Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hepatorenal syndrome

An Author Correction to this article was published on 15 October 2018

This article has been updated

Abstract

Hepatorenal syndrome (HRS) is a form of kidney function impairment that characteristically occurs in cirrhosis. Recent changes in terminology have led to acute HRS being referred to as acute kidney injury (AKI)-HRS and chronic HRS as chronic kidney disease (CKD)-HRS. AKI-HRS is characterized by a severe impairment of kidney function owing to vasoconstriction of the renal arteries in the absence of substantial abnormalities in kidney histology. Pathogenetic mechanisms involve disturbances in circulatory function due to a marked splanchnic arterial vasodilation, which triggers the activation of vasoconstrictor factors. An intense systemic inflammatory reaction that is characteristic of advanced cirrhosis may also be involved. The main triggering factors of AKI-HRS are bacterial infections, particularly spontaneous bacterial peritonitis. The diagnosis of AKI-HRS is a challenge because of a lack of specific diagnostic tools and mainly involves the differential diagnosis from other forms of AKI, particularly acute tubular necrosis. The prognosis of patients with AKI-HRS is poor, with a median survival of ≤3 months. The ideal treatment for AKI-HRS is liver transplantation in patients without contraindications. Medical therapy consists of vasoconstrictor drugs to counteract splanchnic arterial vasodilation together with volume expansion with albumin. Effective measures to prevent AKI-HRS include early identification and treatment of bacterial infections and the administration of albumin in patients with spontaneous bacterial peritonitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors involved in the pathogenesis of HRS.
Fig. 2: Inflammatory mediators and pathways that can affect the circulation.
Fig. 3: Algorithm for liver transplant alone versus simultaneous liver and kidney transplant in HRS.
Fig. 4: An algorithm for diagnosis and management of AKI in cirrhosis.

Similar content being viewed by others

Change history

  • 15 October 2018

    The original version of this article omitted an initial from the name of contributing author Patrick S. Kamath, who was listed as Patrick Kamath. The article has now been corrected.

References

  1. Ginès, P. & Schrier, R. W. Renal failure in cirrhosis. N. Engl. J. Med. 361, 1279–1290 (2009).

    PubMed  Google Scholar 

  2. Durand, F., Graupera, I., Ginès, P., Olson, J. C. & Nadim, M. K. Pathogenesis of hepatorenal syndrome: implications for therapy. Am. J. Kidney Dis. 67, 318–328 (2016).

    CAS  PubMed  Google Scholar 

  3. Wong, F. The evolving concept of acute kidney injury in patients with cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 12, 711–719 (2015).

    CAS  PubMed  Google Scholar 

  4. Arroyo, V. et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. Hepatology 23, 164–176 (1996). This is the first consensus published on the definition and diagnostic criteria of HRS in cirrhosis.

    CAS  PubMed  Google Scholar 

  5. Angeli, P. et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the international club of ascites. J. Hepatol. 62, 968–974 (2015).

    PubMed  Google Scholar 

  6. Nadim, M. K. et al. Hepatorenal syndrome: the 8th international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit. Care 16, R23 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Alessandria, C. et al. MELD score and clinical type predict prognosis in hepatorenal syndrome: relevance to liver transplantation. Hepatology 41, 1282–1289 (2005).

    PubMed  Google Scholar 

  8. Garcia-Tsao, G., Parikh, C. R. & Viola, A. Acute kidney injury in cirrhosis. Hepatology 48, 2064–2077 (2008).

    CAS  PubMed  Google Scholar 

  9. Ginès, P., Cárdenas, A., Solà, E., Schrier, R. in Schrier’s Diseases of the Kidney (eds Schrier, R. W. et al) 1965–1996 (Lippincott Williams & Wilkins, 2012).

  10. Belcher, J. M. et al. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology 57, 753–762 (2012).

    PubMed  PubMed Central  Google Scholar 

  11. Nadim, M. K. et al. Impact of the etiology of acute kidney injury on outcomes following liver transplantation: acute tubular necrosis versus hepatorenal syndrome. Liver Transplant. 18, 539–548 (2012).

    Google Scholar 

  12. Hilmi, I. A. et al. Acute kidney injury following orthotopic liver transplantation: incidence, risk factors, and effects on patient and graft outcomes. Br. J. Anaesth. 114, 919–926 (2015).

    CAS  PubMed  Google Scholar 

  13. Tandon, P. et al. Relevance of new definitions to incidence and prognosis of acute kidney injury in hospitalized patients with cirrhosis: a retrospective population-based cohort study. PLOS One 11, e0160394 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Fagundes, C. et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J. Hepatol. 59, 474–481 (2013).

    PubMed  Google Scholar 

  15. Amathieu, R. et al. Significance of oliguria in critically ill patients with chronic liver disease. Hepatology 66, 1592–1600 (2017).

    PubMed  Google Scholar 

  16. Huelin, P. et al. Validation of a staging system for acute kidney injury in patients with cirrhosis and association with acute-on-chronic liver failure. Clin. Gastroenterol. Hepatol. 15, 438–445 (2017). This prospective study reports the frequency and aetiology of AKI episodes in a large series of patients hospitalized for complications of cirrhosis. This study also proposes a modification of AKI staging specifically for cirrhosis.

    PubMed  Google Scholar 

  17. Allegretti, A. S. et al. Prognosis of acute kidney injury and hepatorenal syndrome in patients with cirrhosis: a prospective cohort study. Int. J. Nephrol. 2015, 1–9 (2015).

    Google Scholar 

  18. Piano, S. et al. Evaluation of the acute kidney injury network criteria in hospitalized patients with cirrhosis and ascites. J. Hepatol. 59, 482–489 (2013).

    PubMed  Google Scholar 

  19. Martín–Llahí, M. et al. Prognostic importance of the cause of renal failure in patients with cirrhosis. Gastroenterology 140, 488–496 (2011).

    PubMed  Google Scholar 

  20. Fagundes, C. & Ginès, P. Hepatorenal syndrome: a severe, but treatable, cause of kidney failure in cirrhosis. Am. J. Kidney Dis. 59, 874–885 (2012).

    PubMed  Google Scholar 

  21. Schrier, R. W. et al. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8, 1151–1157 (1988). This is a seminal paper describing the haemodynamic abnormalities in patients with cirrhosis and proposing a theory on the mechanisms leading to renal sodium retention and development of ascites and kidney function abnormalities in cirrhosis.

    CAS  PubMed  Google Scholar 

  22. Epstein, M. et al. Renal failure in the patient with cirrhosis. Am. J. Med. 49, 175–185 (1970).

    CAS  PubMed  Google Scholar 

  23. Martin, P.-Y., Ginès, P. & Schrier, R. W. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N. Engl. J. Med. 339, 533–541 (1998).

    CAS  PubMed  Google Scholar 

  24. Iwakiri, Y. & Groszmann, R. J. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 43, S121–S131 (2006).

    CAS  PubMed  Google Scholar 

  25. Ros, J. et al. Endogenous cannabinoids: A new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology 122, 85–93 (2002).

    CAS  PubMed  Google Scholar 

  26. Bernardi, M., Trevisani, F., Gasbarrini, A. & Gasbarrini, G. Hepatorenal disorders: role of the renin-angiotensin-aldosterone system. Semin. Liver Dis. 14, 23–34 (1994).

    CAS  PubMed  Google Scholar 

  27. Henriksen, J. H., Møller, S., Ring-Larsen, H. & Christensen, N. J. The sympathetic nervous system in liver disease. J. Hepatol. 29, 328–341 (1998).

    CAS  PubMed  Google Scholar 

  28. Sanyal, A. J. et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology 134, 1360–1368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martín–Llahí, M. et al. Terlipressin and albumin versus albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology 134, 1352–1359 (2008).

    PubMed  Google Scholar 

  30. Gluud, L. L., Christensen, K., Christensen, E. & Krag, A. Systematic review of randomized trials on vasoconstrictor drugs for hepatorenal syndrome. Hepatology 51, 576–584 (2009).

    Google Scholar 

  31. Ruiz-del-Arbol, L. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 38, 1210–1218 (2003).

    PubMed  Google Scholar 

  32. Ruiz-del-Arbol, L. et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 42, 439–447 (2005).

    CAS  PubMed  Google Scholar 

  33. Wong, F. Cirrhotic cardiomyopathy. Hepatol. Int. 3, 294–304 (2008). This is a comprehensive review of the aetiology, diagnosis and clinical consequences of cirrhotic cardiomyopathy.

    PubMed  PubMed Central  Google Scholar 

  34. Krag, A., Bendtsen, F., Henriksen, J. H. & Moller, S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut 59, 105–110 (2009).

    Google Scholar 

  35. Nazar, A. et al. LEFT ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. J. Hepatol. 58, 51–57 (2013).

    PubMed  Google Scholar 

  36. Gonwa, T. A. et al. Impact of pretransplant renal function on survival after liver transplantation. Transplantation 59, 361–365 (1995).

    CAS  PubMed  Google Scholar 

  37. Schroeder, E. T., Shear, L., Sancetta, S. M. & Gabuzda, G. J. Renal failure in patients with cirrhosis of the liver: 3. Evaluation of intrarenal blood flow by para-aminohippurate extraction and response to angiotensin. Am. J. Med. 43, 887–896 (1967).

    CAS  PubMed  Google Scholar 

  38. Kew, M. C. et al. Renal and intrarenal blood-flow in cirrhosis of the liver. Lancet 2, 504–510 (1971).

    CAS  PubMed  Google Scholar 

  39. Sacerdoti, D., Merlo, A., Merkel, C., Zuin, R. & Gatta, A. Redistribution of renal blood flow in patients with liver cirrhosis: the role of renal PGE2. J. Hepatol. 2, 253–261 (1986).

    CAS  PubMed  Google Scholar 

  40. Maroto, A. et al. Diagnosis of functional kidney failure of cirrhosis with Doppler sonography: prognostic value of resistive index. Hepatology 20, 839–844 (1994).

    CAS  PubMed  Google Scholar 

  41. Arroyo, V., Ginés, P., Rimola, A. & Gaya, J. Renal function abnormalities, prostaglandins, and effects of nonsteroidal anti-inflammatory drugs in cirrhosis with ascites: an overview with emphasis on pathogenesis. Am. J. Med. 81, 104–122 (1986).

    CAS  PubMed  Google Scholar 

  42. Sort, P. et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N. Engl. J. Med. 341, 403–409 (1999).This fundamental study demonstrates the efficacy of albumin administration in preventing HRS and reducing mortality in patients with cirrhosis and spontaneous bacterial peritonitis.

    CAS  PubMed  Google Scholar 

  43. Barreto, R. et al. Type-1 hepatorenal syndrome associated with infections in cirrhosis: Natural history, outcome of kidney function, and survival. Hepatology 59, 1505–1513 (2014).

    PubMed  Google Scholar 

  44. Uriz, J. et al. Terlipressin plus albumin infusion: an effective and safe therapy of hepatorenal syndrome. J. Hepatol. 33, 43–48 (2000).

    CAS  PubMed  Google Scholar 

  45. Schroeder, E. T., Anderson, G. H., Goldman, S. H. & Streeten, D. H. Effect of blockade of angiotensin II on blood pressure, renin and aldosterone in cirrhosis. Kidney Int. 9, 511–519 (1976).

    CAS  PubMed  Google Scholar 

  46. Moore, K. et al. Plasma endothelin immunoreactivity in liver disease and the hepatorenal syndrome. N. Engl. J. Med. 327, 1774–1778 (1992).

    CAS  PubMed  Google Scholar 

  47. Moore, K. P. et al. Increased production of cysteinyl leukotrienes in hepatorenal syndrome. J. Hepatol. 11, 263–271 (1990).

    CAS  PubMed  Google Scholar 

  48. Wong, F., Moore, K., Dingemanse, J. & Jalan, R. Lack of renal improvement with nonselective endothelin antagonism with tezosentan in type 2 hepatorenal syndrome. Hepatology 47, 160–168 (2008).

    CAS  PubMed  Google Scholar 

  49. Elia, C. et al. Severe acute kidney injury associated with non-steroidal anti-inflammatory drugs in cirrhosis: a case-control study. J. Hepatol. 63, 593–600 (2015).

    PubMed  Google Scholar 

  50. Stadlbauer, V. P. et al. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology 134, 111–119 (2008).

    PubMed  Google Scholar 

  51. Albillos, A., Lario, M. & Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J. Hepatol. 61, 1385–1396 (2014).

    CAS  PubMed  Google Scholar 

  52. Bernardi, M., Moreau, R., Angeli, P., Schnabl, B. & Arroyo, V. Mechanisms of decompensation and organ failure in cirrhosis: from peripheral arterial vasodilation to systemic inflammation hypothesis. J. Hepatol. 63, 1272–1284 (2015).

    CAS  PubMed  Google Scholar 

  53. Cazzaniga, M. et al. The systemic inflammatory response syndrome in cirrhotic patients: relationship with their in-hospital outcome. J. Hepatol. 51, 475–482 (2009).

    PubMed  Google Scholar 

  54. Cervoni, J. P. et al. C-reactive protein predicts short-term mortality in patients with cirrhosis. J. Hepatol. 56, 1299–1304 (2012).

    CAS  PubMed  Google Scholar 

  55. Jalan, R. et al. Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology 50, 555–564 (2009).

    CAS  PubMed  Google Scholar 

  56. Clària, J. et al. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology 64, 1249–1264 (2016).

    PubMed  Google Scholar 

  57. Solé, C. et al. Characterization of inflammatory response in acute-on-chronic liver failure and relationship with prognosis. Sci. Rep. 6 (2016).

  58. Moreau, R. et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144, 1426–1437 (2013).

    PubMed  Google Scholar 

  59. Wiest, R., Lawson, M. & Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 60, 197–209 (2014).

    PubMed  Google Scholar 

  60. Follo, A. et al. Renal impairment after spontaneous bacterial peritonitis in cirrhosis: incidence, clinical course, predictive factors and prognosis. Hepatology 20, 1495–1501 (1994). This is the first study to provide a detailed description of the association between renal function impairment and spontaneous bacterial peritonitis in cirrhosis.

    CAS  PubMed  Google Scholar 

  61. Navasa, M. et al. Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality. Hepatology 27, 1227–1232 (1998).

    CAS  PubMed  Google Scholar 

  62. Terra, C. et al. Renal failure in patients with cirrhosis and sepsis unrelated to spontaneous bacterial peritonitis: value of MELD score. Gastroenterology 129, 1944–1953 (2005).

    PubMed  Google Scholar 

  63. Fasolato, S. et al. Renal failure and bacterial infections in patients with cirrhosis: Epidemiology and clinical features. Hepatology 45, 223–229 (2006).

    Google Scholar 

  64. Pereira, G. et al. Renal failure and hyponatremia in patients with cirrhosis and skin and soft tissue infection. A retrospective study. J. Hepatol. 56, 1040–1046 (2012).

    PubMed  Google Scholar 

  65. Terg, R. et al. Serum creatinine and bilirubin predict renal failure and mortality in patients with spontaneous bacterial peritonitis: a retrospective study. Liver Int. 29, 415–419 (2009).

    CAS  PubMed  Google Scholar 

  66. De Las Heras, D. Increased carbon monoxide production in patients with cirrhosis with and without spontaneous bacterial peritonitis. Hepatology 38, 452–459 (2003).

    Google Scholar 

  67. Such, J. et al. Nitric oxide in ascitic fluid is an independent predictor of the development of renal impairment in patients with cirrhosis and spontaneous bacterial peritonitis. Eur. J. Gastroenterol. Hepatol. 16, 571–577 (2004).

    CAS  PubMed  Google Scholar 

  68. Thabut, D. et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology 46, 1872–1882 (2007).

    PubMed  Google Scholar 

  69. Arroyo, V. et al. Acute-on-chronic liver failure in cirrhosis. Nat. Rev. Dis. Primers 2, 16041 (2016).

    PubMed  Google Scholar 

  70. Angus, D. C. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851 (2013).

    CAS  PubMed  Google Scholar 

  71. Sriskandan, S. & Altmann, D. M. The immunology of sepsis. J. Pathol. 214, 211–223 (2008).

    CAS  PubMed  Google Scholar 

  72. Wasmuth, H. E. et al. Patients with acute on chronic liver failure display ‘sepsis-like’ immune paralysis. J. Hepatol. 42, 195–201 (2005).

    CAS  PubMed  Google Scholar 

  73. Ginès, P. et al. Randomized comparative study of therapeutic paracentesis with and without intravenous albumin in cirrhosis. Gastroenterology 94, 1493–1502 (1988).

    PubMed  Google Scholar 

  74. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J. Hepatol. 53, 397–417 (2010).

    Google Scholar 

  75. Cárdenas, A. Renal failure after upper gastrointestinal bleeding in cirrhosis: Incidence, clinical course, predictive factors, and short-term prognosis. Hepatology 34, 671–676 (2001).

    PubMed  Google Scholar 

  76. Bernardi, M., Caraceni, P., Navickis, R. J. & Wilkes, M. M. Albumin infusion in patients undergoing large-volume paracentesis: a meta-analysis of randomized trials. Hepatology 55, 1172–1181 (2012). This study proves the beneficial effects of albumin treatment in patients with cirrhosis undergoing large-volume paracentesis.

    CAS  PubMed  Google Scholar 

  77. Carl, D. E. et al. Post-paracentesis circulatory derangements are related to monocyte activation. Liver Int. 34, 1001–1007 (2014).

    CAS  PubMed  Google Scholar 

  78. Salerno, F., Gerbes, A., Gines, P., Wong, F. & Arroyo, V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Postgrad. Med. J. 84, 662–670 (2008).

    PubMed  Google Scholar 

  79. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 7, issue 1 (2017).

  80. Tsien, C. D., Rabie, R. & Wong, F. Acute kidney injury in decompensated cirrhosis. Gut 62, 131–137 (2012).

    PubMed  Google Scholar 

  81. Wong, F. et al. New consensus definition of acute kidney injury accurately predicts 30-day mortality in patients with cirrhosis and infection. Gastroenterology 145, e16–e17 (2013).

    Google Scholar 

  82. Schrier, R. W., Shchekochikhin, D. & Ginès, P. Renal failure in cirrhosis: prerenal azotemia, hepatorenal syndrome and acute tubular necrosis. Nephrol. Dial. Transplant. 27, 2625–2628 (2012).

    PubMed  Google Scholar 

  83. Francoz, C., Nadim, M. K. & Durand, F. Kidney biomarkers in cirrhosis. J. Hepatol. 65, 809–824 (2016).

    CAS  PubMed  Google Scholar 

  84. Fagundes, C. et al. Urinary neutrophil gelatinase-associated lipocalin as biomarker in the differential diagnosis of impairment of kidney function in cirrhosis. J. Hepatol. 57, 267–273 (2012).

    CAS  PubMed  Google Scholar 

  85. Verna, E. C. et al. Urinary neutrophil gelatinase-associated lipocalin predicts mortality and identifies acute kidney injury in cirrhosis. Dig. Dis. Sci. 57, 2362–2370 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Belcher, J. M. et al. Urinary biomarkers and progression of AKI in patients with cirrhosis. Clin. J. Am. Soc. Nephrol. 9, 1857–1867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Belcher, J. M. et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology 60, 622–632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ariza, X. et al. Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. PLOS One 10, e0128145 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Barreto, R. et al. Urinary neutrophil gelatinase-associated lipocalin predicts kidney outcome and death in patients with cirrhosis and bacterial infections. J. Hepatol. 61, 35–42 (2014).

    CAS  PubMed  Google Scholar 

  90. Decavele, A.-S. C., Dhondt, L., De Buyzere, M. L. & Delanghe, J. R. Increased urinary neutrophil gelatinase associated lipocalin in urinary tract infections and leukocyturia. Clin. Chem. Lab. Med. 49, 999–1003 (2011).

    CAS  PubMed  Google Scholar 

  91. Puthumana, J. et al. Urine interleukin 18 and lipocalin 2 are biomarkers of acute tubular necrosis in patients with cirrhosis: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 15, 1003–1013.e3 (2017).

    CAS  PubMed  Google Scholar 

  92. Markwardt, D. et al. Plasma cystatin C is a predictor of renal dysfunction, acute-on-chronic liver failure, and mortality in patients with acutely decompensated liver cirrhosis. Hepatology 66, 1232–1241 (2017).

    CAS  PubMed  Google Scholar 

  93. Maiwall, R. et al. Cystatin C predicts acute kidney injury and mortality in cirrhotics: a prospective cohort study. Liver Int. 38, 654–664 (2018).

    CAS  PubMed  Google Scholar 

  94. Salerno, F., Navickis, R. J. & Wilkes, M. M. Albumin infusion improves outcomes of patients with spontaneous bacterial peritonitis: a meta-analysis of randomized trials. Clin. Gastroenterol. Hepatol. 11, 123–130.e1 (2013).

    CAS  PubMed  Google Scholar 

  95. Poca, M. et al. Role of albumin treatment in patients with spontaneous bacterial peritonitis. Clin. Gastroenterol. Hepatol. 10, 309–315 (2012).

    CAS  PubMed  Google Scholar 

  96. Guevara, M. et al. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study. J. Hepatol. 57, 759–765 (2012).

    CAS  PubMed  Google Scholar 

  97. Thévenot, T. et al. Effect of albumin in cirrhotic patients with infection other than spontaneous bacterial peritonitis. A randomized trial. J. Hepatol. 62, 822–830 (2015).

    PubMed  Google Scholar 

  98. Fernández, J. et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 133, 818–824 (2007).

    PubMed  Google Scholar 

  99. Mandorfer, M. et al. Nonselective β blockers increase risk for hepatorenal syndrome and death in patients with cirrhosis and spontaneous bacterial peritonitis. Gastroenterology 146, 1680–1690.e1 (2014).

    CAS  PubMed  Google Scholar 

  100. Singh, V. et al. Noradrenaline versus terlipressin in the treatment of hepatorenal syndrome: a randomized study. J. Hepatol. 56, 1293–1298 (2012).

    CAS  PubMed  Google Scholar 

  101. Sharma, P., Kumar, A., Shrama, B. C. & Sarin, S. K. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am. J. Gastroenterol. 103, 1689–1697 (2008).

    CAS  PubMed  Google Scholar 

  102. Cavallin, M. et al. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: A randomized controlled study. Hepatology 63, 983–992 (2016). This study proves that continuous intravenous infusion of terlipressin is safer than bolus administration in patients with cirrhosis and HRS.

    CAS  PubMed  Google Scholar 

  103. Cavallin, M. et al. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: A randomized trial. Hepatology 62, 567–574 (2015).

    CAS  PubMed  Google Scholar 

  104. Boyer, T. D. et al. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. Gastroenterology 150, 1579–1589.e2 (2016).

    CAS  PubMed  Google Scholar 

  105. Fernández, J. et al. A randomized unblinded pilot study comparing albumin versus hydroxyethyl starch in spontaneous bacterial peritonitis. Hepatology 42, 627–634 (2005).

    PubMed  Google Scholar 

  106. Brinch, K., Møller, S., Bendtsen, F., Becker, U. & Henriksen, J. H. Plasma volume expansion by albumin in cirrhosis. Relation to blood volume distribution, arterial compliance and severity of disease. J. Hepatol. 39, 24–31 (2003).

    CAS  PubMed  Google Scholar 

  107. Bortoluzzi, A. et al. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: molecular mechanisms. Hepatology 57, 266–276 (2013).

    CAS  PubMed  Google Scholar 

  108. Ortega, R. Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: Results of a prospective, nonrandomized study. Hepatology 36, 941–948 (2002).

    CAS  PubMed  Google Scholar 

  109. Neri, S. et al. Terlipressin and albumin in patients with cirrhosis and type i hepatorenal syndrome. Dig. Dis. Sci. 53, 830–835 (2008).

    CAS  PubMed  Google Scholar 

  110. Solanki, P. et al. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebo-controlled clinical trial. J. Gastroenterol. Hepatol. 18, 152–156 (2003).

    CAS  PubMed  Google Scholar 

  111. Ginès, P. Management of hepatorenal syndrome in the era of acute-on-chronic liver failure: terlipressin and beyond. Gastroenterology 150, 1525–1527 (2016).

    PubMed  Google Scholar 

  112. Sanyal, A. J. et al. Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin versus placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomised clinical studies. Aliment. Pharmacol. Ther. 45, 1390–1402 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Facciorusso, A. et al. Comparative efficacy of pharmacological strategies for management of type 1 hepatorenal syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 2, 94–102 (2017).

    PubMed  Google Scholar 

  114. Alessandria, C. et al. Noradrenalin versus terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J. Hepatol. 47, 499–505 (2007).

    CAS  PubMed  Google Scholar 

  115. Rodriguez, E. et al. Treatment of type 2 hepatorenal syndrome in patients awaiting transplantation: effects on kidney function and transplantation outcomes. Liver Transplant. 21, 1347–1354 (2015).

    Google Scholar 

  116. Angeli, P. et al. Reversal of type 1 hepatorenal syndrome with the administration of midodrine and octreotide. Hepatology 29, 1690–1697 (1999).

    CAS  PubMed  Google Scholar 

  117. Wong, F., Pantea, L. & Sniderman, K. Midodrine, octreotide, albumin, and TIPS in selected patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 40, 55–64 (2004).

    CAS  PubMed  Google Scholar 

  118. Narahara, Y. et al. Effects of terlipressin on systemic, hepatic and renal hemodynamics in patients with cirrhosis. J. Gastroenterol. Hepatol. 24, 1791–1797 (2009).

    CAS  PubMed  Google Scholar 

  119. Domenicali, M. et al. Posttranscriptional changes of serum albumin: clinical and prognostic significance in hospitalized patients with cirrhosis. Hepatology 60, 1851–1860 (2014).

    CAS  PubMed  Google Scholar 

  120. Boyer, T. D. et al. Predictors of response to terlipressin plus albumin in hepatorenal syndrome (HRS) type 1: relationship of serum creatinine to hemodynamics. J. Hepatol. 55, 315–321 (2011).

    CAS  PubMed  Google Scholar 

  121. Velez, J. C. Q. & Nietert, P. J. Therapeutic response to vasoconstrictors in hepatorenal syndrome parallels increase in mean arterial pressure: a pooled analysis of clinical trials. Am. J. Kidney Dis. 58, 928–938 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Trawalé, J.-M. et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int. 30, 725–732 (2010).

    PubMed  Google Scholar 

  123. Rodríguez, E. et al. Terlipressin and albumin for type-1 hepatorenal syndrome associated with sepsis. J. Hepatol. 60, 955–961 (2014).

    PubMed  Google Scholar 

  124. Piano, S. et al. Impact of acute-on-chronic liver failure on response to treatment with terlipressin and albumin in patients with type 1 hepatorenal syndrome. J. Hepatol. 66, S572 (2017).

    Google Scholar 

  125. Acevedo, J. et al. Relative adrenal insufficiency in decompensated cirrhosis: relationship to short-term risk of severe sepsis, hepatorenal syndrome, and death. Hepatology 58, 1757–1765 (2013).

    CAS  PubMed  Google Scholar 

  126. Mitzner, S. et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis mars: results of a prospective, randomized, controlled clinical trial. Liver Transplant. 6, 277–286 (2000).

    CAS  Google Scholar 

  127. Bañnares, R. et al. Extracorporeal liver support with the molecular adsorbent recirculating system (MARS) in patients with acute-on-chronic liver failure (AOCLF). The RELIEF trial. J. Hepatol. 52, S459–S460 (2010).

    Google Scholar 

  128. Wong, F., Raina, N. & Richardson, R. Molecular adsorbent recirculating system is ineffective in the management of type 1 hepatorenal syndrome in patients with cirrhosis with ascites who have failed vasoconstrictor treatment. Gut 59, 381–386 (2009).

    PubMed  Google Scholar 

  129. European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 69, 406–460 (2018).

    Google Scholar 

  130. Zhang, Z., Maddukuri, G., Jaipaul, N. & Cai, C. X. Role of renal replacement therapy in patients with type 1 hepatorenal syndrome receiving combination treatment of vasoconstrictor plus albumin. J. Crit. Care 30, 969–974 (2015).

    CAS  PubMed  Google Scholar 

  131. Wong, F., Leung, W., Al Beshir, M., Marquez, M. & Renner, E. L. Outcomes of patients with cirrhosis and hepatorenal syndrome type 1 treated with liver transplantation. Liver Transplant. 21, 300–307 (2015).

    Google Scholar 

  132. Marik, P. E., Wood, K. & Starzl, T. E. The course of type 1 hepato-renal syndrome post liver transplantation. Nephrol. Dial. Transplant. 21, 478–482 (2005).

    PubMed  PubMed Central  Google Scholar 

  133. Iwatsuki, S. et al. Recovery from hepatorenal syndrome after orthotopic liver transplantation. N. Engl. J. Med. 289, 1155–1159 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Boyer, T. D. et al. Impact of liver transplantation on the survival of patients treated for hepatorenal syndrome type 1. Liver Transplant. 17, 1328–1332 (2011).

    Google Scholar 

  135. Chok, K. S. H. et al. Outcomes of living donor liver transplantation for patients with preoperative type 1 hepatorenal syndrome and acute hepatic decompensation. Liver Transplant. 18, 779–785 (2012).

    Google Scholar 

  136. Goldaracena, N. et al. Living versus deceased donor liver transplantation provides comparable recovery of renal function in patients with hepatorenal syndrome: a matched case-control study. Am. J. Transplant. 14, 2788–2795 (2014).

    CAS  PubMed  Google Scholar 

  137. Martin, E. F. et al. Recipient survival and graft survival are not diminished by simultaneous liver-kidney transplantation: an analysis of the united network for organ sharing database. Liver Transplant. 18, 914–929 (2012).

    Google Scholar 

  138. Eason, J. D. et al. Proceedings of consensus conference on simultaneous liver kidney transplantation (SLK). Am. J. Transplant. 8, 2243–2251 (2008).

    CAS  PubMed  Google Scholar 

  139. Formica, R. N. Simultaneous liver kidney transplantation. Curr. Opin. Nephrol. Hypertens. 25, 577–582 (2016).

    CAS  PubMed  Google Scholar 

  140. Cantarovich, M. et al. Canadian forum on combined organ transplantation. Transplantation 100, 1339–1348 (2016).

    PubMed  Google Scholar 

  141. Sethi, A., Estrella, M. M., Ugarte, R. & Atta, M. Kidney function and mortality post-liver transplant in the Model for End-Stage Liver Disease era. Int. J. Nephrol. Renovasc. Dis. 4, 139–144 (2011).

  142. Ginés, P. et al. Compensated cirrhosis: natural history and prognostic factors. Hepatology 7, 122–128 (1987).

    PubMed  Google Scholar 

  143. Llach, J. et al. Prognostic value of arterial pressure, endogenous vasoactive systems, and renal function in cirrhotic patients admitted to the hospital for the treatment of ascites. Gastroenterology 94, 482–487 (1988). This seminal study demonstrates the prognostic value of variables related to systemic haemodynamics and renal function in patients with cirrhosis and ascites.

    CAS  PubMed  Google Scholar 

  144. Titó, L. et al. Recurrence of spontaneous bacterial peritonitis in cirrhosis: frequency and predictive factors. Hepatology 8, 27–31 (1988).

    PubMed  Google Scholar 

  145. Solà, E. et al. Factors related to quality of life in patients with cirrhosis and ascites: relevance of serum sodium concentration and leg edema. J. Hepatol. 57, 1199–1206 (2012).

    PubMed  Google Scholar 

  146. Ginès, P. Terlipressin for hepatorenal syndrome: ready for prime time. Lancet Gastroenterol. Hepatol. 2, 75–76 (2017).

    PubMed  Google Scholar 

  147. Nazar, A. et al. Predictors of response to therapy with terlipressin and albumin in patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 51, 219–226 (2009).

    Google Scholar 

  148. Salerno, F. et al. Diagnosis, treatment and survival of patients with hepatorenal syndrome: a survey on daily medical practice. J. Hepatol. 55, 1241–1248 (2011).

    CAS  PubMed  Google Scholar 

  149. Liu, H., Jayakumar, S., Traboulsi, M. & Lee, S. S. Cirrhotic cardiomyopathy: implications for liver transplantation. Liver Transplant. 23, 826–835 (2017).

    Google Scholar 

  150. Krag, A., Bendtsen, F., Mortensen, C., Henriksen, J. H. & Møller, S. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis. Eur. J. Gastroenterol. Hepatol. 22, 1085–1092 (2010).

    CAS  PubMed  Google Scholar 

  151. Dong, T., Aronsohn, A., Gautham Reddy, K. & Te, H. S. Rifaximin decreases the incidence and severity of acute kidney injury and hepatorenal syndrome in cirrhosis. Dig. Dis. Sci. 61, 3621–3626 (2016).

    CAS  PubMed  Google Scholar 

  152. Garg, V. et al. Granulocyte colony–stimulating factor mobilizes cd34+ cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 142, 505–512.e1 (2012).

    CAS  PubMed  Google Scholar 

  153. Lebrec, D. et al. Pentoxifylline does not decrease short-term mortality but does reduce complications in patients with advanced cirrhosis. Gastroenterology 138, 1755–1762.e2 (2010).

    CAS  PubMed  Google Scholar 

  154. Mathurin, P. et al. Prednisolone with versus without pentoxifylline and survival of patients with severe alcoholic hepatitis. JAMA 310, 1033 (2013).

    CAS  PubMed  Google Scholar 

  155. Park, S. H. et al. Pentoxifylline versus corticosteroid to treat severe alcoholic hepatitis: a randomised, non-inferiority, open trial. J. Hepatol. 61, 792–798 (2014).

    CAS  PubMed  Google Scholar 

  156. Pham, P.-T. T., Lunsford, K. E., Bunnapradist, S. & Danovitch, G. M. Simultaneous liver–kidney transplantation or liver transplantation alone for patients in need of liver transplantation with renal dysfunction. Curr. Opin. Organ. Transplant. 21, 194–200 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the work cited has been funded from public grants from Instituto de Salud Carlos III through the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016 (project reference PI 16/00043). This grant was co-funded by the European Regional Development Fund (FEDER), Agencia de Gestió d’Ajuts Universitaris I de Recerca (AGAUR) 2014/SGR 1281 and AGAUR 2017/SGR 1281 and the European Union (EU)-funded HORIZON 2020 project number 731875 (Acronym: LIVERHOPE). P.G. is a recipient of an ICREA Academia award. This review article is dedicated to the memory of Juan Rodés (1938–2017), who was a mentor and a friend.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.G.); Epidemiology (M.K.N.); Mechanisms/pathophysiology (E.S.); Diagnosis, screening and prevention (E.S.); Management (P.A. and F.W.); Quality of life (P.S.K.); Outlook (P.G.); Overview of the Primer (P.G.).

Corresponding author

Correspondence to Pere Ginès.

Ethics declarations

Competing interests

P.G. declares that he is a member of advisory boards for Ferring Pharmaceuticals, Intercept Pharmaceuticals, Martin Pharmaceuticals and Novartis. He has received research funds from Grifols and Sequana Medical AG. P.A. declares that he is a member of the advisory board for Sequana Medical AG and that he has no financial disclosures. F.W. declares grant support from and consultancy for Mallinckrodt and consultancy for Conatus and Ferring Pharmaceuticals. E.S., M.K.N. and P.S.K. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginès, P., Solà, E., Angeli, P. et al. Hepatorenal syndrome. Nat Rev Dis Primers 4, 23 (2018). https://doi.org/10.1038/s41572-018-0022-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0022-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing