharitis

Inflammation of the eyelid.

Pannus

An abnormal growth of granulation or fibrovascular tissue.

Symblepharon

Adhesion of the palpebral conjunctiva of the eyelid to the bulbar conjunctiva.

Revertant mosaicism

Spontaneous abolition of pathogenetic mutations within somatic cells of an affected individual; in epidermolysis bullosa, this results in localized areas of unaffected skin due to expression of functional protein.

CRISPR–Cas9

Adapted from a naturally occurring bacterial immune mechanism, CRISPR-associated protein 9 (Cas9) is an enzyme that uses clustered regularly interspaced short palindromic repeats (CRISPR) sequences as a guide to perform cleavage of specific DNA strands, enabling precise genome editing.

Holoclone

Colony-forming keratinocyte stem cells with the greatest replicative capacity in which <5% of the cells in a clone abort and undergo terminal differentiation.

Meroclones

Colony-forming keratinocytes with a mix of reproductive capacity between that of holoclones and paraclones.

Paraclones

Colony-forming keratinocytes characterized exclusively by cells of limited reproductive lifespans, not more than 15 generations, following which they abort and undergo terminal differentiation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardhan, A., Bruckner-Tuderman, L., Chapple, I.L.C. et al. Epidermolysis bullosa. Nat Rev Dis Primers 6, 78 (2020). https://doi.org/10.1038/s41572-020-0210-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-0210-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research