Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assessing the interactions between radiotherapy and antitumour immunity

Abstract

Immunotherapy, specifically the introduction of immune checkpoint inhibitors, has transformed the treatment of cancer, enabling long-term tumour control even in individuals with advanced-stage disease. Unfortunately, only a small subset of patients show a response to currently available immunotherapies. Despite a growing consensus that combining immune checkpoint inhibitors with radiotherapy can increase response rates, this approach might be limited by the development of persistent radiation-induced immunosuppression. The ultimate goal of combining immunotherapy with radiotherapy is to induce a shift from an ineffective, pre-existing immune response to a long-lasting, therapy-induced immune response at all sites of disease. To achieve this goal and enable the adaptation and monitoring of individualized treatment approaches, assessment of the dynamic changes in the immune system at the patient level is essential. In this Review, we summarize the available clinical data, including forthcoming methods to assess the immune response to radiotherapy at the patient level, ranging from serum biomarkers to imaging techniques that enable investigation of immune cell dynamics in patients. Furthermore, we discuss modelling approaches that have been developed to predict the interaction of immunotherapy with radiotherapy, and highlight how they could be combined with biomarkers of antitumour immunity to optimize radiotherapy regimens and maximize their synergy with immunotherapy.

Key points

  • Peripheral absolute lymphocyte count is a high-level marker of systemic immune status and is correlated with survival after radiotherapy in multiple tumour types.

  • Investigation continues into additional markers of immune status, including circulating lymphocyte subsets, humoral markers, cytokines, and tumour-infiltrating lymphocytes; these markers tend to be highly indication-specific and context-specific.

  • A variety of imaging methods based on MRI, single-photon emission CT (SPECT), and PET enable imaging of both the current distributions and dynamics of immune cell populations.

  • Mathematical models of the tumour–immune interaction and the influence of radiotherapy on this system can be broadly classified as either systemic or regional-interacting models.

  • Both circulating markers and advanced imaging methods will be needed to refine these models based on clinical patient data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlation of radiation-induced lymphopenia with survival.
Fig. 2: Integration of biomarker data with mathematical models.
Fig. 3: Effect of radiotherapy technique on immune response.

Similar content being viewed by others

References

  1. Sharma, P., Wagner, K., Wolchok, J. D. & Allison, J. P. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat. Rev. Cancer 11, 805–812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dart, A. New targets for cancer immunotherapy. Nat. Rev. Cancer 18, 667 (2018).

    Article  PubMed  CAS  Google Scholar 

  3. Restifo, N. P., Smyth, M. J. & Snyder, A. Acquired resistance to immunotherapy and future challenges. Nat. Rev. Cancer 16, 121–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18, 313–322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang, J. et al. Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat. Rev. Drug Discov. 17, 854–855 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Abuodeh, Y., Venkat, P. & Kim, S. Systematic review of case reports on the abscopal effect. Curr. Probl. Cancer 40, 25–37 (2016).

    Article  PubMed  Google Scholar 

  7. Brix, N., Tiefenthaller, A., Anders, H., Belka, C. & Lauber, K. Abscopal, immunological effects of radiotherapy: narrowing the gap between clinical and preclinical experiences. Immunol. Rev. 280, 249–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Vanpouille-Box, C., Pilones, K. A., Wennerberg, E., Formenti, S. C. & Demaria, S. In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 33, 1–8 (2015).

    Article  Google Scholar 

  9. Gaipl, U. S. et al. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6, 597–610 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Akutsu, Y. et al. Combination of direct intratumoral administration of dendritic cells and irradiation induces strong systemic antitumor effect mediated by GRP94/gp96 against squamous cell carcinoma in mice. Int. J. Oncol. 31, 509–515 (2007).

    CAS  PubMed  Google Scholar 

  11. Chakravarty, P. K. et al. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 59, 6028–6032 (1999).

    CAS  PubMed  Google Scholar 

  12. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004).

    Article  PubMed  Google Scholar 

  13. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    CAS  PubMed  Google Scholar 

  14. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Demaria, S. & Formenti, S. C. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front. Oncol. 2, 153 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Young, K. H. et al. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLOS ONE 11, e0157164 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 1–15 (2017).

    Article  Google Scholar 

  18. Formenti, S. C. et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 24, 1845–1851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stamell, E. F., Wolchok, J. D., Gnjatic, S., Lee, N. Y. & Brownell, I. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 85, 293–295 (2013).

    Article  PubMed  Google Scholar 

  21. Schiavone, M. B. et al. Combined immunotherapy and radiation for treatment of mucosal melanomas of the lower genital tract. Gynecol. Oncol. Rep. 16, 42–46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hiniker, S. M. et al. A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl. Oncol. 5, 404–407 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shaverdian, N. et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 18, 895–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pike, L. R. G. et al. The impact of radiation therapy on lymphocyte count and survival in metastatic cancer patients receiving PD-1 immune checkpoint inhibitors. Int. J. Radiat. Oncol. Biol. Phys. 103, 142–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, C. et al. Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin. Cancer Res. 23, 1388–1396 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Golden, E. B. et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 16, 795–803 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Chandra, R. A. et al. A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab. Oncoimmunology 4, e1046028 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hwang, W. L., Pike, L. R. G., Royce, T. J., Mahal, B. A. & Loeffler, J. S. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol. 15, 477–494 (2018).

    Article  PubMed  Google Scholar 

  30. Ellsworth, S. G. Field size effects on the risk and severity of treatment-induced lymphopenia in patients undergoing radiation therapy for solid tumors. Adv. Radiat. Oncol. 3, 512–519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shen, X. & Zhao, B. Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. BMJ 362, k3529 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Horn, L. et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 35, 3924–3933 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Balermpas, P. et al. CD8+ tumour-infiltrating lymphocytes in relation to HPV status and clinical outcome in patients with head and neck cancer after postoperative chemoradiotherapy: a multicentre study of the German cancer consortium radiation oncology group (DKTK-ROG). Int. J. Cancer 138, 171–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Afanasiev, O. K. et al. Merkel polyomavirus-specific T cells fluctuate with merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers. Clin. Cancer Res. 19, 5351–5360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389, 255–265 (2017).

    Article  PubMed  Google Scholar 

  38. McLaughlin, J. et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2, 46–54 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cho, J. H. et al. Programmed death ligand 1 expression in paired non-small cell lung cancer tumor samples. Clin. Lung Cancer 18, e473–e479 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Onal, C., Yildirim, B. A., Guler, O. C. & Mertsoylu, H. The utility of pretreatment and posttreatment lymphopenia in cervical squamous cell carcinoma patients treated with definitive chemoradiotherapy. Int. J. Gynecol. Cancer 28, 1553–1559 (2018).

    Article  PubMed  Google Scholar 

  41. Guthrie, G. J. K., Roxburgh, C. S. D., Farhan-Alanie, O. M., Horgan, P. G. & McMillan, D. C. Comparison of the prognostic value of longitudinal measurements of systemic inflammation in patients undergoing curative resection of colorectal cancer. Br. J. Cancer 109, 24–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dolan, R. D., Lim, J., McSorley, S. T., Horgan, P. G. & McMillan, D. C. The role of the systemic inflammatory response in predicting outcomes in patients with operable cancer: systematic review and meta-analysis. Sci. Rep. 7, 16717 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Meyer, K. K. Radiation-induced lymphocyte-immune deficiency. A factor in the increased visceral metastases and decreased hormonal responsiveness of breast cancer. Arch. Surg. 101, 114–121 (1970).

    Article  CAS  PubMed  Google Scholar 

  44. MacLennan, I. C. & Kay, H. E. Analysis of treatment in childhood leukemia. IV. The critical association between dose fractionation and immunosuppression induced by cranial irradiation. Cancer 41, 108–111 (1978).

    Article  CAS  PubMed  Google Scholar 

  45. Nakayama, Y. et al. Varied effects of thoracic irradiation on peripheral lymphocyte subsets in lung cancer patients. Intern. Med. 34, 959–965 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Campian, J. L. et al. Serial changes in lymphocyte subsets in patients with newly diagnosed high grade astrocytomas treated with standard radiation and temozolomide. J. Neurooncol. 135, 343–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Ellsworth, S. et al. Sustained CD4+ T cell-driven lymphopenia without a compensatory IL-7/IL-15 response among high-grade glioma patients treated with radiation and temozolomide. Oncoimmunology 3, e27357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sheik Sajjadieh, M. R. et al. Effect of ionizing radiation on development process of T cell population lymphocytes in Chernobyl children. Int. J. Radiat. Res. 7, 127–133 (2009).

    Google Scholar 

  49. Chen, H.-M. et al. Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy. Clin. Cancer Res. 21, 4073–4085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang, C. et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int. J. Radiat. Oncol. Biol. Phys. 89, 1084–1091 (2014).

    Article  PubMed  Google Scholar 

  51. Cho, O., Chun, M., Chang, S.-J., Oh, Y.-T. & Noh, O. K. Prognostic value of severe lymphopenia during pelvic concurrent chemoradiotherapy in cervical cancer. Anticancer Res. 36, 3541–3547 (2016).

    CAS  PubMed  Google Scholar 

  52. Cho, O., Oh, Y.-T., Chun, M., Noh, O. K. & Lee, H.-W. Radiation-related lymphopenia as a new prognostic factor in limited-stage small cell lung cancer. Tumour Biol. 37, 971–978 (2016).

    Article  PubMed  Google Scholar 

  53. Davuluri, R. et al. Lymphocyte nadir and esophageal cancer survival outcomes after chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 99, 128–135 (2017).

    Article  PubMed  Google Scholar 

  54. Campian, J. L., Ye, X., Brock, M. & Grossman, S. A. Treatment-related lymphopenia in patients with stage III non-small-cell lung cancer. Cancer Invest. 31, 183–188 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chadha, A. S. et al. Does unintentional splenic radiation predict outcomes after pancreatic cancer radiation therapy? Int. J. Radiat. Oncol. Biol. Phys. 97, 323–332 (2017).

    Article  PubMed  Google Scholar 

  56. Balmanoukian, A., Ye, X., Herman, J., Laheru, D. & Grossman, S. A. The association between treatment-related lymphopenia and survival in newly diagnosed patients with resected adenocarcinoma of the pancreas. Cancer Invest. 30, 571–576 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wild, A. T. et al. The association between chemoradiation-related lymphopenia and clinical outcomes in patients with locally advanced pancreatic adenocarcinoma. Am. J. Clin. Oncol. 38, 259–265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mendez, J. S. et al. Association between treatment-related lymphopenia and overall survival in elderly patients with newly diagnosed glioblastoma. J. Neurooncol. 127, 329–335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, L.-T. et al. The prognostic value of treatment-related lymphopenia in nasopharyngeal carcinoma patients. Cancer Res. Treat. 50, 19–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Rudra, S. et al. Effect of radiation treatment volume reduction on lymphopenia in patients receiving chemoradiotherapy for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 101, 217–225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Grossman, S. A. et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin. Cancer Res. 17, 5473–5480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bryant, A. K. et al. Effect of CD4 count on treatment toxicity and tumor recurrence in human immunodeficiency virus-positive patients with anal cancer. Int. J. Radiat. Oncol. Biol. Phys. 100, 478–485 (2018).

    Article  PubMed  Google Scholar 

  63. Yang, Z.-R. et al. Peripheral lymphocyte subset variation predicts prostate cancer carbon ion radiotherapy outcomes. Oncotarget 7, 26422–26435 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Blum, K. S. & Pabst, R. Lymphocyte numbers and subsets in the human blood. Do they mirror the situation in all organs? Immunol. Lett. 108, 45–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Fadul, C. E. et al. Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro Oncol. 13, 393–400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crocenzi, T. et al. A hypofractionated radiation regimen avoids the lymphopenia associated with neoadjuvant chemoradiation therapy of borderline resectable and locally advanced pancreatic adenocarcinoma. J. Immunother. Cancer 4, 45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Grassberger, C. et al. Differential association between circulating lymphocyte populations with outcome after radiation therapy in subtypes of liver cancer. Int. J. Radiat. Oncol. Biol. Phys. 101, 1222–1225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang, D., An, G., Xie, S., Yao, Y. & Feng, G. The clinical and prognostic significance of CD14 HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy. Tumor Biol. 37, 10427–10433 (2016).

    Article  CAS  Google Scholar 

  69. Carretero, R. et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 16, 609–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Robins, H. S. et al. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2, 47ra64 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Stromnes, I. M., Hulbert, A., Pierce, R. H., Greenberg, P. D. & Hingorani, S. R. T cell localization, activation, and clonal expansion in human pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 5, 978–991 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Beausang, J. F. et al. T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire. Proc. Natl Acad. Sci. USA 114, E10409–E10417 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cha, E. et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci. Transl. Med. 6, 238ra70 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Rudqvist, N.-P. et al. Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells. Cancer Immunol. Res. 6, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Hosoi, A. et al. Increased diversity with reduced ‘diversity evenness’ of tumor infiltrating T cells for the successful cancer immunotherapy. Sci. Rep. 8, 1058 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arnaud-Haond, S. et al. Standardizing methods to address clonality in population studies. Mol. Ecol. 16, 5115–5139 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Fuks, Z. et al. Long term effects of radiation of T and B lymphocytes in peripheral blood of patients with Hodgkin’s disease. J. Clin. Invest. 58, 803–814 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Parikh, F. et al. Chemoradiotherapy-induced upregulation of PD-1 antagonizes immunity to HPV-related oropharyngeal cancer. Cancer Res. 74, 7205–7216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Evans, R. L., Pottala, J. V., Nagata, S. & Egland, K. A. Longitudinal autoantibody responses against tumor-associated antigens decrease in breast cancer patients according to treatment modality. BMC Cancer 18, 119 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Dong, H. et al. Tumor-associated B7-H1 promotes T cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Rossi, S., Castello, A., Toschi, L. & Lopci, E. Immunotherapy in non-small-cell lung cancer: potential predictors of response and new strategies to assess activity. Immunotherapy 10, 797–805 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Balermpas, P. et al. Human papilloma virus load and PD-1/PD-L1, CD8+ and FOXP3 in anal cancer patients treated with chemoradiotherapy: rationale for immunotherapy. Oncoimmunology 6, e1288331 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lim, S. H. et al. Changes in tumour expression of programmed death-ligand 1 after neoadjuvant concurrent chemoradiotherapy in patients with squamous oesophageal cancer. Eur. J. Cancer 52, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Fujimoto, D. et al. Alteration of PD-L1 expression and its prognostic impact after concurrent chemoradiation therapy in non-small cell lung cancer patients. Sci. Rep. 7, 11373 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lipson, E. J. et al. PD-L1 expression in the Merkel cell carcinoma microenvironment: association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol. Res. 1, 54–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Derks, S. et al. Abundant PD-L1 expression in Epstein-Barr virus-infected gastric cancers. Oncotarget 7, 32925–32932 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Saito, R. et al. Overexpression and gene amplification of PD-L1 in cancer cells and PD-L1+ immune cells in Epstein-Barr virus-associated gastric cancer: the prognostic implications. Mod. Pathol. 30, 427–439 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fukushima, Y. et al. Influence of PD-L1 expression in immune cells on the response to radiation therapy in patients with oropharyngeal squamous cell carcinoma. Radiother. Oncol. 129, 409–414 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Lim, Y. J. et al. High ratio of programmed cell death protein 1 (PD-1)+/CD8+ tumor-infiltrating lymphocytes identifies a poor prognostic subset of extrahepatic bile duct cancer undergoing surgery plus adjuvant chemoradiotherapy. Radiother. Oncol. 117, 165–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Lim, Y. J. et al. Chemoradiation-induced alteration of programmed death-ligand 1 and CD8+ tumor-infiltrating lymphocytes identified patients with poor prognosis in rectal cancer: a matched comparison analysis. Int. J. Radiat. Oncol. Biol. Phys. 99, 1216–1224 (2017).

    Article  PubMed  Google Scholar 

  93. Lagerwaard, F. J. et al. Identification of prognostic factors in patients with brain metastases: a review of 1292 patients. Radiat. Oncol. Biol. 43, 795–803 (1999).

    CAS  Google Scholar 

  94. Gupta, D. & Lis, C. G. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr. J. 9, 1414 (2010).

    Article  Google Scholar 

  95. McMillan, D. C. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat. Rev. 39, 534–540 (2013).

    Article  PubMed  Google Scholar 

  96. Cho, S.-J., Kang, H., Hong, E.-H., Kim, J. Y. & Nam, S. Y. Transcriptome analysis of low-dose ionizing radiation-impacted genes in CD4+ T cells undergoing activation and regulation of their expression of select cytokines. J. Immunotoxicol. 15, 137–146 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Anscher, M. S. Targeting the TGF-β1 pathway to prevent normal tissue injury after cancer therapy. Oncologist 15, 350–359 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gerassy-Vainberg, S. et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction. Gut 67, 97–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Willett, C. G. et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J. Clin. Oncol. 27, 3020–3026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Le, Q.-T. et al. Prognostic and predictive significance of plasma HGF and IL-8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin. Cancer Res. 18, 1798–1807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Thomas, D. A. & Massagué, J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Nguyen, T. P. & Sieg, S. F. TGF-β inhibits IL-7-induced proliferation in memory but not naive human CD4+ T cells. J. Leukoc. Biol. 102, 499–506 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Teulings, H. E. et al. Radiation-induced melanoma-associated leucoderma, systemic antimelanoma immunity and disease-free survival in a patient with advanced-stage melanoma: a case report and immunological analysis. Br. J. Dermatol. 168, 733–738 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Mayer, A. T. & Gambhir, S. S. The immunoimaging toolbox. J. Nucl. Med. 59, 1174–1182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun, R. et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 19, 1180–1191 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Qin, H., Zhou, T., Yang, S., Chen, Q. & Xing, D. Gadolinium(III)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine 8, 1611–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Neuwelt, E. A. et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 75, 465–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Neuwelt, A. et al. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am. J. Roentgenol. 204, W302–W313 (2015).

    Article  Google Scholar 

  111. Chan, J., Monaco, C., Wylezinska-Arridge, M., Tremoleda, J. L. & Gibbs, R. Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI. Eur. J. Vasc. Endovasc. Surg. 47, 462–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Wu, Y. et al. Inflammatory bowel disease: MR-and SPECT/CT-based macrophage imaging for monitoring and evaluating disease activity in experimental mouse model — pilot study. Radiology 271, 400–407 (2014).

    Article  PubMed  Google Scholar 

  113. Kirschbaum, K. et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc. Natl Acad. Sci. USA 113, 13227–13232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. de Vries, I. J. M. et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol. 23, 1407 (2005).

    Article  PubMed  CAS  Google Scholar 

  115. Thu, M. S. et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat. Med. 18, 463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Walczak, P. et al. Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine 2, 89–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Daldrup-Link, H. E. et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin. Cancer Res. 17, 5695–5704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, P. C. & Shan, L. Essential elements to consider for MRI cell tracking studies with iron oxide-based labeling agents. J. Bas. Clin. Med. 1, 1 (2012).

    Google Scholar 

  119. Wei, Y. et al. Iron overload by superparamagnetic iron oxide nanoparticles is a high risk factor in cirrhosis by a systems toxicology assessment. Sci. Rep. 6, 29110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bulte, J. W. et al. MPI cell tracking: what can we learn from MRI? Proc. SPIE Int. Soc. Opt. Eng. https://doi.org/10.1117/12.879844 (2011).

  121. de Vries, E. F., Roca, M., Jamar, F., Israel, O. & Signore, A. Guidelines for the labelling of leucocytes with 99m Tc-HMPAO. Eur. J. Nucl. Med. Mol. Imaging 37, 842–848 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Roca, M., de Vries, E. F., Jamar, F., Israel, O. & Signore, A. Guidelines for the labelling of leucocytes with 111 In-oxine. Eur. J. Nucl. Med. Mol. Imaging 37, 835–841 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kerry, J. E., Marshall, C., Griffiths, P. A., James, M. W. & Scott, B. B. Comparison between Tc-HMPAO labelled white cells and Tc LeukoScan in the investigation of inflammatory bowel disease. Nucl. Med. Commun. 26, 245–251 (2005).

    Article  PubMed  Google Scholar 

  124. van der Bruggen, W., Bleeker-Rovers, C. P., Boerman, O. C., Gotthardt, M. & Oyen, W. J. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin. Nucl. Med. 40, 3–15 (2010).

    Article  PubMed  Google Scholar 

  125. Erba, P. A. et al. Added value of sup 99m Tc-HMPAO-labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J. Nucl. Med. 53, 1235 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Hughes, D. K. Nuclear medicine and infection detection: the relative effectiveness of imaging with 111In-oxine-, 99mTc-HMPAO-, and 99mTc-stannous fluoride colloid-labeled leukocytes and with 67Ga-citrate. J. Nucl. Med. Technol. 31, 196–201 (2003).

    CAS  PubMed  Google Scholar 

  127. Kaisidis, A. et al. Diagnosis of septic loosening of hip prosthesis with LeukoScan. SPECT scan with 99mTc-labeled monoclonal antibodies [German]. Orthopade 34, 462–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Pacilio, M., Lauri, C., Prosperi, D., Petitti, A. & Signore, A. New SPECT and PET radiopharmaceuticals for imaging inflammatory diseases: a meta-analysis of the last 10 years. Semin. Nucl. Med. 48, 261–276 (2018).

    Article  PubMed  Google Scholar 

  129. Cope, F. O. et al. The inextricable axis of targeted diagnostic imaging and therapy: an immunological natural history approach. Nucl. Med. Biol. 43, 215–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Adesanya, O. O. & Hutchinson, C. E. Designing a new molecular probe: the potential role for tilmanocept (Lymphoseek®) in the assessment of patients with painful hip and knee joint prostheses. Open Orthop. J. 11, 212–224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zanni, M. V. et al. Application of a novel CD206+ macrophage-specific arterial imaging strategy in HIV-infected individuals. J. Infect. Dis. 215, 1264–1269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Slomka, P. J., Pan, T., Berman, D. S. & Germano, G. Advances in SPECT and PET hardware. Prog. Cardiovasc. Dis. 57, 566–578 (2015).

    Article  PubMed  Google Scholar 

  133. Perlman, S. B., Hall, B. S. & Reichelderfer, M. PET/CT imaging of inflammatory bowel disease. Semin. Nucl. Med. 43, 420–426 (2013).

    Article  PubMed  Google Scholar 

  134. Sarrazin, J.-F. et al. Usefulness of fluorine-18 positron emission tomography/computed tomography for identification of cardiovascular implantable electronic device infections. J. Am. Coll. Cardiol. 59, 1616–1625 (2012).

    Article  PubMed  Google Scholar 

  135. Saby, L. et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J. Am. Coll. Cardiol. 61, 2374–2382 (2013).

    Article  PubMed  Google Scholar 

  136. Love, C., Tomas, M. B., Tronco, G. G. & Palestro, C. J. FDG PET of infection and inflammation. Radiographics 25, 1357–1368 (2005).

    Article  PubMed  Google Scholar 

  137. Wykrzykowska, J. et al. Imaging of inflamed and vulnerable plaque in coronary arteries with sup 18 F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J. Nucl. Med. 50, 563 (2009).

    Article  PubMed  Google Scholar 

  138. Rudd, J. H. et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J. Am. Coll. Cardiol. 50, 892–896 (2007).

    Article  PubMed  Google Scholar 

  139. Camici, P. G., Rimoldi, O. E., Gaemperli, O. & Libby, P. Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur. Heart J. 33, 1309–1317 (2012).

    Article  PubMed  Google Scholar 

  140. Chiou, V. L. & Burotto, M. Pseudoprogression and immune-related response in solid tumors. J. Clin. Oncol. 33, 3541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Davies, J. R. et al. FDG–PET can distinguish inflamed from non-inflamed plaque in an animal model of atherosclerosis. Int. J. Cardiovasc. Imaging 26, 41 (2010).

    Article  PubMed  Google Scholar 

  142. Li, X. et al. 68 Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with 18 F-FDG, calcium burden and risk factors. EJNMMI Res. 2, 52 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Mojtahedi, A. et al. Assessment of vulnerable atherosclerotic and fibrotic plaques in coronary arteries using 68Ga-DOTATATE PET/CT. Am. J. Nucl. Med. Mol. Imaging 5, 65 (2015).

    CAS  PubMed  Google Scholar 

  144. Tarkin, J. M. et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F] FDG PET imaging. J. Am. Coll. Cardiol. 69, 1774–1791 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hannestad, J. et al. Endotoxin-induced systemic inflammation activates microglia: [11C] PBR28 positron emission tomography in nonhuman primates. Neuroimage 63, 232–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Shao, X. et al. Imaging of carrageenan-induced local inflammation and adjuvant-induced systemic arthritis with [11C] PBR28 PET. Nucl. Med. Biol. 40, 906–911 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Datta, G. et al. [11C] PBR28 or [18F] PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis. J. Nucl. Med. 58, 1477–1482 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Nimmagadda, S. et al. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu] AMD3100 positron emission tomography. Cancer Res. 70, 3935–3944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wei, W., Jiang, D., Ehlerding, E. B., Luo, Q. & Cai, W. Noninvasive PET imaging of T cells. Trends Cancer 4, 359–373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Olafsen, T. et al. Recombinant anti-CD20 antibody fragments for microPET imaging of B cell lymphoma. J. Nucl. Med. 50, 1500 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Zettlitz, K. A. et al. ImmunoPET of malignant and normal B cells with 89Zr- and 124I-labeled obinutuzumab antibody fragments reveals differential CD20 internalization in vivo. Clin. Cancer Res. 23, 7242–7252 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tavaré, R. et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA 111, 1108–1113 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  153. Walther, M. et al. Implementation of 89Zr production and in vivo imaging of B cells in mice with 89Zr-labeled anti-B cell antibodies by small animal PET/CT. Appl. Radiat. Isot. 69, 852–857 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Normandin, M. D. et al. Heat-induced radiolabeling of nanoparticles for monocyte tracking by PET. Angew. Chem. Int. Ed. Engl. 54, 13002–13006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yuan, H. et al. Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry. Nat. Protoc. 13, 392 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yuan, H. et al. Heat-induced-radiolabeling and click chemistry: a powerful combination for generating multifunctional nanomaterials. PLOS ONE 12, e0172722 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sîrbulescu, R. F. et al. Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions. Wound Repair Regen. 25, 774–791 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Schmidt, A., Schottelius, M., Herz, M. & Wester, H.-J. Production of clinical radiopharmaceuticals: general pharmaceutical and radioanalytical aspects. J. Radioanal. Nucl. Chem. 311, 1551–1557 (2016).

    Article  CAS  Google Scholar 

  159. Ballinger, J. R. Pitfalls and limitations of SPECT, PET, and therapeutic radiopharmaceuticals. Semin. Nucl. Med. 45, 470–478 (2015).

    Article  PubMed  Google Scholar 

  160. Ballinger, J. R. & Koziorowski, J. in Basic Science of PET Imaging (ed. Khalil, M. M.) 127–143 (Springer, 2016).

  161. Saha, G. B. Basics of PET Imaging 179–195 (Springer, 2016).

  162. Gerlee, P. The model muddle: in search of tumor growth laws. Cancer Res. 73, 2407–2411 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Benzekry, S. et al. Classical mathematical models for description and prediction of experimental tumor growth. PLOS Comput. Biol. 10, e1003800 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Fowler, J. F. 21 years of biologically effective dose. Br. J. Radiol. 83, 554–568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Simon, R. & Norton, L. The Norton–Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens. Nat. Clin. Pract. Oncol. 3, 406–407 (2006).

    Article  PubMed  Google Scholar 

  166. Grassberger, C. & Paganetti, H. Methodologies in the modeling of combined chemo-radiation treatments. Phys. Med. Biol. 61, R344 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Foo, J. & Michor, F. Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol. 355, 10–20 (2014).

    Article  PubMed  Google Scholar 

  168. Bozic, I. & Nowak, M. A. Resisting resistance. Annu. Rev. Cancer Biol. 1, 203–221 (2017).

    Article  Google Scholar 

  169. Gajewski, T. F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Michor, F., Liphardt, J., Ferrari, M. & Widom, J. What does physics have to do with cancer? Nat. Rev. Cancer 11, 1–14 (2011).

    Article  CAS  Google Scholar 

  172. Benzekry, S. et al. Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer Res. 76, 535–547 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Bell, G. I. Predator-prey equations simulating an immune response. Math. Biosci. 16, 291–314 (1973).

    Article  Google Scholar 

  174. Dullens, H. F., Van der Tol, M. W., De Weger, R. A., Otter & Den, W. A survey of some formal models in tumor immunology. Cancer Immunol. Immunother. 23, 159–164 (1986).

    Article  CAS  PubMed  Google Scholar 

  175. Eftimie, R., Bramson, J. L. & Earn, D. J. D. Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73, 2–32 (2011).

    Article  PubMed  Google Scholar 

  176. Adam, J. A. in A Survey of Models for Tumor-Immune System Dynamics (eds Adam, J. & Bellomo, N.) 15–87 (Birkhäuser, 1997).

  177. Goldstein, B., Faeder, J. R. & Hlavacek, W. S. Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol. 4, 445–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Walker, R. & Enderling, H. From concept to clinic: mathematically informed immunotherapy. Curr. Probl. Cancer 40, 68–83 (2016).

    Article  PubMed  Google Scholar 

  179. de Pillis, L. G., Radunskaya, A. E. & Wiseman, C. L. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65, 7950–7958 (2005).

    Article  PubMed  Google Scholar 

  180. Agur, Z. & Vuk-Pavlovic, S. Mathematical modeling in immunotherapy of cancer: personalizing clinical trials. Mol. Ther. 20, 1–2 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Agur, Z. & Vuk-Pavlovic, S. Personalizing immunotherapy: balancing predictability and precision. Oncoimmunology 1, 1169–1171 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sotolongo-Grau, O., Rodríguez-Pérez, D., Santos-Miranda, J. A., Sotolongo-Costa, O. & Antoranz, J. C. Immune system-tumour efficiency ratio as a new oncological index for radiotherapy treatment optimization. Math. Med. Biol. 26, 297–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Sotolongo-Costa, O., Morales Molina, L., Rodríguez-Pérez, D., Antoranz, J. C. & Chacón Reyes, M. Behavior of tumors under nonstationary therapy. Phys. D 178, 242–253 (2003).

    Article  Google Scholar 

  184. Serre, R. et al. Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy. Cancer Res. 76, 4931–4940 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Serre, R., Barlesi, F., Muracciole, X. & Barbolosi, D. Immunologically effective dose: a practical model for immuno-radiotherapy. Oncotarget 9, 31812–31819 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Chakwizira, A., Ahlstedt, J., Nittby Redebrandt, H. & Ceberg, C. Mathematical modelling of the synergistic combination of radiotherapy and indoleamine-2,3-dioxygenase (IDO) inhibitory immunotherapy against glioblastoma. Br. J. Radiol. 91, 20170857 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Kosinsky, Y. et al. Radiation and PD-(L)1 treatment combinations: immune response and dose optimization via a predictive systems model. J. Immunother. Cancer 6, 17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Poleszczuk, J. T. et al. Abscopal benefits of localized radiotherapy depend on activated T cell trafficking and distribution between metastatic lesions. Cancer Res. 76, 1009–1018 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Walker, R., Schoenfeld, J. D., Pilon-Thomas, S., Poleszczuk, J. & Enderling, H. Evaluating the potential for maximized T cell redistribution entropy to improve abscopal responses to radiotherapy. Converg. Sci. Phys. Oncol. 3, 034001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Walker, R. et al. Immune interconnectivity of anatomically distant tumors as a potential mediator of systemic responses to local therapy. Sci. Rep. 8, 9474 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Poleszczuk, J. & Enderling, H. The optimal radiation dose to induce robust systemic anti-tumor immunity. Int. J. Mol. Sci. 19, E3377 (2018).

    Article  PubMed  Google Scholar 

  192. Ogilvie, L. A., Kovachev, A., Wierling, C., Lange, B. M. H. & Lehrach, H. Models of models: a translational route for cancer treatment and drug development. Front. Oncol. 7, 1139–1137 (2017).

    Article  Google Scholar 

  193. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114–118 (2014).

    PubMed  PubMed Central  Google Scholar 

  194. Grassberger, C., Scott, J. G. & Paganetti, H. Biomathematical optimization of radiation therapy in the era of targeted agents. Int. J. Radiat. Oncol. Biol. Phys. 97, 13–17 (2017).

    Article  PubMed  Google Scholar 

  195. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Dovedi, S. J. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74, 5458–5468 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Li, R. et al. Involved field radiotherapy (IFRT) versus elective nodal irradiation (ENI) for locally advanced non-small cell lung cancer: a meta-analysis of incidence of elective nodal failure (ENF). Radiat. Oncol. 11, 124 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Fernandes, A. T. et al. Elective nodal irradiation (ENI) versus involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC): a comparative analysis of toxicities and clinical outcomes. Radiother. Oncol. 95, 178–184 (2010).

    Article  PubMed  Google Scholar 

  199. Colaco, R. et al. Omitting elective nodal irradiation during thoracic irradiation in limited-stage small cell lung cancer — evidence from a phase II trial. Lung Cancer 76, 72–77 (2012).

    Article  PubMed  Google Scholar 

  200. Jiang, L., Zhao, X., Meng, X. & Yu, J. Involved field irradiation for the treatment of esophageal cancer: is it better than elective nodal irradiation? Cancer Lett. 357, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Whelan, T. J., Olivotto, I. A. & Levine, M. N. Regional nodal irradiation in early-stage breast cancer. N. Engl. J. Med. 373, 1878–1879 (2015).

    Article  PubMed  CAS  Google Scholar 

  202. Marciscano, A. E. et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin. Cancer Res. 24, 5058–5071 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Shalapour, S. & Karin, M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Invest. 125, 3347–3355 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bouquet, F. et al. TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin. Cancer Res. 17, 6754–6765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Klopp, A. H. et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67, 11687–11695 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Durante, M., Orecchia, R. & Loeffler, J. S. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat. Rev. Clin. Oncol. 14, 483–495 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank H. Paganetti, H. Willers, M. Cobbold, T. Hong and H. Shih at Massachusetts General Hospital for their clinical insights and helpful discussions.

Peer review information

Nature Reviews Clinical Oncology thanks B. Frey, J. Chang, K. Young and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.G., S.G.E., M.Q.W., and F.K.K. researched data for the article. All authors made a substantial contribution to the discussion of content, wrote the manuscript, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Clemens Grassberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grassberger, C., Ellsworth, S.G., Wilks, M.Q. et al. Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol 16, 729–745 (2019). https://doi.org/10.1038/s41571-019-0238-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-019-0238-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing