Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Cryoglobulinaemia

Abstract

Cryoglobulinaemia refers to the serum presence of cryoglobulins, which are defined as immunoglobulins that precipitate at temperatures <37 °C. Type I cryoglobulinaemia consists of only one isotype or subclass of monoclonal immunoglobulin, whereas type II and type III are classified as mixed cryoglobulinaemia because they include immunoglobulin G (IgG) and IgM. Many lymphoproliferative, infectious and autoimmune disorders have been associated with mixed cryoglobulinaemia; however, hepatitis C virus (HCV) is the aetiologic agent in most patients. The underlying mechanism of the disorder is B cell lymphoproliferation and autoantibody production. Mixed cryoglobulinaemia can cause systemic vasculitis, with manifestations ranging from purpura, arthralgia and weakness to more serious lesions with skin ulcers, neurological and renal involvement. This Primer focuses on mixed cryoglobulinaemia, which has a variable course and a prognosis that is primarily influenced by vasculitis-associated multiorgan damage. In addition, the underlying associated disease in itself may cause considerable mortality and morbidity. Treatment of cryoglobulinaemic vasculitis should be modulated according to the underlying associated disease and the severity of organ involvement and relies on antiviral treatment (for HCV infection), immunosuppression and immunotherapy, particularly anti-CD20 B cell depletion therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of cryoglobulinaemia based on immune typing.
Fig. 2: Mechanisms of HCV-related cryoglobulinaemia vasculitis.
Fig. 3: The clinical, serological and pathological hallmarks of cryoglobulinaemic vasculitis.
Fig. 4: Renal pathology in cryoglobulinaemic vasculitis.
Fig. 5: Clinical overlap between HCV-related conditions and autoimmune diseases.
Fig. 6: Skin ulcers in severe cryoglobulinaemic vasculitis.

Similar content being viewed by others

References

  1. Brouet, J. C., Clauvel, J. P., Danon, F., Klein, M. & Seligmann, M. Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am. J. Med. 57, 775–788 (1974).

    CAS  PubMed  Google Scholar 

  2. Ramos-Casals, M., Stone, J. H., Cid, M. C. & Bosch, X. The cryoglobulinaemias. Lancet 379, 348–360 (2012).

    CAS  PubMed  Google Scholar 

  3. Ferri, C. et al. Association between hepatitis C virus and mixed cryoglobulinemia [see comment]. Clin. Exp. Rheumatol. 9, 621–624 (1991).

    CAS  PubMed  Google Scholar 

  4. Ferri, C. et al. B cells and mixed cryoglobulinemia. Autoimmun. Rev. 7, 114–120 (2007).

    CAS  PubMed  Google Scholar 

  5. Jennette, J. C. et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 37, 187–192 (1994).

    CAS  PubMed  Google Scholar 

  6. Jennette, J. et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    CAS  PubMed  Google Scholar 

  7. Monti, G. et al. Prevalence of mixed cryoglobulinaemia syndrome and circulating cryoglobulins in a population-based survey: the Origgio study. Autoimmun. Rev. 13, 609–614 (2014).

    CAS  PubMed  Google Scholar 

  8. Cacoub, P. et al. Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC Group. Multidepartment Virus C. Arthritis Rheum. 42, 2204–2212 (1999).

    CAS  PubMed  Google Scholar 

  9. Ramos-Casals, M., Trejo, O., García-Carrasco, M., Cervera, R. & Font, J. Mixed cryoglobulinemia: new concepts. Lupus 9, 83–91 (2000).

    CAS  PubMed  Google Scholar 

  10. Ferri, C. et al. Antibodies to hepatitis C virus in patients with mixed cryoglobulinemia. Arthritis Rheum. 34, 1606–1610 (1991). This study pioneers the notion that viral agents (including HCV) have a role in the pathogenesis of mixed cryoglobulinaemia patients.

    CAS  PubMed  Google Scholar 

  11. Casato, M. et al. Cryoglobulinaemia and hepatitis C virus. Lancet 337, 1047–1048 (1991).

    CAS  PubMed  Google Scholar 

  12. Disdier, P., Harlé, J. R. & Weiller, P. J. Cryoglobulinaemia and hepatitis C infection. Lancet 338, 1151–1152 (1991).

    CAS  PubMed  Google Scholar 

  13. Arribas, J. R. et al. Association between hepatitis C virus and mixed cryoglobulinemia. Rev. Infect. Dis. 13, 770–771 (1991).

    CAS  PubMed  Google Scholar 

  14. Mohd Hanafiah, K., Groeger, J., Flaxman, A. D. & Wiersma, S. T. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology 57, 1333–1342 (2013).

    PubMed  Google Scholar 

  15. Kayali, Z., Buckwold, V. E., Zimmerman, B. & Schmidt, W. N. Hepatitis C, cryoglobulinemia, and cirrhosis: a meta-analysis. Hepatology 36, 978–985 (2002).

    PubMed  Google Scholar 

  16. Lunel, F. et al. Cryoglobulinemia in chronic liver diseases: role of hepatitis C virus and liver damage. Gastroenterology 106, 1291–1300 (1994).

    CAS  PubMed  Google Scholar 

  17. Adinolfi, L. E. et al. Epidemiology, clinical spectrum and prognostic value of mixed cryoglobulinaemia in hepatitis C virus patients: a prospective study. Ital. J. Gastroenterol. 28, 1–9 (1996).

    CAS  PubMed  Google Scholar 

  18. Saadoun, D. et al. Cryoglobulinemia is associated with steatosis and fibrosis in chronic hepatitis C. Hepatology 43, 1337–1345 (2006).

    CAS  PubMed  Google Scholar 

  19. Terrier, B. et al. Non HCV-related infectious cryoglobulinemia vasculitis: results from the French nationwide CryoVas survey and systematic review of the literature. J. Autoimmun. 65, 74–81 (2015). This article presents a nationwide survey that included patients with HCV-negative cryoglobulinaemia vasculitis, which describes the presentation, therapeutic management and outcome of patients with non-HCV infectious cryoglobulinaemia vasculitis.

    PubMed  Google Scholar 

  20. Ferri, C. et al. Mixed cryoglobulinemia: demographic, clinical, and serologic features and survival in 231 patients. Semin. Arthritis Rheum. 33, 355–374 (2004).

    PubMed  Google Scholar 

  21. Scotto, G. et al. Cryoglobulinemia in subjects with HCV infection alone, HIV infection and HCV/HIV coinfection. J. Infect. 52, 294–299 (2006).

    CAS  PubMed  Google Scholar 

  22. García-Carrasco, M. et al. Cryoglobulinemia in systemic lupus erythematosus: prevalence and clinical characteristics in a series of 122 patients. Semin. Arthritis Rheum. 30, 366–373 (2001).

    PubMed  Google Scholar 

  23. Tzioufas, A. G. et al. Cryoglobulinemia in autoimmune rheumatic diseases. Evidence of circulating monoclonal cryoglobulins in patients with primary Sjögren’s syndrome. Arthritis Rheum. 29, 1098–1104 (1986). This study suggests that primary Sjögren syndrome expresses, in addition to polyclonal B cell hyper-reactivity, a monoclonal process in the absence of lymphoid neoplasia; it showed that the extraglandular manifestations of the syndrome may be due to an immune-complex-mediated pathology.

    CAS  PubMed  Google Scholar 

  24. Brito-Zerón, P. et al. Sjögren syndrome. Nat. Rev. Dis. Primers 2, 16047 (2016).

    PubMed  Google Scholar 

  25. Monti, G. et al. Incidence and characteristics of non-Hodgkin lymphomas in a multicenter case file of patients with hepatitis C virus-related symptomatic mixed cryoglobulinemias. Arch. Intern. Med. 165, 101–105 (2005).

    PubMed  Google Scholar 

  26. Saadoun, D., Landau, D. A., Calabrese, L. H. & Cacoub, P. P. Hepatitis C-associated mixed cryoglobulinaemia: a crossroad between autoimmunity and lymphoproliferation. Rheumatology (Oxford) 46, 1234–1242 (2007).

    CAS  Google Scholar 

  27. Besson, C. et al. Characteristics and outcome of diffuse large B cell lymphoma in hepatitis C virus-positive patients in LNH 93 and LNH 98 Groupe d’Etude des Lymphomes de l’Adulte programs. J. Clin. Oncol. 24, 953–960 (2006).

    PubMed  Google Scholar 

  28. Néel, A. et al. Long-term outcome of monoclonal (type 1) cryoglobulinemia. Am. J. Hematol. 89, 156–161 (2014).

    PubMed  Google Scholar 

  29. Roccatello, D. et al. Multicenter study on hepatitis C virus-related cryoglobulinemic glomerulonephritis. Am. J. Kidney Dis. 49, 69–82 (2007). In the largest available cohort of cryoglobulin-associated biopsy-proven glomerulonephritis, this study confirms the close association between mixed cryoglobulinaemia, HCV infection, type II cryoglobulin and typical histological features.

    CAS  PubMed  Google Scholar 

  30. Fornasieri, A. et al. Glomerulonephritis induced by human IgMK-IgG cryoglobulins in mice. Lab. Invest. 69, 531–540 (1993).

    CAS  PubMed  Google Scholar 

  31. Grey, H. M. & Kohler, P. F. Cryoimmunoglobulins. Semin. Hematol. 10, 87–112 (1973).

    CAS  PubMed  Google Scholar 

  32. Ferri, C. et al. Hepatitis C virus infection in patients with non-Hodgkin’s lymphoma. Br. J. Haematol. 88, 392–394 (1994). This study provides the first insight about the crosslink between haematological malignancies, mainly B cell lymphomas, and HCV infection.

    CAS  PubMed  Google Scholar 

  33. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    CAS  PubMed  Google Scholar 

  34. Morsica, G. et al. Replication of hepatitis C virus in B lymphocytes (CD19+). Blood 94, 1138–1139 (1999).

    CAS  PubMed  Google Scholar 

  35. Ito, M. et al. Enhanced expression of lymphomagenesis-related genes in peripheral blood B cells of chronic hepatitis C patients. Clin. Immunol. 135, 459–465 (2010).

    CAS  PubMed  Google Scholar 

  36. Caussin-Schwemling, C., Schmitt, C. & Stoll-Keller, F. Study of the infection of human blood derived monocyte/macrophages with hepatitis C virus in vitro. J. Med. Virol. 65, 14–22 (2001).

    CAS  PubMed  Google Scholar 

  37. Navas, M.-C. et al. Dendritic cell susceptibility to hepatitis C virus genotype 1 infection. J. Med. Virol. 67, 152–161 (2002).

    CAS  PubMed  Google Scholar 

  38. Agnello, V., Chung, R. T. & Kaplan, L. M. A role for hepatitis C virus infection in type II cryoglobulinemia. N. Engl. J. Med. 327, 1490–1495 (1992).

    CAS  PubMed  Google Scholar 

  39. Sansonno, D. et al. Detection and distribution of hepatitis C virus-related proteins in lymph nodes of patients with type II mixed cryoglobulinemia and neoplastic or non-neoplastic lymphoproliferation. Blood 88, 4638–4645 (1996).

    CAS  PubMed  Google Scholar 

  40. De Vita, S. et al. Hepatitis C virus within a malignant lymphoma lesion in the course of type II mixed cryoglobulinemia. Blood 86, 1887–1892 (1995).

    PubMed  Google Scholar 

  41. Giordano, T. P. et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA 297, 2010–2017 (2007).

    CAS  PubMed  Google Scholar 

  42. Hermine, O. et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N. Engl. J. Med. 347, 89–94 (2002).

    CAS  PubMed  Google Scholar 

  43. Charles, E. D. & Dustin, L. B. Hepatitis C virus-induced cryoglobulinemia. Kidney Int. 76, 818–824 (2009).

    PubMed  Google Scholar 

  44. Charles, E. D. et al. Clonal expansion of immunoglobulin M+CD27+B cells in HCV-associated mixed cryoglobulinemia. Blood 111, 1344–1356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. De Vita, S. et al. Gastric mucosa as an additional extrahepatic localization of hepatitis C virus: viral detection in gastric low-grade lymphoma associated with autoimmune disease and in chronic gastritis. Hepatology 31, 182–189 (2000).

    PubMed  Google Scholar 

  46. Isnardi, I. et al. Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones. Blood 115, 5026–5036 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ivanovski, M. et al. Somatic hypermutation, clonal diversity, and preferential expression of the VH 51p1/VL kv325 immunoglobulin gene combination in hepatitis C virus-associated immunocytomas. Blood 91, 2433–2442 (1998).

    CAS  PubMed  Google Scholar 

  48. Flint, M. et al. Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein. J. Virol. 73, 6782–6790 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yagnik, A. T. et al. A model for the hepatitis C virus envelope glycoprotein E2. Proteins 40, 355–366 (2000).

    CAS  PubMed  Google Scholar 

  50. Ferri, C., Pileri, S. & Zignego, A. L. in Infectious Causes of Cancer (ed. Goedert, J. J.) 349–368 (2000).

  51. Roccatello, D. et al. Impaired hepatosplenic elimination of circulating cryoglobulins in patients with essential mixed cryoglobulinaemia and hepatitis C virus (HCV) infection. Clin. Exp. Immunol. 110, 9–14 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferri, C. et al. HCV-related autoimmune and neoplastic disorders: the HCV syndrome. Dig. Liver Dis. 39 (Suppl. 1), S13–S21 (2007).

    PubMed  Google Scholar 

  53. Ferri, C. et al. Hepatitis C virus syndrome: a constellation of organ- and non-organ specific autoimmune disorders, B cell non-Hodgkin’s lymphoma, and cancer. World J. Hepatol. 7, 327–343 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Roccatello, D. et al. Long-term effects of anti-CD20 monoclonal antibody treatment of cryoglobulinaemic glomerulonephritis. Nephrol. Dial. Transplant. 19, 3054–3061 (2004). This study presents the first available evidence of the safety and efficacy of anti-CD20 monoclonal antibody in cryoglobulinaemic glomerulonephritis.

    CAS  PubMed  Google Scholar 

  55. Roccatello, D., Giachino, O., Menegatti, E. & Baldovino, S. Relationship between cryoglobulinemia-associated nephritis and HCV infection. Expert Rev. Clin. Immunol. 4, 515–524 (2008).

    CAS  PubMed  Google Scholar 

  56. Sansonno, D. & Dammacco, F. Hepatitis C virus, cryoglobulinaemia, and vasculitis: immune complex relations. Lancet Infect. Dis. 5, 227–236 (2005).

    PubMed  Google Scholar 

  57. Roccasecca, R. et al. Binding of the hepatitis C virus E2 glycoprotein to CD81 is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2. J. Virol. 77, 1856–1867 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Petracca, R. et al. Structure-function analysis of hepatitis C virus envelope-CD81 binding. J. Virol. 74, 4824–4830 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosa, D. et al. Activation of naïve B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc. Natl Acad. Sci. USA 102, 18544–18549 (2005).

    CAS  PubMed  Google Scholar 

  60. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  PubMed  Google Scholar 

  61. De Sanjose, S. et al. Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin. Gastroenterol. Hepatol. 6, 451–458 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. Roccatello, D. et al. Role of monocytes in cryoglobulinemia-associated nephritis. Kidney Int. 43, 1150–1155 (1993).

    CAS  PubMed  Google Scholar 

  63. D’Amico, G., Colasanti, G., Ferrario, F. & Sinico, R. A. Renal involvement in essential mixed cryoglobulinemia. Kidney Int. 35, 1004–1014 (1989).

    PubMed  Google Scholar 

  64. Guo, S. et al. Macrophages are essential contributors to kidney injury in murine cryoglobulinemic membranoproliferative glomerulonephritis. Kidney Int. 80, 946–958 (2011).

    CAS  PubMed  Google Scholar 

  65. Menegatti, E. et al. Immunogenetics of complement in mixed cryoglobulinaemia. Clin. Exp. Rheumatol. 34 (3 Suppl. 97), S12–S15 (2016).

    PubMed  Google Scholar 

  66. Ferri, C., Zignego, A. L. & Pileri, S. A. Cryoglobulins. J. Clin. Pathol. 55, 4–13 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. De Vita, S. et al. Preliminary classification criteria for the cryoglobulinaemic vasculitis. Ann. Rheum. Dis. 70, 1183–1190 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Pietrogrande, M. et al. Recommendations for the management of mixed cryoglobulinemia syndrome in hepatitis C virus-infected patients. Autoimmun. Rev. 10, 444–454 (2011).

    PubMed  Google Scholar 

  69. Stone, M. J. & Bogen, S. A. Evidence-based focused review of management of hyperviscosity syndrome. Blood 119, 2205–2208 (2012).

    CAS  PubMed  Google Scholar 

  70. Terrier, B. et al. The spectrum of type I cryoglobulinemia vasculitis: new insights based on 64 cases. Medicine (Baltimore) 92, 61–68 (2013).

    CAS  Google Scholar 

  71. Trejo, O. et al. Cryoglobulinemia: study of etiologic factors and clinical and immunologic features in 443 patients from a single center. Medicine (Baltimore) 80, 252–262 (2001).

    CAS  Google Scholar 

  72. Quartuccio, L. et al. Validation of the classification criteria for cryoglobulinaemic vasculitis. Rheumatology 53, 2209–2213 (2014).

    PubMed  Google Scholar 

  73. McLeod, B. C. & Sassetti, R. J. ‘Hypocryoglobulins’. enhanced cryoprecipitation from hypotonic serum in patients with vasculitis. Arch. Intern. Med. 144, 1381–1385 (1984).

    CAS  PubMed  Google Scholar 

  74. Ferri, C. et al. International diagnostic guidelines for patients with HCV-related extrahepatic manifestations. A multidisciplinary expert statement. Autoimmun. Rev. 15, 1145–1160 (2016). A multidisciplinary network of experts, the International Study Group of Extrahepatic Manifestations Related to Hepatitis C Virus Infection (ISG-EHCV), was organized with the intention to formulate diagnostic guidelines for the work-up of possible HCV-related extrahepatic manifestations.

    PubMed  Google Scholar 

  75. Shiboski, C. H. et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome. Ann. Rheum. Dis. 76, 9–16 (2017).

    PubMed  Google Scholar 

  76. Retamozo, S., Brito-Zerón, P., Bosch, X., Stone, J. H. & Ramos-Casals, M. Cryoglobulinemic disease. Oncology (Williston Park) 27, 1098–1105, 1110–1116 (2013).

    Google Scholar 

  77. Landau, D.-A. et al. Causes and predictive factors of mortality in a cohort of patients with hepatitis C virus-related cryoglobulinemic vasculitis treated with antiviral therapy. J. Rheumatol. 37, 615–621 (2010).

    CAS  PubMed  Google Scholar 

  78. Terrier, B. et al. Prognostic factors in patients with hepatitis C virus infection and systemic vasculitis. Arthritis Rheum. 63, 1748–1757 (2011).

    PubMed  Google Scholar 

  79. Saadoun, D. et al. Increased risks of lymphoma and death among patients with non-hepatitis C virus-related mixed cryoglobulinemia. Arch. Intern. Med. 166, 2101–2108 (2006).

    PubMed  Google Scholar 

  80. Saadoun, D. et al. Efficacy and safety of sofosbuvir plus daclatasvir for treatment of HCV-associated cryoglobulinemia vasculitis. Gastroenterology 153, 49–52.e5 (2017). This article presents an open-label, prospective, multicentre study of the effectiveness and tolerance of an all-oral, interferon-free and ribavirin-free regimen of sofosbuvir plus daclatasvir in patients with HCV-associated cryoglobulinaemia vasculitis.

    CAS  PubMed  Google Scholar 

  81. Tarantino, A. et al. Long-term predictors of survival in essential mixed cryoglobulinemic glomerulonephritis. Kidney Int. 47, 618–623 (1995).

    CAS  PubMed  Google Scholar 

  82. Dammacco, F. et al. Natural interferon-alpha versus its combination with 6-methyl-prednisolone in the therapy of type II mixed cryoglobulinemia: a long-term, randomized, controlled study. Blood 84, 3336–3343 (1994).

    CAS  PubMed  Google Scholar 

  83. Fabrizi, F. et al. Interferon therapy for HCV-associated glomerulonephritis: meta-analysis of controlled trials. Int. J. Artif. Organs 30, 212–219 (2007).

    CAS  PubMed  Google Scholar 

  84. Gobbi, M. & Scudeletti, M. Deflazacort in the treatment of haematologic disorders. Eur. J. Clin. Pharmacol. 45 (Suppl. 1), S25–S28 (1993).

    PubMed  Google Scholar 

  85. Roccatello, D. et al. Improved (4 plus 2) Rituximab protocol for severe cases of mixed cryoglobulinemia: a 6-year observational study. Am. J. Nephrol. 43, 251–260 (2016).

    CAS  PubMed  Google Scholar 

  86. Quartuccio, L. et al. Rituximab treatment for glomerulonephritis in HCV-associated mixed cryoglobulinaemia: efficacy and safety in the absence of steroids. Rheumatology (Oxford) 45, 842–846 (2006).

    CAS  Google Scholar 

  87. Visentini, M. et al. Efficacy of low-dose rituximab for the treatment of mixed cryoglobulinemia vasculitis: phase II clinical trial and systematic review. Autoimmun. Rev. 14, 889–896 (2015).

    CAS  PubMed  Google Scholar 

  88. De Vita, S., Quartuccio, L. & Fabris, M. Rituximab in mixed cryoglobulinemia: increased experience and perspectives. Dig. Liver Dis. 39, 122–128 (2007).

    Google Scholar 

  89. Visentini, M. et al. A phase II, single-arm multicenter study of low-dose rituximab for refractory mixed cryoglobulinemia secondary to hepatitis C virus infection. Autoimmun. Rev. 10, 714–719 (2011).

    CAS  PubMed  Google Scholar 

  90. Dammacco, F. et al. Pegylated interferon-, ribavirin, and rituximab combined therapy of hepatitis C virus-related mixed cryoglobulinemia: a long-term study. Blood 116, 343–353 (2010).

    CAS  PubMed  Google Scholar 

  91. Ferri, C. et al. Treatment with rituximab in patients with mixed cryoglobulinemia syndrome: results of multicenter cohort study and review of the literature. Autoimmun. Rev. 11, 48–55 (2011).

    CAS  PubMed  Google Scholar 

  92. Petrarca, A. et al. Safety and efficacy of rituximab in patients with hepatitis C virus-related mixed cryoglobulinemia and severe liver disease. Blood 116, 335–342 (2010).

    CAS  PubMed  Google Scholar 

  93. Pellicelli, A. M. & Zoli, V. Role of ribavirin in hepatitis flare in HCV-infected patients with B cell non Hodgkin’s lymphoma treated with rituximab-containing regimens. Dig. Liver Dis. 43, 501–502 (2011).

    PubMed  Google Scholar 

  94. Matsue, K. et al. Reactivation of hepatitis B virus after rituximab-containing treatment in patients with CD20-positive B cell lymphoma. Cancer 116, 4769–4776 (2010).

    PubMed  Google Scholar 

  95. Cavallo, R. et al. Rituximab in cryoglobulinemic peripheral neuropathy. J. Neurol. 256, 1076–1082 (2009).

  96. Mazzi, G. et al. Plasma-exchange in chronic peripheral neurological disorders. Int. J. Artif. Organs 22, 40–46 (1999).

    CAS  PubMed  Google Scholar 

  97. Sinico, R. A. et al. Plasma exchange in the treatment of essential mixed cryoglobulinemia nephropathy. Long-term follow up. Int. J. Artif. Organs 8 (Suppl. 2), 15–18 (1985).

    PubMed  Google Scholar 

  98. L’Abbate, A. et al. Long term effects of cryoapheresis and cytostatic treatment in essential mixed cryoglobulinemia. Int. J. Artif. Organs 8 (Suppl. 2), 19–22 (1985).

    PubMed  Google Scholar 

  99. Li, X. et al. Prognostic analysis of acute exacerbations of hepatitis-B after chemotherapy in combination with rituximab in 19 patients with lymphoma. Leuk. Lymphoma 51, 1678–1685 (2010).

    CAS  PubMed  Google Scholar 

  100. Marignani, M. et al. HCV-positive status and hepatitis flares in patients with B cell non-Hodgkin’s lymphoma treated with rituximab-containing regimens. Dig. Liver Dis. 43, 139–142 (2011).

    CAS  PubMed  Google Scholar 

  101. Ramos-Casals, M. et al. Evidence-based recommendations on the management of extrahepatic manifestations of chronic hepatitis C virus infection. J. Hepatol. 66, 1282–1299 (2017).

    PubMed  Google Scholar 

  102. Sidana, S. et al. Clinical presentation and outcomes of patients with type 1 monoclonal cryoglobulinemia. Am. J. Hematol. 92, 668–673 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Harel, S. et al. Clinico-biological characteristics and treatment of type I monoclonal cryoglobulinaemia: a study of 64 cases. Br. J. Haematol. 168, 671–678 (2015).

    CAS  PubMed  Google Scholar 

  104. Retamozo, S., Brito-Zerón, P., Quartuccio, L., De Vita, S. & Ramos-Casals, M. Introducing treat-to-target strategies of autoimmune extrahepatic manifestations of chronic hepatitis C virus infection. Expert Rev. Clin. Pharmacol. 10, 1085–1101 (2017).

    CAS  PubMed  Google Scholar 

  105. Ramos-Casals, M. et al. Life-threatening cryoglobulinemia: clinical and immunological characterization of 29 cases. Semin. Arthritis Rheum. 36, 189–196 (2006).

    PubMed  Google Scholar 

  106. Quartuccio, L. et al. Retreatment regimen of rituximab monotherapy given at the relapse of severe HCV-related cryoglobulinemic vasculitis: long-term follow up data of a randomized controlled multicentre study. J. Autoimmun. 63, 88–93 (2015).

    CAS  PubMed  Google Scholar 

  107. Roccatello, D. et al. Rituximab as a therapeutic tool in severe mixed cryoglobulinemia. Clin. Rev. Allergy Immunol. 34, 111–117 (2008).

    CAS  PubMed  Google Scholar 

  108. Roccatello, D. et al. The challenge of treating hepatitis C virus-associated cryoglobulinemic vasculitis in the era of anti-CD20 monoclonal antibodies and direct antiviral agents. Oncotarget 8, 41764–41777 (2017). This paper presents a comparative evaluation between two different therapeutic approaches to HCV-associated cryoglobulinaemia vasculitis.

    PubMed  PubMed Central  Google Scholar 

  109. Galli, M. et al. HCV-unrelated cryoglobulinaemic vasculitis: the results of a prospective observational study by the Italian Group for the Study of Cryoglobulinaemias (GISC). Clin. Exp. Rheumatol. 35 (Suppl. 1), 67–76 (2017).

    PubMed  Google Scholar 

  110. Mazzaro, C. et al. Hepatitis B virus related cryoglobulinemic vasculitis: a multicentre open label study from the Gruppo Italiano di Studio delle Crioglobulinemie – GISC. Dig. Liver Dis. 48, 780–784 (2016).

    PubMed  Google Scholar 

  111. Retamozo, S. et al. Cryoglobulinaemic vasculitis at diagnosis predicts mortality in primary Sjögren syndrome: analysis of 515 patients. Rheumatology (Oxford) 55, 1443–1451 (2016).

    Google Scholar 

  112. Terrier, B. et al. Safety and efficacy of rituximab in nonviral cryoglobulinemia vasculitis: data from the French Autoimmunity and Rituximab registry. Arthritis Care Res. (Hoboken) 62, 1787–1795 (2010).

    CAS  Google Scholar 

  113. Terrier, B. et al. Predictors of early relapse in patients with non-infectious mixed cryoglobulinemia vasculitis: results from the French nationwide CryoVas survey. Autoimmun. Rev. 13, 630–634 (2014).

    CAS  PubMed  Google Scholar 

  114. Quartuccio, L. et al. Performance of the preliminary classification criteria for cryoglobulinaemic vasculitis and clinical manifestations in hepatitis C virus-unrelated cryoglobulinaemic vasculitis. Clin. Exp. Rheumatol. 30, S48–S52 (2012).

    PubMed  Google Scholar 

  115. Younossi, Z., Park, H., Henry, L., Adeyemi, A. & Stepanova, M. Extrahepatic manifestations of hepatitis C: a meta-analysis of prevalence, quality of life, and economic burden. Gastroenterology 150, 1599–1608 (2016).

    PubMed  Google Scholar 

  116. Scarpato, S. et al. Pain management in cryoglobulinaemic syndrome. Best Pract. Res. Clin. Rheumatol. 29, 77–89 (2015).

    PubMed  Google Scholar 

  117. Seaman, K., Paterson, B. L., Vallis, M., Hirsch, G. & Peltekian, K. M. Future directions for investigation of fatigue in chronic hepatitis C viral infection. Chronic Illn. 5, 115–128 (2009).

    PubMed  Google Scholar 

  118. Monaco, S. Hepatitis C virus-associated neurocognitive and neuropsychiatric disorders: advances in 2015. World J. Gastroenterol. 21, 11974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Younossi, Z. M. et al. Association of work productivity with clinical and patient-reported factors in patients infected with hepatitis C virus. J. Viral Hepat. 23, 623–630 (2016).

    CAS  PubMed  Google Scholar 

  120. Meltzer, M., Franklin, E. C., Elias, K., McCluskey, R. T. & Cooper, N. Cryoglobulinemia — a clinical and laboratory study. II. Cryoglobulins with rheumatoid factor activity. Am. J. Med. 40, 837–856 (1966).

    CAS  PubMed  Google Scholar 

  121. Pascual, M., Perrin, L., Giostra, E. & Schifferli, J. A. Hepatitis C virus in patients with cryoglobulinemia type II. J. Infect. Dis. 162, 569–570 (1990).

    CAS  PubMed  Google Scholar 

  122. Ferri, C. et al. Infection of peripheral blood mononuclear cells by hepatitis C virus in mixed cryoglobulinemia. Blood 82, 3701–3704 (1993).

    CAS  PubMed  Google Scholar 

  123. Landau, D. A. et al. Correlation of clinical and virologic responses to antiviral treatment and regulatory T cell evolution in patients with hepatitis C virus-induced mixed cryoglobulinemia vasculitis. Arthritis Rheum. 58, 2897–2907 (2008).

    PubMed  Google Scholar 

  124. Sneller MC, Hu Z, Langford CA. A randomized controlled trial of rituximab following failure of antiviral therapy for hepatitis C virus-associated cryoglobulinemic vasculitis. Arthritis Rheum 64, 835–42 (2012).

    CAS  PubMed  Google Scholar 

  125. De Vita S, et al. A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum 64, 843–53 (2012).

    CAS  PubMed  Google Scholar 

  126. Roccatello, D. et al. The ‘4 plus 2’ rituximab protocol makes maintenance treatment unneeded in patients with refractory ANCA-associated vasculitis: a 10 years observation study. Oncotarget 8, 52072–52077 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Joseph, A. M. Treatment of rheumatoid arthritis in patients with concomitant chronic hepatitis C infection. Ther. Adv. Musculoskelet. Dis. 4, 35–40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cohen, C. et al. Efficacy of tocilizumab in rituximab-refractory cryoglobulinemia vasculitis. Ann. Rheum. Dis. 71, 628–629 (2012).

    CAS  PubMed  Google Scholar 

  129. Lake-Bakaar, G., Jacobson, I. & Talal, A. B cell activating factor (BAFF) in the natural history of chronic hepatitis C virus liver disease and mixed cryoglobulinaemia. Clin. Exp. Immunol. 170, 231–237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Saadoun, D. et al. Regulatory T cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    CAS  PubMed  Google Scholar 

  131. Zignego, A. L. et al. International therapeutic guidelines for patients with HCV-related extrahepatic disorders. A multidisciplinary expert statement. Autoimmun. Rev. 16, 523–541 (2017).

    PubMed  Google Scholar 

  132. Ferri, C. et al. Effect of alpha-interferon on hepatitis C virus chronic infection in mixed cryoglobulinemia patients. Infection 21, 93–97 (1993).

    CAS  PubMed  Google Scholar 

  133. Mazzaro, C. et al. Efficacy and safety of peginterferon alfa-2b plus ribavirin for HCV-positive mixed cryoglobulinemia: a multicentre open-label study. Clin. Exp. Rheumatol. 29, 933–941 (2011).

    PubMed  Google Scholar 

  134. Gragnani, L. et al. Long-term effect of HCV eradication in patients with mixed cryoglobulinemia: a prospective, controlled, open-label, cohort study. Hepatology 61, 1145–1153 (2015).

    CAS  PubMed  Google Scholar 

  135. La Civita, L. et al. Exacerbation of peripheral neuropathy during alpha-interferon therapy in a patient with mixed cryoglobulinemia and hepatitis B virus infection. J. Rheumatol. 23, 1641–1643 (1996).

    PubMed  Google Scholar 

  136. Banerjee, D. & Reddy, K. R. Review article: safety and tolerability of direct-acting anti-viral agents in the new era of hepatitis C therapy. Aliment. Pharmacol. Ther. 43, 674–696 (2016).

    CAS  PubMed  Google Scholar 

  137. Saadoun, D. et al. Sofosbuvir plus ribavirin for hepatitis C virus-associated cryoglobulinaemia vasculitis: VASCUVALDIC study. Ann. Rheum. Dis. 75, 1777–1782 (2016).

    CAS  PubMed  Google Scholar 

  138. Gragnani, L. et al. Prospective study of guideline-tailored therapy with direct-acting antivirals for hepatitis C virus-associated mixed cryoglobulinemia. Hepatology 64, 1473–1482 (2016). Interferon-free, guideline-tailored therapy with direct-acting antivirals is highly effective and safe for HCV-associated patients with mixed cryoglobulinaemia.

    CAS  PubMed  Google Scholar 

  139. Bonacci, M. et al. Virologic, clinical, and immune response outcomes of patients with hepatitis C virus–associated cryoglobulinemia treated with direct-acting antivirals. Clin. Gastroenterol. Hepatol. 15, 575–583.e1 (2017).

    CAS  PubMed  Google Scholar 

  140. Lauletta, G., Russi, S., Pavone, F., Vacca, A. & Dammacco, F. Direct-acting antiviral agents in the therapy of hepatitis C virus-related mixed cryoglobulinaemia: a single-centre experience. Arthritis Res. Ther. 19, 74 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Emery, J. S. et al. Efficacy and safety of direct acting antivirals for the treatment of mixed cryoglobulinemia. Am. J. Gastroenterol. 112, 1298–1308 (2017).

    CAS  PubMed  Google Scholar 

  142. Kondili, L. A. & Vella, S. PITER Collaborating Group. PITER: an ongoing nationwide study on the real-life impact of direct acting antiviral based treatment for chronic hepatitis C in Italy. Dig. Liver Dis. 47, 741–743 (2015).

    PubMed  Google Scholar 

  143. Cacoub, P., Desbois, A. C., Isnard-Bagnis, C., Rocatello, D. & Ferri, C. Hepatitis C virus infection and chronic kidney disease: time for reappraisal. J. Hepatol. 65, S82–S94 (2016).

    PubMed  Google Scholar 

  144. Sise, M. E. et al. Treatment of hepatitis C virus-associated mixed cryoglobulinemia with direct-acting antiviral agents. Hepatology 63, 408–417 (2016).

    CAS  PubMed  Google Scholar 

  145. Merli, M., Carli, G., Arcaini, L. & Visco, C. Antiviral therapy of hepatitis C as curative treatment of indolent B cell lymphoma. World J. Gastroenterol. 22, 8447–8458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Peveling-Oberhag, J., Arcaini, L., Bankov, K., Zeuzem, S. & Herrmann, E. The anti-lymphoma activity of antiviral therapy in HCV-associated B cell non-Hodgkin lymphomas: a meta-analysis. J. Viral Hepat. 23, 536–544 (2016).

    CAS  PubMed  Google Scholar 

  147. Arcaini, L., Rossi, D. & Paulli, M. Splenic marginal zone lymphoma: from genetics to management. Blood 127, 2072–2081 (2016).

    CAS  PubMed  Google Scholar 

  148. Tilly, H. et al. Diffuse large B cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26, v116–v125 (2015).

    PubMed  Google Scholar 

  149. Musto, P., Dell’Olio, M., Carotenuto, M., Mangia, A. & Andriulli, A. Hepatitis C virus infection: a new bridge between hematologists and gastroenterologists? Blood 88, 752–754 (1996).

    CAS  PubMed  Google Scholar 

  150. Carrier, P. et al. HCV-associated B cell non-Hodgkin lymphomas and new direct antiviral agents. Liver Int. 35, 2222–2227 (2015).

    CAS  PubMed  Google Scholar 

  151. Merli, M. et al. Outcome prediction of diffuse large B cell lymphomas associated with hepatitis C virus infection: a study on behalf of the Fondazione Italiana Linfomi. Haematologica 99, 489–496 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kyvernitakis, A. et al. Hepatitis C virus infection in patients undergoing hematopoietic cell transplantation in the era of direct-acting antiviral agents. Biol. Blood Marrow Transplant. 22, 717–722 (2016).

    PubMed  Google Scholar 

  153. Arcaini, L. et al. Interferon-free antiviral treatment in B cell lymphoproliferative disorders associated with hepatitis C virus infection. Blood 128, 2527–2532 (2016).

    CAS  PubMed  Google Scholar 

  154. Dlouhy, I. et al. Clinico-biological characteristics and outcome of hepatitis C virus-positive patients with diffuse large B cell lymphoma treated with immunochemotherapy. Ann. Hematol. 96, 405–410 (2017).

    PubMed  Google Scholar 

  155. Vallisa, D. et al. Role of anti-hepatitis C virus (HCV) treatment in HCV-related, low-grade, B cell, non-Hodgkin’s lymphoma: a multicenter Italian experience. J. Clin. Oncol. 23, 468–473 (2005).

    CAS  PubMed  Google Scholar 

  156. Braun, G. S., Horster, S., Wagner, K. S., Ihrler, S. & Schmid, H. Cryoglobulinaemic vasculitis: classification and clinical and therapeutic aspects. Postgrad. Med. J. 83, 87–94 (2007).

    PubMed  PubMed Central  Google Scholar 

Download references

Reviewer information

Nature Reviews Disease Primers thanks F. Dammacco, Y. Shoenfeld, L. Quartuccio and the other anonymous referee(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.R.); Epidemiology (A.G.T.); Mechanisms/pathophysiology (D.R. and P.C.); Diagnosis, screening and prevention (C.F. and D.S.); Management (F.C.F., M.R.-C. and A.L.Z.); Quality of life (M.R.-C.); Outlook (D.R.); Overview of Primer (D.R.).

Corresponding author

Correspondence to Dario Roccatello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roccatello, D., Saadoun, D., Ramos-Casals, M. et al. Cryoglobulinaemia. Nat Rev Dis Primers 4, 11 (2018). https://doi.org/10.1038/s41572-018-0009-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0009-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing