Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Cancer-associated secondary lymphoedema

Abstract

Lymphoedema is an oedematous condition with a specific and complex tissue biology. In the clinical context of cancer, the pathogenesis of lymphoedema ensues most typically from the modalities employed to stage and treat the cancer (in particular, surgery and radiotherapy). Despite advances in cancer treatment, lifelong lymphoedema (limb swelling and the accompanying chronic inflammatory processes) affects approximately one in seven individuals treated for cancer, although estimates of lymphoedema prevalence following cancer treatment vary widely depending upon the diagnostic criteria used and the duration of follow-up. The natural history of cancer-associated lymphoedema is defined by increasing limb girth, fibrosis, inflammation, abnormal fat deposition and eventual marked cutaneous pathology, which also increases the risk of recurrent skin infections. Lymphoedema can substantially affect the daily quality of life of patients, as, in addition to aesthetic concerns, it can cause discomfort and affect the ability to carry out daily tasks. Clinical diagnosis is dependent on comparison of the affected region with the equivalent region on the unaffected side and, if available, with pre-surgical measurements. Surveillance is indicated in this high-risk population to facilitate disease detection at the early stages, when therapeutic interventions are most effective. Treatment modalities include conservative physical strategies that feature complex decongestive therapy (including compression garments) and intermittent pneumatic compression, as well as an emerging spectrum of surgical interventions, including liposuction for late-stage disease. The future application of pharmacological and microsurgical therapeutics for cancer-associated lymphoedema holds great promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cumulative occurrence of breast cancer-related lymphoedema at successive intervals of follow-up.
Fig. 2: Proposed natural history of tissue pathogenesis in lymphoedema.
Fig. 3: Clinical stages of lymphoedema.

Similar content being viewed by others

Pascal Brouillard, Marlys H. Witte, … Miikka Vikkula

References

  1. Cormier, J. N. et al. Lymphedema beyond breast cancer: a systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer 116, 5138–5149 (2010).

    Article  PubMed  Google Scholar 

  2. Fu, M. R. & Kang, Y. Psychosocial impact of living with cancer-related lymphedema. Semin. Oncol. Nurs. 29, 50–60 (2013).

    Article  PubMed  Google Scholar 

  3. Ridner, S. H. The psycho-social impact of lymphedema. Lymphat. Res. Biol. 7, 109–112 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shih, Y. C. et al. Incidence, treatment costs, and complications of lymphedema after breast cancer among women of working age: a 2-year follow-up study. J. Clin. Oncol. 27, 2007–2014 (2009).

    Article  PubMed  Google Scholar 

  5. Teunissen, S. C. et al. Symptom prevalence in patients with incurable cancer: a systematic review. J. Pain Symptom Manage. 34, 94–104 (2007).

    Article  PubMed  Google Scholar 

  6. Gwilliam, B. et al. Development of prognosis in palliative care study (PiPS) predictor models to improve prognostication in advanced cancer: prospective cohort study. BMJ 343, d4920 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Armer, J. M. & Stewart, B. R. Post-breast cancer lymphedema: incidence increases from 12 to 30 to 60 months. Lymphology 43, 118–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. DiSipio, T., Rye, S., Newman, B. & Hayes, S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 14, 500–515 (2013).This systematic review documents that the incidence of arm lymphoedema increases up to 2 years after cancer diagnosis or breast surgery, is four times more frequent after axillary lymph node dissection and is associated with risk factors of extensive surgery and elevated body weight.

    Article  PubMed  Google Scholar 

  9. Hayes, S. C. et al. Lymphedema following gynecological cancer: results from a prospective, longitudinal cohort study on prevalence, incidence and risk factors. Gynecol. Oncol. 146, 623–629 (2017).The purpose of this study is to assess the prevalence, incidence and risk factors of lower-limb lymphoedema before surgery through to 24 months after surgery for gynaecological cancer.

    Article  PubMed  Google Scholar 

  10. Gjorup, C. Melanoma Related Limb Lymphoedema and Associated Risk Factors. Thesis, Univ. Copenhagen (2017).

  11. Ridner, S. H. et al. A prospective study of the lymphedema and fibrosis continuum in patients with head and neck cancer. Lymphat. Res. Biol. 14, 198–205 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Asdourian, M. S. et al. Precautions for breast cancer-related lymphoedema: risk from air travel, ipsilateral arm blood pressure measurements, skin puncture, extreme temperatures, and cellulitis. Lancet Oncol. 17, e392–405 (2016).

    Article  PubMed  Google Scholar 

  13. Asdourian, M. S. et al. Association between precautionary behaviors and breast cancer-related lymphedema in patients undergoing bilateral surgery. J. Clin. Oncol. 35, 3934–3941 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Newman, B. et al. Possible genetic predisposition to lymphedema after breast cancer. Lymphat. Res. Biol. 10, 2–13 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miaskowski, C. et al. Lymphatic and angiogenic candidate genes predict the development of secondary lymphedema following breast cancer surgery. PLOS ONE 8, e60164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leung, G. et al. Cytokine candidate genes predict the development of secondary lymphedema following breast cancer surgery. Lymphat. Res. Biol. 12, 10–22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mortimer, P. S. & Rockson, S. G. New developments in clinical aspects of lymphatic disease. J. Clin. Invest. 124, 915–921 (2014).The specific roles of the lymphatic system in oedema, genetic aspects of primary lymphoedema, infection (cellulitis or erysipelas), Crohn’s disease, obesity, cancer and cancer-related lymphoedema are highlighted in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang, X., Nicolls, M. R., Tian, W. & Rockson, S. G. Lymphatic dysfunction, leukotrienes, and lymphedema. Annu. Rev. Physiol. 80, 49–70 (2018).This paper provides an overview of lymphatic development, the pathophysiology of lymphoedema and the role of leukotrienes in lymphoedema pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  19. Levick, J. R. & Michel, C. C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87, 198–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Rockson, S. G. in Lymphedema: A Concise Compendium of Theory and Practice (eds Lee, B. B., Rockson, S. G. & Bergan, J.) (Springer, 2018).

  21. Wiig, H. & Swartz, M. A. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev. 92, 1005–1060 (2012).This review integrates the biophysical, biomechanical and biological aspects of interstitial and lymph fluid and its transport in tissue physiology, pathophysiology and immune regulation.

    Article  CAS  PubMed  Google Scholar 

  22. Avraham, T. et al. Fibrosis is a key inhibitor of lymphatic regeneration. Plast. Reconstr Surg. 124, 438–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Cintolesi, V. et al. Constitutively enhanced lymphatic pumping in the upper limbs of women who later develop breast cancer-related lymphedema. Lymphat. Res. Biol. 14, 50–61 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Rockson, S. G. Physiological mechanisms that predispose to the development of breast cancer-associated lymphedema. Lymphat. Res. Biol. 14, 49 (2016).

    Article  PubMed  Google Scholar 

  25. Szuba, A., Razavi, M. & Rockson, S. G. Diagnosis and treatment of concomitant venous obstruction in patients with secondary lymphedema. J. Vasc. Interv. Radiol. 13, 799–803 (2002).

    Article  PubMed  Google Scholar 

  26. Kim, H., Kataru, R. P. & Koh, G. Y. Inflammation-associated lymphangiogenesis: a double-edged sword? J. Clin. Invest. 124, 936–942 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zampell, J. C. et al. CD4+cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis. PLOS ONE 7, e49940 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Avraham, T. et al. Blockade of transforming growth factor-beta1 accelerates lymphatic regeneration during wound repair. Am. J. Pathol. 177, 3202–3214 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghanta, S. et al. Regulation of inflammation and fibrosis by macrophages in lymphedema. Am. J. Physiol. Heart Circ. Physiol. 308, H1065–H1077 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ly, C. L., Kataru, R. P. & Mehrara, B. J. Inflammatory manifestations of lymphedema. Int. J. Mol. Sci. 18, 171 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  31. Weitman, E. S. et al. Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLOS ONE 8, e70703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tabibiazar, R. et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLOS Med. 3, e254 (2006).In this paper, characterization of a mouse model of acute, acquired lymphoedema using in vivo functional imaging and histopathological correlation discloses a pattern of RNA expression that is dominated by the upregulation of genes related to acute inflammation, immune response, complement activation, wound healing, fibrosis and oxidative stress response.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lin, S. et al. Prospective transcriptomic pathway analysis of human lymphatic vascular insufficiency: identification and validation of a circulating biomarker panel. PLOS ONE 7, e52021 (2012).This paper presents a prospective transcriptomic pathway analysis of human lymphoedema to develop an accurate bioassay using proteins representing four central pathogenetic modalities of the disease: lymphangiogenesis, inflammation, fibrosis and lipid metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamura, K., Radhakrishnan, K., Wong, Y. M. & Rockson, S. G. Anti-inflammatory pharmacotherapy with ketoprofen ameliorates experimental lymphatic vascular insufficiency in mice. PLOS ONE 4, e8380 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tian, W. et al. Leukotriene B4 antagonism ameliorates experimental lymphedema. Sci. Transl Med. 9, eaal3920 (2017).

    Article  PubMed  Google Scholar 

  36. Murtomaki, A. et al. Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development 140, 2365–2376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 1751 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oh, S. J. et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev. Biol. 188, 96–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Goodarzi, K., Goodarzi, M., Tager, A. M., Luster, A. D. & von Andrian, U. H. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat. Immunol. 4, 965–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Tager, A. M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol. 4, 982–990 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Ott, V. L., Cambier, J. C., Kappler, J., Marrack, P. & Swanson, B. J. Mast cell-dependent migration of effector CD8+T cells through production of leukotriene B4. Nat. Immunol. 4, 974–981 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, H. et al. Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+T regulatory cells and Th17 cells. Prostaglandins Leukot. Essent. Fatty Acids 80, 195–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, W., Su Kim, H. & Lee, G. R. Leukotrienes induce the migration of Th17 cells. Immunol. Cell Biol. 93, 472–479 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Daroczy, J. Pathology of lymphedema. Clin. Dermatol. 13, 433–444 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Wynn, T. A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Avraham, T. et al. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. FASEB J. 27, 1114–1126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cho, S. et al. Hydrolysis of hyaluronic acid in lymphedematous tissue alleviates fibrogenesis via TH1 cell-mediated cytokine expression. Sci. Rep. 7, 35 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lv, J. et al. BLT1 mediates bleomycin-induced lung fibrosis independently of neutrophils and CD4 + T Cells. J. Immunol. 198, 1673–1684 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Brorson, H., Ohlin, K., Olsson, G. & Karlsson, M. Breast cancer-related chronic arm lymphedema is associated with excess adipose and muscle tissue. Lymphat. Res. Biol. 7, 3–10 (2009).

    Article  PubMed  Google Scholar 

  50. Brorson, H., Ohlin, K., Olsson, G. & Nilsson, M. Adipose tissue dominates chronic arm lymphedema following breast cancer: an analysis using volume rendered CT images. Lymphat. Res. Biol. 4, 199–210 (2006).

    Article  PubMed  Google Scholar 

  51. Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 37, 1072–1081 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Li, P. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat. Med. 21, 239–247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rockson, S. G. Diagnosis and management of lymphatic vascular disease. J. Am. Coll. Cardiol. 52, 799–806 (2008).

    Article  PubMed  Google Scholar 

  54. Jones, D. et al. Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. Sci. Transl Med. 10, eaam7964 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema. 2009 Concensus Document of the International Society of Lymphology. Lymphology 42, 51–60 (2009).

    Google Scholar 

  56. Ratchford, E. V. & Evans, N. S. Approach to lower extremity edema. Curr. Treat. Options Cardiovasc. Med. 19, 16 (2017).

    Article  PubMed  Google Scholar 

  57. Stemmer, R. A clinical symptom for the early and differential diagnosis of lymphedema [German]. Vasa 5, 261–262 (1976).

    CAS  PubMed  Google Scholar 

  58. Cornish, B. H. et al. Early diagnosis of lymphedema using multiple frequency bioimpedance. Lymphology 34, 2–11 (2001).

    CAS  PubMed  Google Scholar 

  59. Czerniec, S. A. et al. Assessment of breast cancer-related arm lymphedema—comparison of physical measurement methods and self-report. Cancer Invest. 28, 54–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Lahtinen, T., Seppala, J., Viren, T. & Johansson, K. Experimental and analytical comparisons of tissue dielectric constant (TDC) and bioimpedance spectroscopy (BIS) in assessment of early arm lymphedema in breast cancer patients after axillary surgery and radiotherapy. Lymphat. Res. Biol. 13, 176–185 (2015).

    Article  PubMed  Google Scholar 

  61. Padera, T. P., Meijer, E. F. & Munn, L. L. The lymphatic system in disease processes and cancer progression. Annu. Rev. Biomed. Eng. 18, 125–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Deng, J., Ridner, S. H., Aulino, J. M. & Murphy, B. A. Assessment and measurement of head and neck lymphedema: state-of-the-science and future directions. Oral Oncol. 51, 431–437 (2015).This overview examines available measurement approaches to head and neck lymphoedema, attempts to identify gaps in the clinical evaluation and proposes future research directions for advancing assessment of head and neck lymphoedema.

    Article  PubMed  Google Scholar 

  63. Purcell, A., Nixon, J., Fleming, J., McCann, A. & Porceddu, S. Measuring head and neck lymphedema: the “ALOHA” trial. Head Neck 38, 79–84 (2016).

    Article  PubMed  Google Scholar 

  64. Sander, A. P., Hajer, N. M., Hemenway, K. & Miller, A. C. Upper-extremity volume measurements in women with lymphedema: a comparison of measurements obtained via water displacement with geometrically determined volume. Phys. Ther. 82, 1201–1212 (2002).

    PubMed  Google Scholar 

  65. Deltombe, T. et al. Reliability and limits of agreement of circumferential, water displacement, and optoelectronic volumetry in the measurement of upper limb lymphedema. Lymphology 40, 26–34 (2007).

    CAS  PubMed  Google Scholar 

  66. Ancukiewicz, M. et al. Standardized method for quantification of developing lymphedema in patients treated for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 79, 1436–1443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Szuba, A., Shin, W. S., Strauss, H. W. & Rockson, S. The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema. J. Nucl. Med. 44, 43–57 (2003).This is a review of the anatomy and physiology of the lymphatic system and the physiological principles of lymphatic imaging with lymphoscintigraphy, including various qualitative and quantitative lymphoscintigraphic techniques and their clinical applications.

    PubMed  Google Scholar 

  68. Hayes, S., Janda, M., Cornish, B., Battistutta, D. & Newman, B. Lymphedema secondary to breast cancer: how choice of measure influences diagnosis, prevalence, and identifiable risk factors. Lymphology 41, 18–28 (2008).

    CAS  PubMed  Google Scholar 

  69. Bland, K. L. et al. Can a practicing surgeon detect early lymphedema reliably? Am. J. Surg. 186, 509–513 (2003).

    Article  PubMed  Google Scholar 

  70. Szuba, A. & Rockson, S. Lymphedema: a review of diagnostic techniques and therapeutic options. Vasc. Med. 3, 145–156 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Dylke, E. S. et al. Diagnosis of upper limb lymphedema: development of an evidence-based approach. Acta Oncol. 55, 1477–1483 (2016).The aim of this study is to determine which of the many commonly used and normatively determined clinical diagnostic thresholds has the best diagnostic accuracy of secondary upper limb lymphoedema when compared with diagnosis by an appropriate reference standard, lymphoscintigraphy.

    Article  CAS  PubMed  Google Scholar 

  72. Dylke, E. S., Yee, J., Ward, L. C., Foroughi, N. & Kilbreath, S. L. Normative volume difference between the dominant and nondominant upper limbs in healthy older women. Lymphat. Res. Biol. 10, 182–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Ward, L. C., Dylke, E., Czerniec, S., Isenring, E. & Kilbreath, S. L. Confirmation of the reference impedance ratios used for assessment of breast cancer-related lymphedema by bioelectrical impedance spectroscopy. Lymphat. Res. Biol. 9, 47–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Canning, C. & Bartholomew, J. R. Lipedema. Vasc. Med. 23, 88–90 (2018).

    Article  PubMed  Google Scholar 

  75. Sun, F. et al. The need for preoperative baseline arm measurement to accurately quantify breast cancer-related lymphedema. Breast Cancer Res. Treat. 157, 229–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Kilbreath, S. L. et al. Risk factors for lymphoedema in women with breast cancer: a large prospective cohort. Breast 28, 29–36 (2016). This is a prospective study conducted to identify women at increased risk of lymphoedema on the basis of axillary surgery.

    Article  CAS  PubMed  Google Scholar 

  77. Friedman, J. F. et al. Risk factors associated with lymphedema after lymph node dissection in melanoma patients. Am. J. Surg. 210, 1178–1184 (2015).

    Article  PubMed  Google Scholar 

  78. Beesley, V. L. et al. Incidence, risk factors and estimates of a woman’s risk of developing secondary lower limb lymphedema and lymphedema-specific supportive care needs in women treated for endometrial cancer. Gynecol. Oncol. 136, 87–93 (2015).

    Article  PubMed  Google Scholar 

  79. Deng, J. et al. Factors associated with external and internal lymphedema in patients with head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 84, e319–e328 (2012).

    Article  PubMed  Google Scholar 

  80. Tsai, R. J. et al. The risk of developing arm lymphedema among breast cancer survivors: a meta-analysis of treatment factors. Ann. Surg. Oncol. 16, 1959–1972 (2009).

    Article  PubMed  Google Scholar 

  81. Cariati, M. et al. Adjuvant taxanes and the development of breast cancer-related arm lymphoedema. Br. J. Surg. 102, 1071–1078 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Nguyen, T. T., Hoskin, T. L., Habermann, E. B., Cheville, A. L. & Boughey, J. C. Breast cancer-related lymphedema risk is related to multidisciplinary treatment and not surgery alone: results from a large cohort study. Ann. Surg. Oncol. 24, 2972–2980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Warren, L. E. et al. The impact of radiation therapy on the risk of lymphedema after treatment for breast cancer: a prospective cohort study. Int. J. Radi. Oncol. Biol. Phys. 88, 565–571 (2014).

    Article  Google Scholar 

  84. Specht, M. C. et al. Defining a threshold for intervention in breast cancer-related lymphedema: what level of arm volume increase predicts progression? Breast Cancer Res. Treat. 140, 485–494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. National Lymphedema Network. NLN Position Paper: the diagnosis and treatment of lymphedema. National Lymphedema Network https://lymphnet.org/position-papers (2011).

  86. Showalter, S. L. et al. Lifestyle risk factors associated with arm swelling among women with breast cancer. Ann. Surg. Oncol. 20, 842–849 (2013).

    Article  PubMed  Google Scholar 

  87. Ferguson, C. M. et al. Impact of ipsilateral blood draws, injections, blood pressure measurements, and air travel on the risk of lymphedema for patients treated for breast cancer. J. Clin. Oncol. 34, 691–698 (2016).This is a prospective study to investigate the association between various factors (such as blood draws, injections, blood pressure readings, trauma and cellulitis in the at-risk arm and air travel) and increases in arm volume in a cohort of patients treated for breast cancer and screened for lymphoedema.

    Article  PubMed  Google Scholar 

  88. Rockson, S. G. Lymphedema after breast cancer treatment. N. Engl. J. Med. 379, 1937–1944 (2018).

    Article  PubMed  Google Scholar 

  89. Boccardo, F. et al. LYMPHA technique to prevent secondary lower limb lymphedema. Ann. Surg. Oncol. 23, 3558–3563 (2016).

    Article  PubMed  Google Scholar 

  90. Boccardo, F. et al. Lymphatic microsurgical preventing healing approach (LYMPHA) for primary surgical prevention of breast cancer-related lymphedema: over 4 years follow-up. Microsurgery 34, 421–424 (2014).

    Article  PubMed  Google Scholar 

  91. Executive, C. The diagnosis and treatment of peripheral lymphedema: 2016 consensus document of the International Society of Lymphology. Lymphology 49, 170–184 (2016).

    Google Scholar 

  92. McLaughlin, S. A. et al. Considerations for clinicians in the diagnosis, prevention, and treatment of breast cancer-related lymphedema, recommendations from an expert panel: part 2: preventive and therapeutic options. Ann. Surg. Oncol. 24, 2827–2835 (2017).Here, the American Society of Breast Surgeons provides recommendations for the diagnosis, prevention and treatment of BCRL.

    Article  PubMed  Google Scholar 

  93. Do, J. H., Choi, K. H., Ahn, J. S. & Jeon, J. Y. Effects of a complex rehabilitation program on edema status, physical function, and quality of life in lower-limb lymphedema after gynecological cancer surgery. Gynecol. Oncol. 147, 450–455 (2017).

    Article  PubMed  Google Scholar 

  94. Partsch, H., Flour, M., Smith, P. C. & International Compression Club. Indications for compression therapy in venous and lymphatic disease consensus based on experimental data and scientific evidence. Under the auspices of the IUP. Int. Angiol. 27, 193–219 (2008).

    CAS  PubMed  Google Scholar 

  95. Damstra, R. J. & Partsch, H. Compression therapy in breast cancer-related lymphedema: A randomized, controlled comparative study of relation between volume and interface pressure changes. J. Vasc. Surg. 49, 1256–1263 (2009).

    Article  PubMed  Google Scholar 

  96. Damstra, R. J. & Partsch, H. Prospective, randomized, controlled trial comparing the effectiveness of adjustable compression Velcro wraps versus inelastic multicomponent compression bandages in the initial treatment of leg lymphedema. J. Vasc. Surg. Venous Lymphat. Disord. 1, 13–19 (2013).

    Article  PubMed  Google Scholar 

  97. Tan, I. C. et al. Assessment of lymphatic contractile function after manual lymphatic drainage using near-infrared fluorescence imaging. Arch. Phys. Med. Rehabil. 92, 756–764 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rasmussen, J. C. et al. Human lymphatic architecture and dynamic transport imaged using near-infrared fluorescence. Transl Oncol. 3, 362–372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ezzo, J. et al. Manual lymphatic drainage for lymphedema following breast cancer treatment. Cochrane Database Syst. Rev. 5, CD003475 (2015).

    Google Scholar 

  100. Gradalski, T., Ochalek, K. & Kurpiewska, J. Complex decongestive lymphatic therapy with or without vodder II manual lymph drainage in more severe chronic postmastectomy upper limb lymphedema: a randomized noninferiority prospective study. J. Pain Symptom Manage. 50, 750–757 (2015).

    Article  PubMed  Google Scholar 

  101. Huang, T. W. et al. Effects of manual lymphatic drainage on breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials. World J. Surg. Oncol. 11, 15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. McNeely, M. L. et al. The addition of manual lymph drainage to compression therapy for breast cancer related lymphedema: a randomized controlled trial. Breast Cancer Res. Treat. 86, 95–106 (2004).

    Article  PubMed  Google Scholar 

  103. McKenzie, D. C. & Kalda, A. L. Effect of upper extremity exercise on secondary lymphedema in breast cancer patients: a pilot study. J. Clin. Oncol. 21, 463–466 (2003).

    Article  PubMed  Google Scholar 

  104. Panchik, D. et al. The effect of exercise on breast cancer-related lymphedema: what the lymphatic surgeon needs to know. J. Reconstr. Microsurg. 35, 37–45 (2018).

    Article  PubMed  Google Scholar 

  105. Iacorossi, L. et al. The effectiveness of the sport “dragon boat racing” in reducing the risk of lymphedema incidence: an observational study. Cancer Nurs. https://doi.org/10.1097/NCC.0000000000000615 (2018).

    Article  PubMed  Google Scholar 

  106. Luz, R. P. C. et al. Complex therapy physical alone or associated with strengthening exercises in patients with lymphedema after breast cancer treatment: a controlled clinical trial. Asian Pac. J. Cancer Prev. 19, 1405–1410 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Baumann, F. T. et al. Effects of physical exercise on breast cancer-related secondary lymphedema: a systematic review. Breast Cancer Res. Treat. 170, 1–13 (2018).In this systematic review, evidence is presented to support the subjective and objective benefits of dynamic, moderate and high-frequency exercise in BCRL.

    Article  CAS  PubMed  Google Scholar 

  108. Winters-Stone, K. M., Laudermilk, M., Woo, K., Brown, J. C. & Schmitz, K. H. Influence of weight training on skeletal health of breast cancer survivors with or at risk for breast cancer-related lymphedema. J. Cancer Surviv. 8, 260–268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Fukushima, T. et al. Immediate effects of active exercise with compression therapy on lower-limb lymphedema. Support. Care Cancer 25, 2603–2610 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Vignes, S., Porcher, R., Arrault, M. & Dupuy, A. Long-term management of breast cancer-related lymphedema after intensive decongestive physiotherapy. Breast Cancer Res. Treat. 101, 285–290 (2007).The results of this prospective study emphasize the importance of compliance with the use of elastic sleeves and low-stretch bandages, which should be required to stabilize lymphoedema volume.

    Article  PubMed  Google Scholar 

  111. International Lymphoedema Framework. International Consensus: Best Practice for the Management of Lymphoedema (ILF, 2006).

  112. Neumann, H. A., Partsch, H., Mosti, G. & Flour, M. Classification of compression stockings: report of the meeting of the International Compression Club. Int. Angiol. 35, 122–128 (2016).

    PubMed  Google Scholar 

  113. Mosti, G., Cavezzi, A., Partsch, H., Urso, S. & Campana, F. Adjustable velcro compression devices are more effective than inelastic bandages in reducing venous edema in the initial treatment phase: a randomized controlled trial. Eur. J. Vasc. Endovasc. Surg. 50, 368–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Leduc, O. & Leduc, A. Rehabilitation protocol in upper limb lymphedema. Ann. Ital. Chir. 73, 479–484 (2002).

    CAS  PubMed  Google Scholar 

  115. Feldman, J. L. et al. Intermittent pneumatic compression therapy: a systematic review. Lymphology 45, 13–25 (2012).

    CAS  PubMed  Google Scholar 

  116. Blumberg, S. N. et al. Pneumatic compression improves quality of life in patients with lower-extremity lymphedema. Ann. Vasc. Surg. 30, 40–44 (2016).

    Article  PubMed  Google Scholar 

  117. Muluk, S. C., Hirsch, A. T. & Taffe, E. C. Pneumatic compression device treatment of lower extremity lymphedema elicits improved limb volume and patient-reported outcomes. Eur. J. Vasc. Endovasc. Surg. 46, 480–487 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Zaleska, M., Olszewski, W. L. & Durlik, M. The effectiveness of intermittent pneumatic compression in long-term therapy of lymphedema of lower limbs. Lymphat. Res. Biol. 12, 103–109 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Szuba, A., Achalu, R. & Rockson, S. G. Decongestive lymphatic therapy for patients with breast carcinoma-associated lymphedema. A randomized, prospective study of a role for adjunctive intermittent pneumatic compression. Cancer 95, 2260–2267 (2002).

    Article  PubMed  Google Scholar 

  120. Zelikovski, A., Haddad, M. & Reiss, R. Non-operative therapy combined with limited surgery in management of peripheral lymphedema. Lymphology 19, 106–108 (1986).

    CAS  PubMed  Google Scholar 

  121. Richmand, D. M., O’Donnell, T. F. Jr & Zelikovski, A. Sequential pneumatic compression for lymphedema. A controlled trial. Arch. Surg. 120, 1116–1119 (1985).

    Article  CAS  PubMed  Google Scholar 

  122. Fife, C. E., Davey, S., Maus, E. A., Guilliod, R. & Mayrovitz, H. N. A randomized controlled trial comparing two types of pneumatic compression for breast cancer-related lymphedema treatment in the home. Support. Care Cancer 20, 3279–3286 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Olszewski, W. L. et al. Tissue fluid pressure and flow during pneumatic compression in lymphedema of lower limbs. Lymphat. Res. Biol. 9, 77–83 (2011).

    Article  PubMed  Google Scholar 

  124. Brayton, K. M. et al. Lymphedema prevalence and treatment benefits in cancer: impact of a therapeutic intervention on health outcomes and costs. PLOS ONE 9, e114597 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Shao, Y., Qi, K., Zhou, Q. H. & Zhong, D. S. Intermittent pneumatic compression pump for breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials. Oncol. Res. Treat. 37, 170–174 (2014).

    Article  PubMed  Google Scholar 

  126. Uzkeser, H., Karatay, S., Erdemci, B., Koc, M. & Senel, K. Efficacy of manual lymphatic drainage and intermittent pneumatic compression pump use in the treatment of lymphedema after mastectomy: a randomized controlled trial. Breast Cancer 22, 300–307 (2015).

    Article  PubMed  Google Scholar 

  127. Gurdal, S. O. et al. Comparison of intermittent pneumatic compression with manual lymphatic drainage for treatment of breast cancer-related lymphedema. Lymphat. Res. Biol. 10, 129–135 (2012).

    Article  PubMed  Google Scholar 

  128. Karaca-Mandic, P., Hirsch, A. T., Rockson, S. G. & Ridner, S. H. The cutaneous, net clinical, and health economic benefits of advanced pneumatic compression devices in patients with lymphedema. JAMA Dermatol. 151, 1187–1193 (2015).

    Article  PubMed  Google Scholar 

  129. Karaca-Mandic, P., Hirsch, A. T., Rockson, S. G. & Ridner, S. H. A comparison of programmable and nonprogrammable compression devices for treatment of lymphoedema using an administrative health outcomes dataset. Br. J. Dermatol. 177, 1699–1707 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Suami, H. & Chang, D. W. Overview of surgical treatments for breast cancer-related lymphedema. Plast. Reconstr. Surg. 126, 1853–1863 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Scaglioni, M. F., Fontein, D. B. Y., Arvanitakis, M. & Giovanoli, P. Systematic review of lymphovenous anastomosis (LVA) for the treatment of lymphedema. Microsurgery 37, 947–953 (2017).

    Article  PubMed  Google Scholar 

  132. Campisi, C. C., Ryan, M., Boccardo, F. & Campisi, C. A. Single-site technique of multiple lymphatic-venous anastomoses for the treatment of peripheral lymphedema: long-term clinical outcome. J. Reconstr. Microsurg. 32, 42–49 (2016).

    PubMed  Google Scholar 

  133. Chang, D. W., Suami, H. & Skoracki, R. A prospective analysis of 100 consecutive lymphovenous bypass cases for treatment of extremity lymphedema. Plast. Reconstr. Surg. 132, 1305–1314 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Koshima, I., Nanba, Y., Tsutsui, T., Takahashi, Y. & Itoh, S. Long-term follow-up after lymphaticovenular anastomosis for lymphedema in the leg. J. Reconstr. Microsurg. 19, 209–215 (2003).

    Article  PubMed  Google Scholar 

  135. Garza, R. M. & Chang, D. W. Lymphovenous bypass for the treatment of lymphedema. J. Surg. Oncol. 118, 743–749 (2018).

    Article  PubMed  Google Scholar 

  136. Weiss, M., Baumeister, R. G. & Hahn, K. Post-therapeutic lymphedema: scintigraphy before and after autologous lymph vessel transplantation: 8 years of long-term follow-up. Clin. Nucl. Med. 27, 788–792 (2002).

    Article  PubMed  Google Scholar 

  137. Boccardo, F. et al. Lymphatic microsurgery to treat lymphedema: techniques and indications for better results. Ann. Plast. Surg. 71, 191–195 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Becker, C., Assouad, J., Riquet, M. & Hidden, G. Postmastectomy lymphedema: long-term results following microsurgical lymph node transplantation. Ann. Surg. 243, 313–315 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Vignes, S., Blanchard, M., Yannoutsos, A. & Arrault, M. Complications of autologous lymph-node transplantation for limb lymphoedema. Eur. J. Vasc. Endovasc. Surg. 45, 516–520 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Akita, S. et al. Improvement of the efficacy of vascularized lymph node transfer for lower-extremity lymphedema via a prefabricated lympho-venous shunt through lymphaticovenular anastomosis between the efferent lymphatic vessel and small vein in the elevated vascularized lymph node. Microsurgery 38, 270–277 (2018).

    Article  PubMed  Google Scholar 

  141. Scaglioni, M. F. et al. Comprehensive review of vascularized lymph node transfers for lymphedema: outcomes and complications. Microsurgery 38, 222–229 (2018).

    Article  PubMed  Google Scholar 

  142. Nguyen, A. T. et al. Long-term outcomes of the minimally invasive free vascularized omental lymphatic flap for the treatment of lymphedema. J. Surg. Oncol. 115, 84–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Brorson, H. Liposuction normalizes - in contrast to other therapies - lymphedema-induced adipose tissue hypertrophy. Handchir. Mikrochir. Plast. Chir. 44, 348–354 (2012).

    CAS  PubMed  Google Scholar 

  144. Lee, D., Piller, N., Hoffner, M., Manjer, J. & Brorson, H. Liposuction of postmastectomy arm lymphedema decreases the incidence of erysipelas. Lymphology 49, 85–92 (2016).

    CAS  PubMed  Google Scholar 

  145. Schaverien, M. V., Munnoch, D. A. & Brorson, H. Liposuction treatment of lymphedema. Semin. Plast. Surg. 32, 42–47 (2018).This is a recent comprehensive overview of the techniques and evidence basis for the use of liposuction in the surgical treatment of lymphoedema.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Boyages, J. et al. Liposuction for advanced lymphedema: a multidisciplinary approach for complete reduction of arm and leg swelling. Ann. Surg. Oncol. 22 (Suppl. 3), S1263–S1270 (2015).

    Article  PubMed  Google Scholar 

  147. Thompson, N. Buried dermal flap operation for chronic lymphedema of the extremities. Ten-year survey of results in 79 cases. Plast. Reconstr. Surg. 45, 541–548 (1970).

    Article  CAS  PubMed  Google Scholar 

  148. van der Walt, J. C., Perks, T. J., Zeeman, B. J., Bruce-Chwatt, A. J. & Graewe, F. R. Modified Charles procedure using negative pressure dressings for primary lymphedema: a functional assessment. Ann. Plast. Surg. 62, 669–675 (2009).

    Article  PubMed  CAS  Google Scholar 

  149. Olszewski, W. L. & Zaleska, M. Treatment of postmastectomy lymphedema by bypassing the armpit with implanted silicone tubings. Int. Angiol. 36, 50–58 (2017).

    PubMed  Google Scholar 

  150. Pecking, A. P., Fevrier, B., Wargon, C. & Pillion, G. Efficacy of Daflon 500 mg in the treatment of lymphedema (secondary to conventional therapy of breast cancer). Angiology 48, 93–98 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Barbe, R. & Amiel, M. Pharmacodynamic properties and therapeutic efficacy of Daflon 500 mg. Phlebology 7, 41–44 (1992).

    Google Scholar 

  152. Behar, A., Lagrue, G., Cohen-Boulakia, F. & Baillet, J. Capillary filtration in idiopathic cyclic edema—effects of Daflon 500 mg. Nucl. Med. (Stuttg.) 27, 105–107 (1988).

    CAS  Google Scholar 

  153. Galley, P. & Thiollet, M. A double-blind, placebo-controlled trial of a new veno-active flavonoid fraction (S 5682) in the treatment of symptomatic capillary fragility. Int. Angiol. 12, 69–72 (1993).

    CAS  PubMed  Google Scholar 

  154. Cotonat, A. & Cotonat, J. Lymphagogue and pulsatile activities of Daflon 500 mg on canine thoracic lymph duct. Int. Angiol. 8, 15–18 (1989).

    CAS  PubMed  Google Scholar 

  155. Visuri, M. T. et al. VEGF-C and VEGF-C156S in the pro-lymphangiogenic growth factor therapy of lymphedema: a large animal study. Angiogenesis 18, 313–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Yoshida, S. et al. Adipose-derived stem cell transplantation for therapeutic lymphangiogenesis in a mouse secondary lymphedema model. Regen. Med. 10, 549–562 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Bramos, A. et al. Prevention of postsurgical lymphedema by 9-cis retinoic acid. Ann. Surg. 264, 353–361 (2016).

    Article  PubMed  Google Scholar 

  158. Kimura, T. et al. Cilostazol improves lymphatic function by inducing proliferation and stabilization of lymphatic endothelial cells. J. Dermatol. Sci. 74, 150–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Rockson, S. G. et al. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. JCI Insight 3, e123775 (2018).

    Article  PubMed Central  Google Scholar 

  160. Vignes, S. & Dupuy, A. Recurrence of lymphoedema-associated cellulitis (erysipelas) under prophylactic antibiotherapy: a retrospective cohort study. J. Eur. Acad. Dermatol. Venereol. 20, 818–822 (2006).

    CAS  PubMed  Google Scholar 

  161. Olszewski, W. L. Episodic dermatolymphangioadenitis (DLA) in patients with lymphedema of the lower extremities before and after administration of benzathine penicillin: a preliminary study. Lymphology 29, 126–131 (1996).

    CAS  PubMed  Google Scholar 

  162. Chen, H. M. et al. The experience of intramuscular benzathine penicillin for prophylaxis of recurrent cellulitis: a cohort study. J. Microbiol. Immunol. Infect. 50, 613–618 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Keeley, V. in Lymphedema: Complete Medical and Surgical Management (eds Neligan, P. C., Masia, J. & Piller, N. B.) 41–50 (CRC Press, 2016).

  164. Beaulac, S. M., McNair, L. A., Scott, T. E., LaMorte, W. W. & Kavanah, M. T. Lymphedema and quality of life in survivors of early-stage breast cancer. Arch. Surg. 137, 1253–1257 (2002).

    Article  PubMed  Google Scholar 

  165. Kwan, W. et al. Chronic arm morbidity after curative breast cancer treatment: prevalence and impact on quality of life. J. Clin. Oncol. 20, 4242–4248 (2002).

    Article  PubMed  Google Scholar 

  166. Ridner, S. H. Quality of life and a symptom cluster associated with breast cancer treatment-related lymphedema. Support. Care Cancer 13, 904–911 (2005).

    Article  PubMed  Google Scholar 

  167. Heiney, S. P. et al. Quality of life and lymphedema following breast cancer. Lymphology 40, 177–184 (2007).

    CAS  PubMed  Google Scholar 

  168. Gjorup, C. A. et al. Health-related quality of life in melanoma patients: Impact of melanoma-related limb lymphoedema. Eur. J. Cancer 85, 122–132 (2017).

    Article  PubMed  Google Scholar 

  169. Kibar, S., Dalyan Aras, M. & Unsal Delialioglu, S. The risk factors and prevalence of upper extremity impairments and an analysis of effects of lymphoedema and other impairments on the quality of life of breast cancer patients. Eur. J. Cancer Care 26, e12433 (2017).

    Article  Google Scholar 

  170. Paskett, E. D. & Stark, N. Lymphedema: knowledge, treatment, and impact among breast cancer survivors. Breast J. 6, 373–378 (2000).

    Article  PubMed  Google Scholar 

  171. Mitchell, A. J. et al. Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncol. 12, 160–174 (2011).

    Article  PubMed  Google Scholar 

  172. Li, M., Fitzgerald, P. & Rodin, G. Evidence-based treatment of depression in patients with cancer. J. Clin. Oncol. 30, 1187–1196 (2012).

    Article  PubMed  Google Scholar 

  173. Traeger, L., Greer, J. A., Fernandez-Robles, C., Temel, J. S. & Pirl, W. F. Evidence-based treatment of anxiety in patients with cancer. J. Clin. Oncol. 30, 1197–1205 (2012).

    Article  PubMed  Google Scholar 

  174. Maunsell, E., Brisson, J. & Deschenes, L. Arm problems and psychological distress after surgery for breast cancer. Can. J. Surg. 36, 315–320 (1993).

    CAS  PubMed  Google Scholar 

  175. Park, S. I. et al. Prevalence and epidemiological factors involved in cellulitis in Korean patients with lymphedema. Ann. Rehabil. Med. 40, 326–333 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Cemal, Y., Jewell, S., Albornoz, C. R., Pusic, A. & Mehrara, B. J. Systematic review of quality of life and patient reported outcomes in patients with oncologic related lower extremity lymphedema. Lymphat. Res. Biol. 11, 14–19 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ko, D. S., Lerner, R., Klose, G. & Cosimi, A. B. Effective treatment of lymphedema of the extremities. Arch. Surg. 133, 452–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Wanchai, A. & Phrompayak, D. Use of complementary and alternative medicine among Thai patients with type 2 diabetes mellitus. J. Integr. Med. 14, 297–305 (2016).

    Article  PubMed  Google Scholar 

  179. Dionyssiou, D. et al. A randomized control study of treating secondary stage II breast cancer-related lymphoedema with free lymph node transfer. Breast Cancer Res. Treat. 156, 73–79 (2016).

    Article  PubMed  Google Scholar 

  180. Norrmen, C., Tammela, T., Petrova, T. V. & Alitalo, K. Biological basis of therapeutic lymphangiogenesis. Circulation 123, 1335–1351 (2011).

    Article  PubMed  Google Scholar 

  181. Oliver, G. & Srinivasan, R. S. Lymphatic vasculature development: current concepts. Ann. NY Acad. Sci. 1131, 75–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Kazenwadel, J. & Harvey, N. L. Morphogenesis of the lymphatic vasculature: a focus on new progenitors and cellular mechanisms important for constructing lymphatic vessels. Dev. Dyn. 245, 209–219 (2016).

    Article  PubMed  Google Scholar 

  183. Kerjaschki, D. The lymphatic vasculature revisited. J. Clin. Invest. 124, 874–877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. McLaughlin, S. A. et al. Considerations for clinicians in the diagnosis, prevention, and treatment of breast cancer-related lymphedema: recommendations from a multidisciplinary expert ASBrS panel: part 1: definitions, assessments, education, and future directions. Ann. Surg. Oncol. 24, 2818–2826 (2017).

    Article  PubMed  Google Scholar 

  185. Mihara, M. et al. Indocyanine green (ICG) lymphography is superior to lymphoscintigraphy for diagnostic imaging of early lymphedema of the upper limbs. PLOS ONE 7, e38182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gentileschi, S. et al. Lymphatic mapping of the upper limb with lymphedema before lymphatic supermicrosurgery by mirroring of the healthy limb. Microsurgery 37, 881–889 (2017).

    Article  PubMed  Google Scholar 

  187. Mihara, M. et al. Upper-limb lymphedema treated aesthetically with lymphaticovenous anastomosis using indocyanine green lymphography and noncontact vein visualization. J. Reconstr. Microsurg. 28, 327–332 (2012).

    Article  PubMed  Google Scholar 

  188. Pappalardo, M., Patel, K. & Cheng, M. H. Vascularized lymph node transfer for treatment of extremity lymphedema: An overview of current controversies regarding donor sites, recipient sites and outcomes. J. Surg. Oncol. 117, 1420–1431 (2018).

    Article  PubMed  Google Scholar 

  189. Lahteenvuo, M. et al. Growth factor therapy and autologous lymph node transfer in lymphedema. Circulation 123, 613–620 (2011).

    Article  PubMed  CAS  Google Scholar 

  190. Hadamitzky, C. et al. Aligned nanofibrillar collagen scaffolds – guiding lymphangiogenesis for treatment of acquired lymphedema. Biomaterials 102, 259–267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02734979 (2018).

  192. Guc, E. et al. Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials 131, 160–175 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Nakamura, K. & Rockson, S. G. Molecular targets for therapeutic lymphangiogenesis in lymphatic dysfunction and disease. Lymphat. Res. Biol. 6, 181–189 (2008).

    Article  PubMed  Google Scholar 

  194. Qi, S. & Pan, J. Cell-based therapy for therapeutic lymphangiogenesis. Stem Cells Dev. 24, 271–283 (2015).

    Article  PubMed  Google Scholar 

  195. Shimizu, Y., Shibata, R., Shintani, S., Ishii, M. & Murohara, T. Therapeutic lymphangiogenesis with implantation of adipose-derived regenerative cells. J. Am. Heart Assoc. 1, e000877 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Rockson, S. G. Lymphatic medicine: paradoxically and unnecessarily ignored. Lymphat. Res. Biol. 15, 315–316 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Levenhagen, K., Davies, C., Perdomo, M., Ryans, K. & Gilchrist, L. Diagnosis of upper quadrant lymphedema secondary to cancer: clinical practice guideline from the oncology section of the American Physical Therapy Association. Phys. Ther. 97, 729–745 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Sun, F. et al. Letter to the editor of “Current and future perspectives on the evaluation, prevention and conservative management of breast cancer related lymphoedema: a best practice guideline” from N. Gebruers and colleagues. Eur. J. Obstet. Gynecol. Reprod. Biol. 225, 255–256 (2018).

    Article  PubMed  Google Scholar 

  199. Brunelle, C. L. et al. On “Diagnosis of upper quadrant lymphedema secondary to cancer: clinical practice guideline from the oncology section of the American Physical Therapy Association.” Levenhagen K, Davies C, Perdomo M, Ryans K, Gilchrist L. Phys Ther. 2017;97:729–745. Phys. Ther. 98, 277–281 (2018).

    Article  PubMed  Google Scholar 

  200. Ridner, S. H. & Dietrich, M. S. Development and validation of the Lymphedema Symptom and Intensity Survey-Arm. Support. Care Cancer 23, 3103–3112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Dylke, E. S., Benincasa Nakagawa, H., Lin, L., Clarke, J. L. & Kilbreath, S. L. Reliability and diagnostic thresholds for ultrasound measurements of dermal thickness in breast lymphedema. Lymphat. Res. Biol. 16, 258–262 (2018).

    Article  PubMed  Google Scholar 

  202. Yang, E. J., Kim, S. Y., Lee, W. H., Lim, J. Y. & Lee, J. Diagnostic accuracy of clinical measures considering segmental tissue composition and volume changes of breast cancer-related lymphedema. Lymphat. Res. Biol. 16, 368–376 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kilbreath, S. L. et al. Upper limb progressive resistance training and stretching exercises following surgery for early breast cancer: a randomized controlled trial. Breast Cancer Res. Treat. 133, 667–676 (2012).

    Article  PubMed  Google Scholar 

  204. Stout Gergich, N. L. et al. Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer 112, 2809–2819 (2008).This investigation demonstrates the effectiveness of a surveillance programme that includes preoperative limb volume measurement and interval postoperative follow-up to detect and treat subclinical lymphoedema.

    Article  PubMed  Google Scholar 

  205. Hayes, S. C., Janda, M., Cornish, B., Battistutta, D. & Newman, B. Lymphedema after breast cancer: incidence, risk factors, and effect on upper body function. J. Clin. Oncol. 26, 3536–3542 (2008).

    Article  PubMed  Google Scholar 

  206. Norman, S. A. et al. Lymphedema in breast cancer survivors: incidence, degree, time course, treatment, and symptoms. J. Clin. Oncol. 27, 390–397 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Kilbreath, S. L. et al. Transient swelling versus lymphoedema in the first year following surgery for breast cancer. Support. Care Cancer 21, 2207–2215 (2013).

    Article  PubMed  Google Scholar 

  208. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Stanton, A. W. et al. Validation of an optoelectronic limb volumeter (Perometer). Lymphology 30, 77–97 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.G.R.’s work is funded in part by the Allan and Tina Neill Chair of Lymphatic Research and Medicine, Stanford University.

Reviewer information

Nature Reviews Disease Primers thanks N. Liu, P. Mortimer, S. Ridner, A. Taghian and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.T. and S.G.R.); Epidemiology (V.K. and S.G.R.); Mechanisms/pathophysiology (S.G.R.); Diagnosis, screening and prevention (S.K. and S.G.R.); Management (A.S. and S.G.R.); Quality of life (V.K. and S.G.R.); Outlook (A.T. and S.G.R.); Overview of Primer (S.G.R.).

Corresponding author

Correspondence to Stanley G. Rockson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rockson, S.G., Keeley, V., Kilbreath, S. et al. Cancer-associated secondary lymphoedema. Nat Rev Dis Primers 5, 22 (2019). https://doi.org/10.1038/s41572-019-0072-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0072-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer