Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel approaches to target the microenvironment of bone metastasis

Abstract

Bone metastases are a frequent and severe complication of advanced-stage cancers. Breast and prostate cancers, the most common malignancies in women and men, respectively, have a particularly high propensity to metastasize to bone. Conceptually, circulating tumour cells (CTCs) in the bloodstream and disseminated tumour cells (DTCs) in the bone marrow provide a snapshot of the dissemination and colonization process en route to clinically apparent bone metastases. Many cell types that constitute the bone microenvironment, including osteoblasts, osteocytes, osteoclasts, adipocytes, endothelial cells, haematopoietic stem cells and immune cells, engage in a dialogue with tumour cells. Some of these cells modify tumour biology, while others are disrupted and out-competed by tumour cells, thus leading to distinct phases of tumour cell migration, dormancy and latency, and therapy resistance and progression to overt bone metastases. Several current bone-protective therapies act by interrupting these interactions, mainly by targeting tumour cell–osteoclast interactions. In this Review, we describe the functional roles of the bone microenvironment and its components in the initiation and propagation of skeletal metastases, outline the biology and clinical relevance of CTCs and DTCs, and discuss established and future therapeutic approaches that specifically target defined components of the bone microenvironment to prevent or treat skeletal metastases.

Key points

  • Bone metastases are frequent events associated with advanced-stage malignancies, particularly breast and prostate cancers, and often result in pathological fractures, pain, disability, reduced quality of life and a poor prognosis.

  • Circulating tumour cells can be detected in the blood using standardized liquid biopsy assays and can provide insights into the metastatic process, inform clinical risk stratification, and enable monitoring and tracing of resistance to therapy.

  • Disseminated tumour cells (DTCs) can be detected in the bone marrow through bone marrow aspiration. Their fate is variable and can include apoptosis or immune-mediated cell death, persistence and dormancy, or progression to overt bone metastases.

  • DTCs mutually interact with diverse components of the bone microenvironment, including bone cells, adipocytes, endothelial cells and various immune cells as well as the extracellular matrix. Survival strategies of DTCs involve interference with bone cell and adipocyte functions, immune evasion and neoangiogenesis.

  • On the basis of emerging knowledge of the biology of bone metastasis, several bone-targeted therapies are currently under evaluation in preclinical studies and clinical trials.

  • Approved therapies for patients with established bone metastases include bisphosphonates, the anti-receptor activator of NF-κB ligand (RANKL) antibody denosumab and radium-223.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CTCs, DTCs and bone metastasis and emerging diagnostic opportunities.
Fig. 2: Bone remodelling and the key regulatory signalling proteins.
Fig. 3: Interactions of tumour cells with the bone microenvironment.

Similar content being viewed by others

Robert E. Coleman, Peter I. Croucher, … Luis Costa

References

  1. Anderson, R. L. et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16, 185–204 (2019).

    Article  PubMed  Google Scholar 

  2. Sartor, O. et al. Metastatic prostate cancer. N. Engl. J. Med. 378, 645–657 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Hofbauer, L. C. et al. Endocrine aspects of bone metastases. Lancet Diabetes Endocrinol. 2, 500–512 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Bubendorf, L. et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 31, 578–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, Y. T. Breast carcinoma: pattern of metastasis at autopsy. J. Surg. Oncol. 23, 175–180 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Pan, H. et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xiao, W. et al. Breast cancer subtypes and the risk of distant metastasis at initial diagnosis: a population-based study. Cancer Manag. Res. 10, 5329–5338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coleman, R. E. et al. Bone metastases. Nat. Rev. Dis. Prim. 6, 83 (2020).

    Article  PubMed  Google Scholar 

  9. Croucher, P. I. et al. Bone metastasis: the importance of the neighbourhood. Nat. Rev. Cancer 16, 373–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Gori, F. et al. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 141, 4768–4776 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Onishi, T. et al. Future directions of bone-targeted therapy for metastatic breast cancer. Nat. Rev. Clin. Oncol. 7, 641–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Dallas, S. L. et al. The osteocyte: an endocrine cell and more. Endocr. Rev. 34, 658–690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo, Y. et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 22, 886–894 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Mohme, M. et al. Circulating and disseminated tumour cells – mechanisms of immune surveillance and escape. Nat. Rev. Clin. Oncol. 14, 155–167 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Pantel, K. et al. Liquid biopsy and minimal residual disease – latest advances and implications for cure. Nat. Rev. Clin. Oncol. 16, 409–424 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Mazel, M. et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol. Oncol. 9, 1773–1782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rachner, T. D. et al. Prognostic value of RANKL/OPG serum levels and disseminated tumor cells in nonmetastatic breast cancer. Clin. Cancer Res. 25, 1369–1378 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Bianchini, G. et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13, 674–690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stopeck, A. T. et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J. Clin. Oncol. 28, 5132–5139 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Fizazi, K. et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377, 813–822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, M. R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Van Poznak, C. et al. Role of bone-modifying agents in metastatic breast cancer: an American Society of Clinical Oncology-Cancer Care Ontario focused guideline update. J. Clin. Oncol. 35, 3978–3986 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Kollermann, J. et al. Prognostic significance of disseminated tumor cells in the bone marrow of prostate cancer patients treated with neoadjuvant hormone treatment. J. Clin. Oncol. 26, 4928–4933 (2008).

    Article  PubMed  CAS  Google Scholar 

  26. Magbanua, M. J. M. et al. Genomic and expression profiling reveal molecular heterogeneity of disseminated tumor cells in bone marrow of early breast cancer. NPJ Breast Cancer 4, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stoecklein, N. H. & Klein, C. A. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int. J. Cancer 126, 589–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Fehm, T. et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res. Treat. 124, 403–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Riethdorf, S. et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin. Cancer Res. 16, 2634–2645 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Bidard, F. C. et al. Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis. J. Natl Cancer Inst. 110, 560–567 (2018).

    Article  PubMed  Google Scholar 

  33. Kuske, A. et al. Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci. Rep. 6, 39736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Watson, M. A. et al. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin. Cancer Res. 13, 5001–5009 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Werner, S. et al. Suppression of early hematogenous dissemination of human breast cancer cells to bone marrow by retinoic acid-induced 2. Cancer Discov. 5, 506–519 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Pantel, K. et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl Cancer Inst. 85, 1419–1424 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Braun, S. et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 18, 80–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Celia-Terrassa, T. & Kang, Y. Metastatic niche functions and therapeutic opportunities. Nat. Cell Biol. 20, 868–877 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. LeBleu, V. S. et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–1003 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartkowiak, K. et al. Disseminated tumor cells persist in the bone marrow of breast cancer patients through sustained activation of the unfolded protein response. Cancer Res. 75, 5367–5377 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ell, B. et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24, 542–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Bednarz-Knoll, N. et al. Potential involvement of Jagged1 in metastatic progression of human breast carcinomas. Clin. Chem. 62, 378–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, D. et al. Circulating tumor microemboli (CTM) and vimentin+ circulating tumor cells (CTCs) detected by a size-based platform predict worse prognosis in advanced colorectal cancer patients during chemotherapy. Cancer Cell Int. 17, 6 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gawrzak, S. et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat. Cell Biol. 20, 211–221 (2018). Erratum in: Nat Cell Biol. 20, 990 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taichman, R. S. et al. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS ONE 8, e61873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shiozawa, Y. et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12, 116–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Biol. 15, 1351–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu-Lee, L. Y. et al. Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII-p38MAPK-pS249/T252RB pathway. Cancer Res. 78, 2911–2924 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cackowski, F. C. et al. Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J. Cell Biochem. 118, 891–902 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Naume, B. et al. Clinical outcome with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer. J. Clin. Oncol. 32, 3848–3857 (2014).

    Article  PubMed  Google Scholar 

  55. Riethdorf, S. et al. Prognostic impact of circulating tumor cells for breast cancer patients treated in the neoadjuvant “Geparquattro” trial. Clin. Cancer Res. 23, 5384–5393 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Keller, L. & Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 19, 553–567 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Alix-Panabieres, C. et al. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin. Chem. 53, 537–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koch, C. et al. Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity. EMBO Mol. Med. 12, e11908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Faugeroux, V. et al. Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nat. Commun. 11, 1884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tjensvoll, K. et al. Detection of disseminated tumor cells in bone marrow predict late recurrences in operable breast cancer patients. BMC Cancer 19, 1131 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Decker, A. M., Jung, Y., Cackowski, F. & Taichman, R. S. The role of hematopoietic stem cell niche in prostate cancer bone metastasis. J. Bone Oncol. 5, 117–120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Allocca, G. et al. The bone metastasis niche in breast cancer-potential overlap with the haematopoietic stem cell niche in vivo. J. Bone Oncol. 17, 100244 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Janni, W. et al. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse–a European pooled analysis. Clin. Cancer Res. 17, 2967–2976 (2011).

    Article  PubMed  Google Scholar 

  65. Bidard, F. C., Proudhon, C. & Pierga, J. Y. Circulating tumor cells in breast cancer. Mol. Oncol. 10, 418–430 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Trapp, E. et al. Presence of circulating tumor cells in high-risk early breast cancer during follow-up and prognosis. J. Natl Cancer Inst. 111, 380–387 (2019).

    Article  PubMed  CAS  Google Scholar 

  67. Sparano, J. et al. Association of circulating tumor cells with late recurrence of estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 4, 1700–1706 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bidard, F.-C. et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 15, 406–414 (2014).

    Article  PubMed  Google Scholar 

  69. Franken, A. et al. Detection of ESR1 mutations in single circulating tumor cells on estrogen deprivation therapy but not in primary tumors from metastatic luminal breast cancer patients. J. Mol. Diagn. 22, 111–121 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Gao, J. J. et al. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US Food and Drug Administration pooled analysis. Lancet Oncol. 21, 250–260 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Pfitzenmaier, J. et al. The detection and isolation of viable prostate-specific antigen positive epithelial cells by enrichment: a comparison to standard prostate-specific antigen reverse transcriptase polymerase chain reaction and its clinical relevance in prostate cancer. Urol. Oncol. 25, 214–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Pantel, K., Hille, C. & Scher, H. I. Circulating tumor cells in prostate cancer: from discovery to clinical utility. Clin. Chem. 65, 87–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Danila, D. C. et al. Clinical validity of detecting circulating tumor cells by AdnaTest assay compared with direct detection of tumor mRNA in stabilized whole blood, as a biomarker predicting overall survival for metastatic castration-resistant prostate cancer patients. Cancer J. 22, 315–320 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lorente, D. et al. Decline in circulating tumor cell count and treatment outcome in advanced prostate cancer. Eur. Urol. 70, 985–992 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Heller, G. et al. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate cancer: a comparison with prostate-cpecific antigen across five randomized phase III clinical trials. J. Clin. Oncol. 36, 572–580 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Kirby, M., Hirst, C. & Crawford, E. D. Characterising the castration-resistant prostate cancer population: a systematic review. Int. J. Clin. Pract. 65, 1180–1192 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Vlachostergios, P. J., Puca, L. & Beltran, H. Emerging variants of castration-resistant prostate cancer. Curr. Oncol. Rep. 19, 32 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Antonarakis, E. S. et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J. Clin. Oncol. 35, 2149–2156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Armstrong, A. J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J. Clin. Oncol. 37, 1120–1129 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scher, H. I. et al. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol. 4, 1179–1186 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sharp, A. et al. Clinical utility of circulating tumour cell androgen receptor splice variant-7 status in metastatic castration-resistant prostate cancer. Eur. Urol. 76, 676–685 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Hille, C. et al. Detection of androgen receptor variant 7 (ARV7) mRNA levels in EpCAM-enriched CTC fractions for monitoring response to androgen targeting therapies in prostate cancer. Cells 8, 1067 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  84. Gorges, T. M. et al. Heterogeneous PSMA expression on circulating tumor cells: a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget 7, 34930–34941 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Autio, K. A. et al. Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: a phase 2 clinical trial. JAMA Oncol. 4, 1344–1351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Maurer, T. et al. PSMA theranostics using PET and subsequent radioguided surgery in recurrent prostate cancer. Clin. Genitourin. Cancer 14, e549–e552 (2016).

    Article  PubMed  Google Scholar 

  87. Schindlbeck, C. et al. Comparison of circulating tumor cells (CTC) in peripheral blood and disseminated tumor cells in the bone marrow (DTC-BM) of breast cancer patients. J. Cancer Res. Clin. Oncol. 139, 1055–1062 (2013).

    Article  PubMed  Google Scholar 

  88. Magbanua, M. J. M. et al. Synchronous detection of circulating tumor cells in blood and disseminated tumor cells in bone marrow predicts adverse outcome in early breast cancer. Clin. Cancer Res. 25, 5388–5397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pak, S. et al. Association between postoperative detection of circulating tumor cells and recurrence in patients with prostate cancer. J. Urol. 203, 1128–1134 (2020).

    Article  PubMed  Google Scholar 

  90. Broncy, L. & Paterlini-Bréchot, P. Clinical impact of circulating tumor cells in patients with localized prostate cancer. Cells 8, 676 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  91. Cristofanilli, M. et al. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): international expert consensus paper. Crit. Rev. Oncol. Hematol. 134, 39–45 (2019).

    Article  PubMed  Google Scholar 

  92. Giuliano, M. et al. Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Res. 17, 3 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bianco, P. et al. Skeletal stem cells. Development 142, 1023–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chan, C. K. F. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lowery, J. W. et al. The BMP pathway and its inhibitors in the skeleton. Physiol. Rev. 98, 2431–2452 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Kamizaki, K. et al. Role of noncanonical Wnt ligands and Ror-family receptor tyrosine kinases in the development, regeneration, and diseases of the musculoskeletal system. Dev. Dyn. 250, 27–38 (2021).

    Article  PubMed  Google Scholar 

  97. Zieba, J. T. et al. Notch signaling in skeletal development, homeostasis and pathogenesis. Biomolecules 10, 332 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  98. Ziouti, F. et al. NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells. Stem Cells Int. 2019, 5150634 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Herrmann, M. et al. Interactions between muscle and bone–where physics meets biology. Biomolecules 10, 432 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  100. Ganesh, T. et al. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system. Bone 137, 115328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cappariello, A. et al. The great beauty of the osteoclast. Arch. Biochem. Biophys. 558, 70–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Tsukasaki, M. et al. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 19, 626–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Wortzel, I. et al. Exosome-mediated metastasis: communication from a distance. Dev. Cell 49, 347–360 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Paiva, A. E. et al. Pericytes in the pre-metastatic niche. Cancer Res. 78, 2779–2786 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schramek, D. et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reyes, M. E. et al. Poor prognosis of patients with triple-negative breast cancer can be stratified by RANK and RANKL dual expression. Breast Cancer Res. Treat. 164, 57–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Geerts, D. et al. Osteoprotegerin: relationship to breast cancer risk and prognosis. Front. Oncol. 10, 462 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Das, S. et al. The CaSR in pathogenesis of breast cancer: a new target for early stage bone metastases. Front. Oncol. 10, 69 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wu, X. et al. RANKL/RANK system-based mechanism for breast cancer bone metastasis and related therapeutic strategies. Front. Cell Dev. Biol. 8, 76 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fazeli, P. K. et al. Marrow fat and bone–new perspectives. J. Clin. Endo Metab. 98, 935–945 (2013).

    Article  CAS  Google Scholar 

  112. Lecka-Czernik, B. Marrow fat metabolism is linked to the systemic energy metabolism. Bone 50, 534–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Montalvany-Antonucci, C. C. et al. High-fat diet disrupts bone remodeling by inducing local and systemic alterations. J. Nutr. Biochem. 59, 93–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Evangelista, G. C. M. et al. 4T1 mammary carcinoma colonization of metastatic niches is accelerated by obesity. Front. Oncol. 9, 685 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tsai, C. F. et al. Induction of osteoclast-like cell formation by leptin-induced soluble intercellular adhesion molecule secreted from cancer cells. Ther. Adv. Med. Oncol. 11, 1758835919846806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Feng, H. Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells. Oncol. Res. 21, 165–171 (2013).

    Article  PubMed  CAS  Google Scholar 

  117. Templeton, Z. S. et al. Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia 17, 849–861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tang, C. H. et al. Adiponectin increases motility of human prostate cancer cells via adipoR, p38, AMPK, and NF-κB pathways. Prostate 69, 1781–1789 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Sun, G. et al. The adiponectin-AdipoR1 axis mediates tumor progression and tyrosine kinase inhibitor resistance in metastatic renal cell carcinoma. Neoplasia 21, 921–931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, J. B. et al. MAOA-dependent activation of Shh-IL6-RANKL signaling network promotes prostate cancer metastasis by engaging tumor-stromal cell interactions. Cancer Cell 31, 368–382 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Chen, G. L. et al. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget 7, 26653–26669 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hardaway, A. et al. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin. Exp. Metastasis 32, 353–368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, J. et al. Adipogenic niches for melanoma cell colonization and growth in bone marrow. Lab. Invest. 97, 737–745 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Diedrich, J. D. et al. The lipid side of bone marrow adipocytes: how tumor cells adapt and survive in bone. Curr. Osteoporos. Rep. 16, 443–457 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Diedrich, J. D. et al. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget 7, 64854–64877 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Singh, A. et al. Angiocrine signals regulate quiescence and therapy resistance in bone metastasis. JCI Insight 4, e125679 (2019).

    Article  PubMed Central  Google Scholar 

  127. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stucker, S., Chen, J., Watt, F. E. & Kusumbe, A. P. Bone angiogenesis and vascular niche remodeling in stress, aging, and diseases. Front. Cell Dev. Biol. 8, 602269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rafii, S. et al. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Supakul, S. et al. Pericytes as a source of osteogenic cells in bone fracture healing. Int. J. Mol. Sci. 20, 1079 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  131. Diomede, F. et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int. J. Mol. Sci. 21, 3242 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  132. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shan, M. et al. Fucosylation in cancer biology and its clinical applications. Prog. Mol. Biol. Transl Sci. 162, 93–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Yue, L. et al. Fucosyltransferase 8 expression in breast cancer patients: a high throughput tissue microarray analysis. Histol. Histopathol. 31, 547–555 (2016).

    CAS  PubMed  Google Scholar 

  136. do Nascimento, J. C., Beltrão, E. I. & Rocha, C. R. High FUT3 expression is a marker of lower overall survival of breast cancer patients. Glycoconj. J. 37, 263–275 (2020).

    Article  PubMed  CAS  Google Scholar 

  137. Esposito, M. et al. Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat. Cell Biol. 21, 627–639 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, X. et al. Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 24, 935–944 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Carrascal, M. A. et al. Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation, and ERK1/2 and p38 MAPK activation. Mol. Oncol. 12, 579–593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Andonegui-Elguera, M. A. et al. An overview of vasculogenic mimicry in breast cancer. Front. Oncol. 10, 220 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Maiti, A. et al. Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells. Int. J. Oncol. 55, 116–130 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, S. et al. Inhibitory effects of compound DMBT on hypoxia-induced vasculogenic mimicry in human breast cancer. Biomed. Pharmacother. 96, 982–992 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Kuczynski, E. A. et al. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Geraets, S. E. W. et al. Preoperative embolization in surgical treatment of long bone metastasis: a systematic literature review. EFORT Open Rev. 5, 17–25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animal. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Knowles, H. Hypoxic regulation of osteoclast differentiation and bone resorption activity. Hypoxia 3, 73–82 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Devignes, C. S. et al. HIF signalling in osteoblast lineage cells promotes systemic breast cancer growth and mestastasis in mice. Proc. Natl Acad. Sci. USA 5, E992–E1001 (2018).

    CAS  Google Scholar 

  148. Tam, S. Y., Wu, V. W. & Law, H. K. Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Front. Oncol. 10, 486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Gilkes, D. M., Bajpai, S., Chaturvedi, P., Wirtz, D. & Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288, 10819–10829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mimeault, M. & Batra, S. K. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J. Cell Mol. Med. 17, 30–54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gu, J. et al. Hypoxia-induced up-regulation of angiopoietin-2 in colorectal cancer. Oncol. Rep. 15, 779–783 (2006).

    CAS  PubMed  Google Scholar 

  152. Johnson, R. W. et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat. Cell Biol. 18, 1078–1089 (2016). Erratum in: Nat Cell Biol. 18, 1260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Laoui, D. et al. Tumor hypoxia does not drive differentiation of tumor associated macrophages but rather fine tunes the M2 like macrophage population. Cancer Res. 1, 24–30 (2014).

    Article  CAS  Google Scholar 

  154. Huber, R. et al. Tumor hypoxia promotes melanoma growth and metastasis via HMGB1. Sci. Rep. 6, 29914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Doedens, A. L. et al. Macrophages expression of HIF1a suppresses T cell function and promotes tumor progression. Cancer Res. 70, 7465–7475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med. 21, 638–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kolb, A. D. et al. The bone extracellular matrix as an ideal milieu for cancer cell metastases. Cancers 11, 1020 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  158. Maller, O. et al. Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nat. Mater. https://doi.org/10.1038/s41563-020-00849-5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Setargew, Y. F., Wyllie, K., Grant, R. D., Chitty, J. L. & Cox, T. R. Targeting lysyl oxidase family meditated matrix cross-linking as an anti-stromal therapy in solid tumours. Cancers 13, 491 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Lin, T. C. et al. Fibronectin in cancer: friend or foe. Cells 9, 27 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  161. Sens, C. et al. Fibronectins containing extradomain A or B enhance osteoblast differentiation via distinct integrins. J. Biol. Chem. 292, 7745–7760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rossnagl, S. et al. EDA-fibronectin originating from osteoblasts inhibits the immune response against cancer. PLoS Biol. 14, e1002562 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Lieverse, R. I. Y. et al. Human fibronectin extra domain B as a biomarker for targeted therapy in cancer. Mol. Oncol. 14, 1555–1568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pang, X. et al. Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacol. Res. 144, 235–244 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Kovacheva, M. et al. Conditional knockdown of osteopontin inhibits breast cancer skeletal metastasis. Int. J. Mol. Sci. 20, 4918 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  166. Elgundi, Z. et al. Cancer metastasis: the role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front. Oncol. 9, 1482 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Li, Y. et al. Glypican 6 is a putative biomarker for metastatic progression of cutaneous melanoma. PLoS ONE 14, e0218067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yang, Y. et al. Systemic delivery of an oncolytic adenovirus expressing decorin for the treatment of breast cancer bone metastases. Hum. Gene Ther. 26, 813–825 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Gubbiotti, M. A. et al. Proteoglycan signaling in tumor angiogenesis and endothelial cell autophagy. Semin. Cancer Biol. 62, 1–8 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Walimbe, T. et al. Proteoglycans in biomedicine: resurgence of an underexploited class of ECM molecules. Front. Pharmacol. 10, 1661 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Sinder, B. P., Pettit, A. R. & McCauley, L. K. Macrophages: their emerging roles in bone. J. Bone Miner. Res. 30, 2140–2149 (2015).

    Article  PubMed  Google Scholar 

  172. Wang, Y. et al. MDSCs: key criminals of tumor pre-metastatic niche formation. Front. Immunol. 10, 172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Danilin, S. et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology. 1, 1484–1494 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  174. D'Amico, L. et al. Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer. J. Exp. Med. 213, 827–840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Soki, F. N. et al. Bone marrow macrophages support prostate cancer growth in bone. Oncotarget 6, 35782–35796 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sullivan, A. R. et al. CSF-1R signaling in health and disease: a focus on the mammary gland. J. Mammary Gland. Biol. Neoplasia. 19, 149–159 (2014).

    Article  PubMed  Google Scholar 

  178. Bendell, J. C. et al. A phase 1 study of ARRY-382, an oral inhibitor of colony-stimulating factor-1 receptor (CSF1R), in patients with advanced or metastatic cancers [abstract]. Mol. Cancer Ther. 12 (Suppl. 11), A252 (2013).

    Article  Google Scholar 

  179. Jones, J. D. et al. Trabectedin reduces skeletal prostate cancer tumor size in association with effects on M2 macrophages and efferocytosis. Neoplasia 21, 172–184 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Tang, X. et al. GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway. Cancer Res. 73, 6206–6218 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. McGuire, J. J. et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat. Commun. 12, 723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Coleman, R. E. et al. Benefits and risks of adjuvant treatment with zoledronic acid in stage II/III breast cancer. 10 years follow-up of the AZURE randomized clinical trial (BIG 01/04). J. Bone Oncol. 13, 123–135 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gnant, M. et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 339–351 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Coleman, R. et al. Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 21, 60–72 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Gnant, M. Zoledronic acid in breast cancer: latest findings and interpretations. Ther. Adv. Med. Oncol. 3, 293–301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Coleman, R. E. et al. The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: exploratory evidence for direct anti-tumour activity in breast cancer. Br. J. Cancer 102, 1099–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tsourdi, E. et al. Discontinuation of denosumab therapy for osteoporosis: a systematic review and position statement by ECTS. Bone 105, 11–17 (2017).

    Article  PubMed  Google Scholar 

  188. Rachner, T. D. et al. Challenges in preventing bone loss induced by aromatase inhibitors. J. Clin. Endocrinol. Metab. 105, dgaa463 (2020).

    Article  PubMed  Google Scholar 

  189. Caraglia, M. et al. Emerging anti-cancer molecular mechanisms of aminobisphosphonates. Endocr. Relat. Cancer 13, 7–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Mönkkönen, H. et al. A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br. J. Pharmacol. 147, 437–445 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Clézardin, P. Bisphosphonates’ antitumor activity: an unravelled side of a multifaceted drug class. Bone 48, 71–79 (2011).

    Article  PubMed  CAS  Google Scholar 

  192. Dunford, J. E. et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J. Pharmacol. Exp. Ther. 296, 235–242 (2001).

    CAS  PubMed  Google Scholar 

  193. Diel, I. J. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N. Engl. J. Med. 339, 357–363 (1998).

    Article  CAS  PubMed  Google Scholar 

  194. Gnant, M. et al. Direct and indirect anticancer activity of bisphosphonates: a brief review of published literature. Cancer Treat. Rev. 38, 407–415 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Di Salvatore, M. et al. Anti-tumour and anti-angiogenetic effects of zoledronic acid on human non-small-cell lung cancer cell line. Cell Prolif. 44, 139–146 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Rachner, T. D. et al. Regulation of VEGF by mevalonate pathway inhibition in breast cancer. J. Bone Oncol. 2, 110–115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Croucher, P. I. et al. Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival. J. Bone Min. Res. 18, 482–492 (2003).

    Article  CAS  Google Scholar 

  198. Giraudo, E. et al. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 114, 623–633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. van der Pluijm et al. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J. Clin. Invest. 98, 698–705 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hiraga, T. et al. Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin. Cancer Res. 10, 4559–4567 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Rogers, T. L. et al. Macrophages as potential targets for zoledronic acid outside the skeleton – evidence from in vitro and in vivo models. Cell Oncol. 36, 505–514 (2013).

    Article  CAS  Google Scholar 

  202. Rogers, T. L. et al. Tumour macrophages as potential targets of bisphosphonates. J. Transl Med. 9, 177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Melani, C. et al. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67, 11438–11446 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Comito, G. et al. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget 8, 118–132 (2017).

    Article  PubMed  Google Scholar 

  205. Junankar, S. et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov. 5, 35–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Silva-Santos, B. et al. γδT cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Gruenbacher, G. et al. Mevalonate metabolism in immuno-oncology. Front. Immunol. 8, 1714 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Gober, H.-J. et al. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 197, 163–168 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kunzmann, V. et al. Stimulation of γδ-T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96, 384–392 (2000).

    Article  CAS  PubMed  Google Scholar 

  210. Meraviglia, S. et al. In vivo manipulation of V9V2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin. Exp. Immunol. 161, 290–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Dieli, F. et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 67, 7450–7457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Boyle, W. J. et al. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  213. Fata, J. E. et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  214. Gonzalez-Suarez, E. et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Jones, D. H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Hoskin, P. et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 15, 1397–1406 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Parker, C. C. et al. Three-year safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases from phase 3 randomized Alpharadin in Symptomatic Prostate Cancer trial. Eur. Urol. 73, 427–435 (2018).

    Article  PubMed  Google Scholar 

  218. Buschhaus, J. M. et al. Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow. Oncogene 39, 5649–5662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Grabinski, N. et al. Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cell Signal. 23, 1952–1960 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Brown, H. K. et al. Parathyroid hormone (PTH) increases skeletal tumour growth and alters tumour distribution in an in vivo model of breast cancer. Int. J. Mol. Sci. 19, 2920 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  221. Swami, S. et al. Prevention of breast cancer skeletal metastases with parathyroid hormone. JCI Insight 2, e90874 (2017).

    Article  PubMed Central  Google Scholar 

  222. Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. McDonald, M. M. et al. Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood 129, 3452–3464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Iyer, S. P. et al. A phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br. J. Haematol. 167, 366–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  225. Florio, M. et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat. Commun. 7, 11505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Drake, J. M., Danke, J. R. & Henry, M. D. Bone-specific growth inhibition of prostate cancer metastasis by atrasentan. Cancer Biol. Ther. 9, 607–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  227. Yin, J. J. et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc. Natl Acad. Sci. USA 100, 10954–10959 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Carducci, M. A. et al. A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer 110, 1959–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  229. Moon, H. H. et al. Castration determines the efficacy of ETAR blockade in a mouse model of prostate cancer bone metastasis. Endocrinology 160, 1786–1796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Irelli, A. et al. mTOR links tumor immunity and bone metabolism: what are the clinical implications? Int. J. Mol. Sci. 20, 5841 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  231. Hurvitz, S. A. et al. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet Oncol. 16, 816–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Győri, D. S. & Mócsai, A. Osteoclast signal transduction during bone metastasis formation. Front. Cell Dev. Biol. 8, 507 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Boyce, B. & Xing, L. Src inhibitors in the treatment of metastatic bone disease: rationale and clinical data. Clin. Investig. 1, 1695–1706 (2011).

    Article  CAS  Google Scholar 

  234. Tulotta, C. et al. Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clin. Cancer Res. 25, 2769–2782 (2019).

    Article  CAS  PubMed  Google Scholar 

  235. Lei, W. et al. The IAP antagonist SM-164 eliminates triple-negative breast cancer metastasis to bone and lung in mice. Sci. Rep. 10, 7004 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 579, 284–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Haider, M. T. & Taipaleenmäki, H. Targeting the metastatic bone microenvironment by microRNAs. Front. Endocrinol. 9, 202 (2018).

    Article  Google Scholar 

  238. Kuchimaru, T. et al. A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat. Commun. 9, 2981 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

All authors acknowledge funding of their original research by the Deutsche Forschungsgemeinschaft Priority Programme SPP 2084 µBONE. In addition, the work of L.C.H. has been supported by grant HO 1875/27-1 and that of A.B. by grant project-A01, FOR2886 TP02 of the Collaborative Research Centre (CRC) 1181, both from Deutsche Forschungsgemeinschaft. K.P. has received funding from the EFPIA and European Union Innovative Medicines Initiative Joint Undertaking for the research project CANCER-ID (grant 115749), the Deutsche Krebshilfe (grant 70112504) and the European Research Council (ERC; Advanced Investigator Grant INJURMET/834974). The authors thank F. Lademann and A. Offermann for assistance with the figures for this article and T. Reiche and A. Strehle for secretarial support.

Review criteria

We performed a PubMed search for full original and review papers in English published up to September 2020, using the key words “breast cancer”, “prostate cancer”, “bone metastases”, “bone cells”, “bone marrow niches”, “circulating tumour cells” and “disseminated tumour cells”. From this initial search, all authors selected the most recent (generally no older than 2014) and most relevant papers for inclusion, but also included seminal studies published since 2001.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to each stage of the preparation of the manuscript for publication.

Corresponding authors

Correspondence to Lorenz C. Hofbauer or Klaus Pantel.

Ethics declarations

Competing interests

L.C.H. has received honoraria for clinical trials from Alexion, Amgen, Ascendis Pharma, Novartis and Shire, and as a member of advisory boards from Amgen, Kyowa Kirin International, Shire and UCB. M.R. has received honoraria as a member of advisory boards and for lectures from Amgen and Diasorin. F.J. has received unrestricted grants and support for clinical studies from Alexion, Amgen, Lilly and Novartis, and honoraria for lectures and as a member of advisory boards from Alexion, Amgen, Kyowa Kirin International and Lilly. S.P. has received honoraria as a member of advisory boards and for lectures from AstraZeneca, Bristol Myers Squibb, MetaSystems, MSD, Novartis, Roche and Ventana Medical Systems, and research funds from Boehringer Ingelheim, Bristol Myers Squibb, MSD, Roche and Ventana Medical Systems. K.P. has ongoing patent applications related to circulating tumour cells (pending EU patent application no. 18705153.7 (PCT/EP2018/054052)) and has received honoraria from Agena, Illumina, Menarini, Novartis, Roche and Sanofi, and research funding from European Federation of Pharmaceutical Industries and Associations (EFPIA) partners (Angle, Menarini and Servier) of the CANCER-ID programme of the European Union Innovative Medicines Initiative (IMI) Joint Undertaking. A.B. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks R. Coleman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofbauer, L.C., Bozec, A., Rauner, M. et al. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 18, 488–505 (2021). https://doi.org/10.1038/s41571-021-00499-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00499-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer