Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Clinical potential of mass spectrometry-based proteogenomics

Abstract

Cancer genomics research aims to advance personalized oncology by finding and targeting specific genetic alterations associated with cancers. In genome-driven oncology, treatments are selected for individual patients on the basis of the findings of tumour genome sequencing. This personalized approach has prolonged the survival of subsets of patients with cancer. However, many patients do not respond to the predicted therapies based on the genomic profiles of their tumours. Furthermore, studies pairing genomic and proteomic analyses of samples from the same tumours have shown that the proteome contains novel information that cannot be discerned through genomic analysis alone. This observation has led to the concept of proteogenomics, in which both types of data are leveraged for a more complete view of tumour biology that might enable patients to be more successfully matched to effective treatments than they would using genomics alone. In this Perspective, we discuss the added value of proteogenomics over the current genome-driven approach to the clinical characterization of cancers and summarize current efforts to incorporate targeted proteomic measurements based on selected/multiple reaction monitoring (SRM/MRM) mass spectrometry into the clinical laboratory to facilitate clinical proteogenomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Many processes downstream of the genome can affect the tumour phenotype.
Fig. 2: Untargeted (‘shotgun’) discovery proteomics.
Fig. 3: Integrative proteogenomic analysis adds missing biology.
Fig. 4: Targeted MS-based assays.

Similar content being viewed by others

References

  1. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Simon, R. Critical review of umbrella, basket, and platform designs for oncology clinical trials. Clin. Pharmacol. Ther. 102, 934–941 (2017).

    PubMed  Google Scholar 

  3. Maitland, M. L. & Schilsky, R. L. Clinical trials in the era of personalized oncology. CA Cancer J. Clin. 61, 365–381 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Subbiah, V. & Kurzrock, R. Debunking the delusion that precision oncology is an illusion. Oncologist 22, 881–882 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Prasad, V. Perspective: the precision-oncology illusion. Nature 537, S63 (2016).

    CAS  Google Scholar 

  7. West, H. J. No solid evidence, only hollow argument for universal tumor sequencing: show me the data. JAMA Oncol. 2, 717–718 (2016).

    PubMed  Google Scholar 

  8. Vasan, N. et al. A targeted next-generation sequencing assay detects a high frequency of therapeutically targetable alterations in primary and metastatic breast cancers: implications for clinical practice. Oncologist 19, 453–458 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sholl, L. M. et al. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight 1, e87062 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 23, 1028–1035 (2017).

    CAS  PubMed  Google Scholar 

  11. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Baer, C., Claus, R. & Plass, C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 73, 473–477 (2013).

    CAS  PubMed  Google Scholar 

  13. Rupaimoole, R., Calin, G. A., Lopez-Berestein, G. & Sood, A. K. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 6, 235–246 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, S. H. et al. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature 561, 127–131 (2018).

    CAS  PubMed  Google Scholar 

  15. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Oltean, S. & Bates, D. O. Hallmarks of alternative splicing in cancer. Oncogene 33, 5311–5318 (2014).

    CAS  PubMed  Google Scholar 

  17. Chen, J. & Weiss, W. A. Alternative splicing in cancer: implications for biology and therapy. Oncogene 34, 1–14 (2015).

    PubMed  Google Scholar 

  18. Hebert, A. S. et al. Comprehensive single-shot proteomics with FAIMS on a hybrid orbitrap mass spectrometer. Anal. Chem. 90, 9529–9537 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 15, 440–448 (2018).

    CAS  PubMed  Google Scholar 

  20. Bantscheff, M., Lemeer, S., Savitski, M. M. & Kuster, B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404, 939–965 (2012).

    CAS  PubMed  Google Scholar 

  21. Rauniyar, N. & Yates, J. R. 3rd. Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 13, 5293–5309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ellis, M. J. et al. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 3, 1108–1112 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, H. et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166, 755–765 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharpnack, M. F. et al. Proteogenomic analysis of surgically resected lung adenocarcinoma. J. Thorac. Oncol. 13, 1519–1529 (2018).

    PubMed  Google Scholar 

  27. Lobas, A. A. et al. Proteogenomics of malignant melanoma cell lines: the effect of stringency of exome data filtering on variant peptide identification in shotgun proteomics. J. Proteome Res. 17, 1801–1811 (2018).

    CAS  PubMed  Google Scholar 

  28. Alfaro, J. A. et al. Detecting protein variants by mass spectrometry: a comprehensive study in cancer cell-lines. Genome Med. 9, 62 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Wang, L. et al. Novel RNA-affinity proteogenomics dissects tumor heterogeneity for revealing personalized markers in precision prognosis of cancer. Cell Chem. Biol. 25, 619–633 (2018).

    CAS  PubMed  Google Scholar 

  30. Komor, M. A. et al. Identification of differentially expressed splice variants by the proteogenomic pipeline Splicify. Mol. Cell. Proteomics 16, 1850–1863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, J. et al. Colorectal cancer cell line proteomes are representative of primary tumors and predict drug sensitivity. Gastroenterology 153, 1082–1095 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Huang, K. L. et al. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat. Commun. 8, 14864 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Granados, D. P. et al. Proteogenomic-based discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers. Leukemia 30, 1344–1354 (2016).

    CAS  PubMed  Google Scholar 

  34. Boja, E. S. & Rodriguez, H. Proteogenomic convergence for understanding cancer pathways and networks. Clin. Proteomics 11, 22 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Ruggles, K. V. et al. Methods, tools and current perspectives in proteogenomics. Mol. Cell. Proteomics 16, 959–981 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. Nat. Methods 11, 1114–1125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alfaro, J. A., Sinha, A., Kislinger, T. & Boutros, P. C. Onco-proteogenomics: cancer proteomics joins forces with genomics. Nat. Methods 11, 1107–1113 (2014).

    CAS  PubMed  Google Scholar 

  38. Sheynkman, G. M., Shortreed, M. R., Cesnik, A. J. & Smith, L. M. Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu. Rev. Anal. Chem. 9, 521–545 (2016).

    Google Scholar 

  39. Subbannayya, Y., Pinto, S. M., Gowda, H. & Prasad, T. S. Proteogenomics for understanding oncology: recent advances and future prospects. Expert Rev. Proteomics 13, 297–308 (2016).

    CAS  PubMed  Google Scholar 

  40. Dimitrakopoulos, L. et al. Proteogenomics: opportunities and caveats. Clin. Chem. 62, 551–557 (2016).

    CAS  PubMed  Google Scholar 

  41. Menschaert, G. & Fenyo, D. Proteogenomics from a bioinformatics angle: a growing field. Mass Spectrom. Rev. 36, 584–599 (2017).

    CAS  PubMed  Google Scholar 

  42. Creech, A. L. et al. The role of mass spectrometry and proteogenomics in the advancement of HLA epitope prediction. Proteomics 18, e1700259 (2018).

    PubMed  Google Scholar 

  43. Zhu, Y. et al. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat. Commun. 9, 903 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    CAS  PubMed  Google Scholar 

  45. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    CAS  PubMed  Google Scholar 

  46. Wang, X. et al. Protein identification using customized protein sequence databases derived from RNA-Seq data. J. Proteome Res. 11, 1009–1017 (2012).

    CAS  PubMed  Google Scholar 

  47. Ruggles, K. V. et al. An analysis of the sensitivity of proteogenomic mapping of somatic mutations and novel splicing events in cancer. Mol. Cell. Proteomics 15, 1060–1071 (2016).

    CAS  PubMed  Google Scholar 

  48. Choudhary, G., Wu, S. L., Shieh, P. & Hancock, W. S. Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J. Proteome Res. 2, 59–67 (2003).

    CAS  PubMed  Google Scholar 

  49. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    CAS  PubMed  Google Scholar 

  50. Bassani-Sternberg, M. & Coukos, G. Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr. Opin. Immunol. 41, 9–17 (2016).

    CAS  Google Scholar 

  51. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, J. et al. Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Mol. Cell. Proteomics 16, 121–134 (2017).

    CAS  PubMed  Google Scholar 

  53. Cronin, M. et al. Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin. Chem. 53, 1084–1091 (2007).

    CAS  PubMed  Google Scholar 

  54. Yuan, Y. et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol. 32, 644–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu, K. H. et al. Predicting ovarian cancer patients’ clinical response to platinum-based chemotherapy by their tumor proteomic signatures. J. Proteome Res. 15, 2455–2465 (2016).

    CAS  PubMed  Google Scholar 

  56. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Google Scholar 

  57. Creixell, P. et al. Pathway and network analysis of cancer genomes. Nat. Methods 12, 615–621 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    CAS  PubMed  Google Scholar 

  60. Weidner, C., Fischer, C. & Sauer, S. PHOXTRACK-a tool for interpreting comprehensive datasets of post- translational modifications of proteins. Bioinformatics 30, 3410–3411 (2014).

    CAS  PubMed  Google Scholar 

  61. Wang, P., Whiteaker, J. R. & Paulovich, A. G. The evolving role of mass spectrometry in cancer biomarker discovery. Cancer Biol. Ther. 8, 1083–1094 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gillette, M. A. & Carr, S. A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat. Methods 10, 28–34 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodriguez, H. et al. Reconstructing the pipeline by introducing multiplexed multiple reaction monitoring mass spectrometry for cancer biomarker verification: an NCI-CPTC initiative perspective. Proteomics Clin. Appl. 4, 904–914 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fuzery, A. K., Levin, J., Chan, M. M. & Chan, D. W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin. Proteomics 10, 13 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. Camp, R. L., Chung, G. G. & Rimm, D. L. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat. Med. 8, 1323–1327 (2002).

    CAS  PubMed  Google Scholar 

  66. Toki, M. I., Cecchi, F., Hembrough, T., Syrigos, K. N. & Rimm, D. L. Proof of the quantitative potential of immunofluorescence by mass spectrometry. Lab. Invest. 97, 329–334 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Quinn, M. Newfoundland launches judicial inquiry. CMAJ 177, 24–25 (2007).

    PubMed  PubMed Central  Google Scholar 

  68. Wasielewski, R., Hasselmann, S., Ruschoff, J., Fisseler-Eckhoff, A. & Kreipe, H. Proficiency testing of immunohistochemical biomarker assays in breast cancer. Virchows Arch. 453, 537–543 (2008).

    PubMed  Google Scholar 

  69. Allred, D. C. et al. NCCN Task Force Report: estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry. J. Natl Compr. Canc. Netw. 7 (Suppl. 6), 1–21; quiz S22–S23. (2009).

    Google Scholar 

  70. Carvajal-Hausdorf, D. E., Schalper, K. A., Neumeister, V. M. & Rimm, D. L. Quantitative measurement of cancer tissue biomarkers in the lab and in the clinic. Lab. Invest. 95, 385–396 (2015).

    CAS  PubMed  Google Scholar 

  71. Wolff, A. C. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4013 (2013).

    PubMed  Google Scholar 

  72. Buttner, R. et al. Programmed death-ligand 1 immunohistochemistry testing: a review of analytical assays and clinical implementation in non-small-cell lung cancer. J. Clin. Oncol. 35, 3867–3876 (2017).

    PubMed  Google Scholar 

  73. Vani, K., Sompuram, S. R., Fitzgibbons, P. & Bogen, S. A. National HER2 proficiency test results using standardized quantitative controls: characterization of laboratory failures. Arch. Pathol. Lab. Med. 132, 211–216 (2008).

    PubMed  Google Scholar 

  74. Mueller, C., Liotta, L. A. & Espina, V. Reverse phase protein microarrays advance to use in clinical trials. Mol. Oncol. 4, 461–481 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Akbani, R. et al. Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (Reverse Phase Protein Array) society. Mol. Cell. Proteomics 13, 1625–1643 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Whiteaker, J. R. et al. Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J. Proteome Res. 6, 3962–3975 (2007).

    CAS  PubMed  Google Scholar 

  77. Addona, T. A. et al. A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat. Biotechnol. 29, 635–643 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Whiteaker, J. R. et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat. Biotechnol. 29, 625–634 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Picotti, P., Bodenmiller, B. & Aebersold, R. Proteomics meets the scientific method. Nat. Methods 10, 24–27 (2013).

    CAS  PubMed  Google Scholar 

  80. Vidova, V. & Spacil, Z. A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. Anal. Chim. Acta 964, 7–23 (2017).

    CAS  PubMed  Google Scholar 

  81. Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Pan, S. et al. Mass spectrometry based targeted protein quantification: methods and applications. J. Proteome Res. 8, 787–797 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics 11, 1475–1488 (2012).

    PubMed  PubMed Central  Google Scholar 

  84. Bourmaud, A., Gallien, S. & Domon, B. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: principle and applications. Proteomics 16, 2146–2159 (2016).

    CAS  PubMed  Google Scholar 

  85. Ronsein, G. E. et al. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J. Proteomics 113, 388–399 (2015).

    CAS  PubMed  Google Scholar 

  86. Chace, D. H. & Kalas, T. A. A biochemical perspective on the use of tandem mass spectrometry for newborn screening and clinical testing. Clin. Biochem. 38, 296–309 (2005).

    CAS  PubMed  Google Scholar 

  87. Want, E. J., Cravatt, B. F. & Siuzdak, G. The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem 6, 1941–1951 (2005).

    CAS  PubMed  Google Scholar 

  88. Brun, V., Masselon, C., Garin, J. & Dupuis, A. Isotope dilution strategies for absolute quantitative proteomics. J. Proteomics 72, 740–749 (2009).

    CAS  PubMed  Google Scholar 

  89. Keerthikumar, S. & Mathivanan, S. Proteotypic peptides and their applications. Methods Mol. Biol. 1549, 101–107 (2017).

    CAS  PubMed  Google Scholar 

  90. Hoofnagle, A. N. et al. Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin. Chem. 62, 48–69 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brun, V. et al. Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol. Cell. Proteomics 6, 2139–2149 (2007).

    CAS  PubMed  Google Scholar 

  92. Konopka, A. et al. Improving the precision of quantitative bottom-up proteomics based on stable isotope-labeled proteins. Anal. Bioanal. Chem. 404, 1079–1087 (2012).

    CAS  PubMed  Google Scholar 

  93. Scott, K. B., Turko, I. V. & Phinney, K. W. Quantitative performance of internal standard platforms for absolute protein quantification using multiple reaction monitoring-mass spectrometry. Anal. Chem. 87, 4429–4435 (2015).

    CAS  PubMed  Google Scholar 

  94. Addona, T. A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Prakash, A. et al. Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J. Proteome Res. 11, 3986–3995 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Abbatiello, S. E. et al. Large-scale interlaboratory study to develop, analytically validate and apply highly multiplexed, quantitative peptide assays to measure cancer-relevant proteins in plasma. Mol. Cell. Proteomics 14, 2357–2374 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kennedy, J. J. et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat. Methods 11, 149–155 (2014).

    CAS  PubMed  Google Scholar 

  98. Whiteaker, J. R. et al. Evaluation of large scale quantitative proteomic assay development using peptide affinity-based mass spectrometry. Mol. Cell. Proteomics 10, M110.005645 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Huttenhain, R. et al. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci. Transl Med. 4, 142ra94 (2012).

    PubMed  PubMed Central  Google Scholar 

  100. Surinova, S. et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol. Med. 7, 1166–1178 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Abelin, J. G. et al. Reduced-representation phosphosignatures measured by quantitative targeted MS capture cellular states and enable large-scale comparison of drug-induced phenotypes. Mol. Cell. Proteomics 15, 1622–1641 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ippoliti, P. J. et al. Automated microchromatography enables multiplexing of immunoaffinity enrichment of peptides to greater than 150 for targeted MS-based assays. Anal. Chem. 88, 7548–7555 (2016).

    CAS  PubMed  Google Scholar 

  103. Hüttenhain, R., Malmström, J., Picotti, P. & Aebersold, R. Perspectives of targeted mass spectrometry for protein biomarker verification. Curr. Opin. Chem. Biol. 13, 518–525 (2009).

    PubMed  PubMed Central  Google Scholar 

  104. Whiteaker, J. R. & Paulovich, A. G. Peptide immunoaffinity enrichment coupled with mass spectrometry for peptide and protein quantification. Clin. Lab. Med. 31, 385–396 (2011).

    PubMed  PubMed Central  Google Scholar 

  105. Anderson, N. L. et al. Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J. Proteome Res. 3, 235–244 (2004).

    CAS  PubMed  Google Scholar 

  106. Schoenherr, R. M. et al. Automated screening of monoclonal antibodies for SISCAPA assays using a magnetic bead processor and liquid chromatography-selected reaction monitoring-mass spectrometry. J. Immunol. Methods 353, 49–61 (2010).

    CAS  PubMed  Google Scholar 

  107. Chambers, A. G., Percy, A. J., Simon, R. & Borchers, C. H. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. Expert Rev. Proteomics 11, 137–148 (2014).

    CAS  PubMed  Google Scholar 

  108. Faria, S. S. et al. A timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research. Front. Oncol. 7, 13 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Percy, A. J., Chambers, A. G., Yang, J. & Borchers, C. H. Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics 13, 2202–2215 (2013).

    CAS  PubMed  Google Scholar 

  110. Silvestri, G. A. et al. Assessment of plasma proteomics biomarker’s ability to distinguish benign from malignant lung nodules: results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) trial. Chest 154, 491–500 (2018).

    PubMed  Google Scholar 

  111. Duriez, E. et al. Large-scale SRM screen of urothelial bladder cancer candidate biomarkers in urine. J. Proteome Res. 16, 1617–1631 (2017).

    CAS  PubMed  Google Scholar 

  112. Kentsis, A. et al. Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease. EMBO Mol. Med. 5, 210–220 (2013).

    CAS  PubMed  Google Scholar 

  113. Kim, Y. et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat. Commun. 7, 11906 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Martinez-Garcia, E. et al. Targeted proteomics identifies proteomic signatures in liquid biopsies of the endometrium to diagnose endometrial cancer and assist in the prediction of the optimal surgical treatment. Clin. Cancer Res. 23, 6458–6467 (2017).

    CAS  PubMed  Google Scholar 

  115. Song, E. et al. Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer. Sci. Data 4, 170091 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hembrough, T. et al. Application of selected reaction monitoring for multiplex quantification of clinically validated biomarkers in formalin-fixed, paraffin-embedded tumor tissue. J. Mol. Diagn. 15, 454–465 (2013).

    CAS  PubMed  Google Scholar 

  117. Sprung, R. W. et al. Precision of multiple reaction monitoring mass spectrometry analysis of formalin-fixed, paraffin-embedded tissue. J. Proteome Res. 11, 3498–3505 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kennedy, J. J. et al. Optimized protocol for quantitative multiple reaction monitoring-based proteomic analysis of formalin-fixed, paraffin-embedded tissues. J. Proteome Res. 15, 2717–2728 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kennedy, J. J. et al. Immobilized metal affinity chromatography coupled to multiple reaction monitoring enables reproducible quantification of phospho-signaling. Mol. Cell. Proteomics 15, 726–739 (2016).

    CAS  PubMed  Google Scholar 

  120. Whiteaker, J. R. et al. Peptide immunoaffinity enrichment and targeted mass spectrometry enables multiplex, quantitative pharmacodynamic studies of phospho-signaling. Mol. Cell. Proteomics 14, 2261–2273 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, X. et al. Constrained selected reaction monitoring: quantification of selected post-translational modifications and protein isoforms. Methods 61, 304–312 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D. A. & White, F. M. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA 104, 5860–5865 (2007).

    CAS  PubMed  Google Scholar 

  123. Whiteaker, J. R. et al. Targeted mass spectrometry enables robust quantification of FANCD2 mono-ubiquitination in response to DNA damage. DNA Repair 65, 47–53 (2018).

    CAS  PubMed  Google Scholar 

  124. Whiteaker, J. R. et al. A multiplexed mass spectrometry-based assay for robust quantification of phosphosignaling in response to DNA damage. Radiat. Res. 189, 505–518 (2018).

    CAS  PubMed  Google Scholar 

  125. Zhang, P. et al. A novel, multiplexed targeted mass spectrometry assay for quantification of complement factor H (CFH) variants and CFH-related proteins 1–5 in human plasma. Proteomics 17, 1600237 (2017).

    Google Scholar 

  126. Shin, A. et al. Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels. Hum. Mol. Genet. 26, 1258–1267 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhu, Y. et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 9, 882 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Shi, T. et al. Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells. Commun. Biol. 1, 103 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Nie, S. et al. Deep-dive targeted quantification for ultrasensitive analysis of proteins in nondepleted human blood plasma/serum and tissues. Anal. Chem. 89, 9139–9146 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Shi, T. et al. Advances in targeted proteomics and applications to biomedical research. Proteomics 16, 2160–2182 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Shi, T. et al. Sensitive targeted quantification of ERK phosphorylation dynamics and stoichiometry in human cells without affinity enrichment. Anal. Chem. 87, 1103–1110 (2015).

    CAS  PubMed  Google Scholar 

  132. Faria, M. et al. Comparison of a stable isotope labeled (SIL) peptide and an extended SIL peptide as internal standards to track digestion variability of an unstable signature peptide during quantification of a cancer biomarker, human osteopontin, from plasma using capillary microflow LC-MS/MS. J. Chromatogr. B 1001, 156–168 (2015).

    CAS  Google Scholar 

  133. Nouri-Nigjeh, E. et al. Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein. Anal. Chem. 86, 3575–3584 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bronsema, K. J., Bischoff, R. & van de Merbel, N. C. High-sensitivity LC-MS/MS quantification of peptides and proteins in complex biological samples: the impact of enzymatic digestion and internal standard selection on method performance. Anal. Chem. 85, 9528–9535 (2013).

    CAS  PubMed  Google Scholar 

  135. Schoenherr, R. M. et al. Commercially available antibodies can be applied in quantitative multiplexed peptide immunoaffinity enrichment targeted mass spectrometry assays. Proteomics 16, 2141–2145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Deutsch, E. W. et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 45, D1100–D1106 (2017).

    CAS  PubMed  Google Scholar 

  137. Craig, R., Cortens, J. P. & Beavis, R. C. Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 3, 1234–1242 (2004).

    CAS  PubMed  Google Scholar 

  138. Mohammed, Y. et al. PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J. Proteomics 106, 151–161 (2014).

    CAS  PubMed  Google Scholar 

  139. Bhowmick, P., Mohammed, Y. & Borchers, C. H. MRMAssayDB: an integrated resource for validated targeted proteomics assays. Bioinformatics 34, 3566–3571 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Kusebauch, U. et al. Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell 166, 766–778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mohammed, Y. & Borchers, C. H. An extensive library of surrogate peptides for all human proteins. J. Proteomics 129, 93–97 (2015).

    CAS  PubMed  Google Scholar 

  142. Kusebauch, U. et al. Using PeptideAtlas, SRMAtlas, and PASSEL: comprehensive resources for discovery and targeted proteomics. Curr. Protoc. Bioinformatics 46, 13.25.1–13.25.28 (2014).

    Google Scholar 

  143. Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. https://doi.org/10.1002/mas.21540 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sharma, V. et al. Panorama: a targeted proteomics knowledge base. J. Proteome Res. 13, 4205–4210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Farrah, T. et al. PASSEL: the PeptideAtlas SRMexperiment library. Proteomics 12, 1170–1175 (2012).

    CAS  PubMed  Google Scholar 

  146. Remily-Wood, E. R. et al. A database of reaction monitoring mass spectrometry assays for elucidating therapeutic response in cancer. Proteomics Clin. Appl. 5, 383–396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Whiteaker, J. R. et al. CPTAC Assay Portal: a repository of targeted proteomic assays. Nat. Methods 11, 703–704 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Carr, S. A. et al. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol. Cell. Proteomics 13, 907–917 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Fiore, L. D., Rodriguez, H. & Shriver, C. D. Collaboration to accelerate proteogenomics cancer care: the Department of Veterans Affairs, Department of Defense, and the National Cancer Institute’s applied proteogenomics organizational learning and outcomes (APOLLO) network. Clin. Pharmacol. Ther. 101, 619–621 (2017).

    CAS  PubMed  Google Scholar 

  150. Hoofnagle, A. N., Becker, J. O., Wener, M. H. & Heinecke, J. W. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin. Chem. 54, 1796–1804 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Hoofnagle, A. N. & Wener, M. H. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J. Immunol. Methods 347, 3–11 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Whiteaker, J. R. et al. Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal. Biochem. 362, 44–54 (2007).

    CAS  PubMed  Google Scholar 

  153. Hoofnagle, A. N. & Roth, M. Y. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J. Clin. Endocrinol. Metab. 98, 1343–1352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Burtis, C. A. & Bruns, D. E. Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics 7th edn (Saunders, 2014).

  155. Netzel, B. C., Grebe, S. K. & Algeciras-Schimnich, A. Usefulness of a thyroglobulin liquid chromatography-tandem mass spectrometry assay for evaluation of suspected heterophile interference. Clin. Chem. 60, 1016–1018 (2014).

    CAS  PubMed  Google Scholar 

  156. Shuford, C. M. et al. Absolute protein quantification by mass spectrometry: not as simple as advertised. Anal. Chem. 89, 7406–7415 (2017).

    CAS  PubMed  Google Scholar 

  157. Kushnir, M. M. et al. Measurement of thyroglobulin by liquid chromatography-tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin. Chem. 59, 982–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Clarke, N. J., Zhang, Y. & Reitz, R. E. A novel mass spectrometry-based assay for the accurate measurement of thyroglobulin from patient samples containing antithyroglobulin autoantibodies. J. Investig. Med. 60, 1157–1163 (2012).

    CAS  PubMed  Google Scholar 

  159. Netzel, B. C. et al. First steps toward harmonization of LC-MS/MS thyroglobulin assays. Clin. Chem. 62, 297–299 (2016).

    CAS  PubMed  Google Scholar 

  160. Netzel, B. C. et al. Thyroglobulin (Tg) testing revisited: Tg assays, TgAb assays, and correlation of results with clinical outcomes. J. Clin. Endocrinol. Metab. 100, E1074–E1083 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Lynch, K. L. CLSI C62-A: a new standard for clinical mass spectrometry. Clin. Chem. 62, 24–29 (2016).

    CAS  PubMed  Google Scholar 

  162. Clinical and Laboratory Standards Institute. C62-A: Liquid Chromatography-Mass Spectrometry Methods; Approved Guideline (CLSI, 2014).

  163. Grant, R. P. & Hoofnagle, A. N. From lost in translation to paradise found: enabling protein biomarker method transfer by mass spectrometry. Clin. Chem. 60, 941–944 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. An, E. et al. Quantitative proteomic analysis of HER2 expression in the selection of gastric cancer patients for trastuzumab treatment. Ann. Oncol. 28, 110–115 (2017).

    CAS  PubMed  Google Scholar 

  165. Nuciforo, P. et al. High HER2 protein levels correlate with increased survival in breast cancer patients treated with anti-HER2 therapy. Mol. Oncol. 10, 138–147 (2016).

    CAS  PubMed  Google Scholar 

  166. Shi, T. et al. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc. Natl Acad. Sci. USA 109, 15395–15400 (2012).

    CAS  PubMed  Google Scholar 

  167. Lathrop, J. T., Jeffery, D. A., Shea, Y. R., Scholl, P. F. & Chan, M. M. US Food and Drug Administration perspectives on clinical mass spectrometry. Clin. Chem. 62, 41–47 (2016).

    CAS  PubMed  Google Scholar 

  168. US Food and Drug Administration. 510(k) substantial equivalence determination: decision summary [k083130]. FDA https://www.accessdata.fda.gov/cdrh_docs/reviews/K083130.pdf (2009).

  169. US Food and Drug Administration. Evaluation of automatic class III designation for vitamin D 200M assay: decision summary [DEN170019]. FDA https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170019.pdf (2017).

  170. US Food and Drug Administration. Draft guidance for industry, Food and Drug Administration staff, and clinical laboratories: framework for regulatory oversight of laboratory developed tests (LDTs). FDA https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm416685.pdf (2014).

  171. US Food and Drug Administration. Laboratory developed tests. FDA https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/LaboratoryDevelopedTests/default.htm (2018).

  172. Regnier, F. E. et al. Protein-based multiplex assays: mock presubmissions to the US Food and Drug Administration. Clin. Chem. 56, 165–171 (2010).

    CAS  PubMed  Google Scholar 

  173. Rodriguez, H. et al. Analytical validation of protein-based multiplex assays: a workshop report by the NCI-FDA interagency oncology task force on molecular diagnostics. Clin. Chem. 56, 237–243 (2010).

    CAS  PubMed  Google Scholar 

  174. US Food and Drug Administration. Public workshop — proteomics in the clinic, June 13, 2014. FDA http://wayback.archive-it.org/7993/20170112091100/http://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences/ucm392858.htm (2016).

  175. US Food and Drug Administration. Public workshop — mass spectrometry in the clinic: regulatory considerations surrounding validation of liquid chromatography-mass spectrometry based devices, May 2, 2016. FDA https://web.archive.org/web/20171115050719/https://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences/ucm486484.htm (2016).

  176. US Social Security Administration. Exclusions from coverage and medicare as secondary payer. SSA https://www.ssa.gov/OP_Home/ssact/title18/1862.htm (2018).

  177. Wu, A. H. et al. Antiquated tests within the clinical pathology laboratory. Am. J. Manag. Care 16, e220–e227 (2010).

    PubMed  Google Scholar 

  178. Biodesix. Coverage & reimbursement. Biodesix https://www.biodesix.com/providers/coverage-reimbursement/ (2018).

  179. Centers for Medicare and Medicaid Services. Local coverage determinations (LCDs) by state index. CMS https://www.cms.gov/medicare-coverage-database/indexes/lcd-state-index.aspx?bc=AgAAAAAAAAAA (2018).

Download references

Acknowledgements

The work of the authors is supported by the US Department of Health & Human Services, the US National Institutes of Health (NIH) and US National Cancer Institute grants U01 CA214114 (A.G.P. and A.N.H.), R50 CA211499 (J.R.W.), U01 CA214116 (K.D.R) and U24 CA210954 (B.Z.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Amanda G. Paulovich.

Ethics declarations

Competing interests

A.N.H. receives grant funding and instrument support from Waters, Inc. G.S.B. is a consultant for Avalon Healthcare Solutions. A.G.P. receives instrument support from Sciex and is the founder of Precision Assays. B.Z., J.R.W., G.S.B. and K.D.R. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Agency for Healthcare Research and Quality: https://www.ahrq.gov

Blue Cross and Blue Shield Association Technology Evaluation Center: https://www.bcbs.com

Evaluation of Genomic Applications in Practice and Prevention: https://www.cdc.gov/egappreviews

National Comprehensive Cancer Network Biomarkers Compendium: https://www.nccn.org/professionals/biomarkers/default.aspx

The Cochrane Collaboration: https://www.cochrane.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Whiteaker, J.R., Hoofnagle, A.N. et al. Clinical potential of mass spectrometry-based proteogenomics. Nat Rev Clin Oncol 16, 256–268 (2019). https://doi.org/10.1038/s41571-018-0135-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0135-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer