Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Integrating molecular nuclear imaging in clinical research to improve anticancer therapy

Abstract

Effective patient selection before or early during treatment is important to increasing the therapeutic benefits of anticancer treatments. This selection process is often predicated on biomarkers, predominantly biospecimen biomarkers derived from blood or tumour tissue; however, such biomarkers provide limited information about the true extent of disease or about the characteristics of different, potentially heterogeneous tumours present in an individual patient. Molecular imaging can also produce quantitative outputs; such imaging biomarkers can help to fill these knowledge gaps by providing complementary information on tumour characteristics, including heterogeneity and the microenvironment, as well as on pharmacokinetic parameters, drug–target engagement and responses to treatment. This integrative approach could therefore streamline biomarker and drug development, although a range of issues need to be overcome in order to enable a broader use of molecular imaging in clinical trials. In this Perspective article, we outline the multistage process of developing novel molecular imaging biomarkers. We discuss the challenges that have restricted the use of molecular imaging in clinical oncology research to date and outline future opportunities in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Involvement of various participants in the development of molecular imaging-based biomarkers.
Fig. 2: Example of multiplexed imaging with 89Zr-bevacizumab-PET, CT, and MRI.

Similar content being viewed by others

References

  1. Cottingham, M. D., Kalbaugh, C. A. & Fisher, J. A. Tracking the pharmaceutical pipeline: clinical trials and global disease burden. Clin. Transl Sci. 7, 297–299 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. GlobalData Healthcare. Number of pipeline drugs in the US by therapy area. Pharmaceutical Technology https://www.pharmaceutical-technology.com/comment/number-pipeline-drugs-us-therapy-area/ (2017).

  3. Cherny, N. I. et al. ESMO-magnitude of clinical benefit Scale version 1.1. Ann. Oncol. 28, 2340–2366 (2017).

    CAS  PubMed  Google Scholar 

  4. Schnipper, L. E. et al. Updating the American Society of Clinical Oncology value framework: revisions and reflections in response to comments received. J. Clin. Oncol. 34, 2925–2934 (2016).

    PubMed  Google Scholar 

  5. Vivot, A. et al. Clinical benefit, price and approval characteristics of FDA-approved new drugs for treating advanced solid cancer, 2000–2015. Ann. Oncol. 28, 1111–1116 (2017).

    CAS  PubMed  Google Scholar 

  6. Tibau, A. et al. Magnitude of clinical benefit of cancer drugs approved by the US Food and Drug Administration. J. Natl Cancer Inst. 110, 486–492 (2018).

    PubMed  Google Scholar 

  7. Jaffee, E. M. et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 18, e653–e706 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Wolff, A. C. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J. Clin. Oncol. 36, 2105–2122 (2018).

    CAS  PubMed  Google Scholar 

  9. Menzies, A. M. & Long, G. V. Systemic treatment for BRAF-mutant melanoma: where do we go next? Lancet Oncol. 15, e371–e381 (2014).

    PubMed  Google Scholar 

  10. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Google Scholar 

  11. Alam, I. S., Arshad, M. A., Nguyen, Q. D. & Aboagye, E. O. Radiopharmaceuticals as probes to characterize tumour tissue. Eur. J. Nucl. Med. Mol. Imag. 42, 537–561 (2015).

    CAS  Google Scholar 

  12. O’Connor, J. P. et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 14, 169–186 (2017).

    PubMed  Google Scholar 

  13. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Non-Small Cell Lung Cancer. National Comprehensive Cancer Network https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (2018).

  14. Lordick, F. et al. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27 (Suppl. 5), v50–v57 (2016).

    CAS  PubMed  Google Scholar 

  15. Liu, Y. et al. A risk management approach for imaging biomarker-driven clinical trials in oncology. Lancet Oncol. 16, e622–628 (2015).

    PubMed  Google Scholar 

  16. Tang, J., Shalabi, A. & Hubbard-Lucey, V. M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann. Oncol. 29, 84–91 (2018).

    CAS  PubMed  Google Scholar 

  17. Pharmaceutical Research and Manufacturers of America. Medicines in development for immuno-oncology 2017 report. PhRMA http://www.phrma.org/medicines-in-development-immuno-oncology (2017).

  18. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  19. Meignan, M., Gallamini, A. & Haioun, C. Report on the first international workshop on interim-PET scan in lymphoma. Leuk. Lymphoma 50, 1257–1260 (2009).

    PubMed  Google Scholar 

  20. Barrington, S. F. et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 32, 3048–3058 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Food and Drug Administration. Guidance for industry: clinical trial endpoints for the approval of cancer drugs and biologics. FDA https://www.fda.gov/downloads/drugsGuidanceComplianceRegulatoyInformation/Guidance/UCM071590.pdf (2017).

  22. Schwartz, L. H. et al. RECIST 1.1-update and clarification: from the RECIST committee. Eur. J. Cancer 62, 132–137 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Janku, F. et al. Outcomes of phase II clinical trials with single-agent therapies in advanced/metastatic non-small cell lung cancer published between 2000 and 2009. Clin. Cancer Res. 18, 6356–6363 (2012).

    CAS  PubMed  Google Scholar 

  24. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205–216 (2000).

    CAS  PubMed  Google Scholar 

  25. Litière, S. et al. Validation of RECIST 1.1 for use with cytotoxic agents and targeted cancer agents (TCA): results of a RECIST Working Group analysis of a 50 clinical trials pooled individual patient database [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 2534 (2017).

    Google Scholar 

  26. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    CAS  PubMed  Google Scholar 

  27. Seymour, L. et al. RECIST working group. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Wahl, R. L., Jacene, H., Kasamon, Y. & Lodge, M. A. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50 (Suppl. 1), 122S–150S (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi, H. et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J. Clin. Oncol. 25, 1753–1759 (2007).

    PubMed  Google Scholar 

  30. Lambin, P. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 441–446 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Kumar, V. et al. Radiomics: the process and the challenges. Magn. Reson. Imag. 30, 1234–1248 (2012).

    Google Scholar 

  32. Aerts, H. J. W. L. Data science in radiology: a path forward. Clin. Cancer Res. 24, 532–534 (2018).

    PubMed  Google Scholar 

  33. O’Connor, J. P. et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin. Cancer Res. 21, 249–257 (2015).

    PubMed  Google Scholar 

  34. Lovinfosse, P. et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur. J. Nucl. Med. Mol. Imag. 45, 365–375 (2018).

    Google Scholar 

  35. Li, H. et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology 281, 382–391 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Colen, R. R. et al. Radiomics to predict immunotherapy-induced pneumonitis: proof of concept. Invest. New Drugs 36, 601–607 (2018).

    CAS  PubMed  Google Scholar 

  37. Campbell, M. G. et al. Bridging the gaps in 18F PET tracer development. Nat. Chem. 9, 1–3 (2016).

    PubMed  Google Scholar 

  38. Decristoforo, C., Penuelas, I., Patt, M. & Todde, S. European regulations for the introduction of novel radiopharmaceuticals in the clinical setting. Q. J. Nucl. Med. Mol. Imag. 61, 135–144 (2017).

    Google Scholar 

  39. Lange, R. et al. Untangling the web of European regulations for the preparation of unlicensed radiopharmaceuticals: a concise overview and practical guidance for a risk-based approach. Nucl. Med. Commun. 36, 412–422 (2015).

    Google Scholar 

  40. van Dongen, G. A., Poot, A. J. & Vugts, D. J. PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: immuno-PET and TKI-PET. Tumor Biol. 33, 607–615 (2012).

    CAS  Google Scholar 

  41. Weber, B. et al. Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J. Thorac. Oncol. 6, 1287–1289 (2011).

    PubMed  Google Scholar 

  42. Saleem, A. et al. Lapatinib access into normal brain and brain metastases in patients with Her-2 overexpressing breast cancer. EJNMMI Res. 5, 30 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Sun, X. et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci. Transl Med. 10, eaan8840 (2018).

    PubMed  Google Scholar 

  44. Roesch, F. & Riss, P. J. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr. Top. Med. Chem. 10, 1633–1668 (2010).

    CAS  PubMed  Google Scholar 

  45. Gebhart, G. et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann. Oncol. 27, 619–624 (2016).

    CAS  PubMed  Google Scholar 

  46. Bensch, F. et al. 89Zr-atezolizumab imaging as non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. https://doi.org/10.1038/s41591-018-0255-8 (2018).

  47. Oosting, S. F. et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J. Nucl. Med. 56, 63–69 (2015).

    CAS  PubMed  Google Scholar 

  48. Mestel, R. Cancer: imaging with antibodies. Nature 543, 743–746 (2017).

    CAS  PubMed  Google Scholar 

  49. Gaykema, S. B. et al. 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin. Cancer Res. 20, 3945–3954 (2014).

    CAS  PubMed  Google Scholar 

  50. Sandberg, D. et al. Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the affibody molecule ABY-025 with PET and SPECT. Eur. J. Nucl. Med. Mol. Imag. 44, 1337–1346 (2017).

    CAS  Google Scholar 

  51. Orlova, A., Wållberg, H., Stone-Elander, S. & Tolmachev, V. On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J. Nucl. Med. 50, 417–425 (2009).

    CAS  PubMed  Google Scholar 

  52. Malmberg, J., Sandström, M., Wester, K., Tolmachev, V. & Orlova, A. Comparative biodistribution of imaging agents for in vivo molecular profiling of disseminated prostate cancer in mice bearing prostate cancer xenografts: focus on 111In- and 125I-labeled anti-HER2 humanized monoclonal trastuzumab and ABY-025 affibody. Nucl. Med. Biol. 38, 1093–1102 (2011).

    CAS  PubMed  Google Scholar 

  53. Waaijer, S. J. H. et al. Molecular imaging of radiolabeled bispecific T cell engager 89Zr-AMG211 targeting CEA-positive tumors. Clin. Cancer Res. 24, 4988–4996 (2018).

    CAS  PubMed  Google Scholar 

  54. Hanessian, S. Academic-industrial collaboration: toward the consilience of two solitudes. ACS Med. Chem. Lett. 7, 6–9 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Bernard-Gauthier, V., Collier, T. L., Liang, S. H. & Vasdev, N. Discovery of PET radiopharmaceuticals at the academic-industry interface. Drug Discov. Today Technol. 25, 19–26 (2017).

    PubMed  Google Scholar 

  56. Saleem, A., Murphy, P., Plisson, C. & Lahn, M. Why are we failing to implement imaging studies with radiolabelled new molecular entities in early oncology drug development? ScientificWorldJournal 2014, 269605 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. European Society of Radiology (ESR). ESR statement on the stepwise development of imaging biomarkers. Insights Imag. 4, 147–152 (2013).

    Google Scholar 

  58. Biomarker, Imaging, and Quality of Life Studies Funding Program. Biomarker study evaluation guidelines. cancer.gov https://www.cancer.gov/about-nci/organization/ccct/funding/biqsfp/2018-biomarker-study-eval-guide.pdf (2018).

  59. Weinreb, J. C. et al. PI-RADS prostate imaging — reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016).

    PubMed  Google Scholar 

  60. Sullivan, D. C. et al. Metrology standards for quantitative imaging biomarkers. Radiology 277, 813–825 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Aide, N. et al. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicenter oncological studies. Eur. J. Nucl. Med. Mol. Imag. 44, 17–25 (2017).

    CAS  Google Scholar 

  62. Makris, N. E. et al. Multicenter harmonization of 89Zr PET/CT performance. J. Nucl. Med. 55, 264–267 (2014).

    CAS  PubMed  Google Scholar 

  63. U.S. Food and Drug Administration. CDER biomarker qualification program. FDA https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/default.htm (2018).

  64. McShane, L. M. et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat. Clin. Pract. Oncol. 2, 416–422 (2005).

    CAS  PubMed  Google Scholar 

  65. Caron, J. E., March, J. K., Cohen, M. B. & Schmidt, R. L. A survey of the prevalence and impact of reporting guideline endorsement in pathology journals. Am. J. Clin. Pathol. 148, 314–322 (2017).

    PubMed  Google Scholar 

  66. Sekula, P., Mallett, S., Altman, D. G. & Sauerbrei, W. Did the reporting of prognostic studies of tumour markers improve since the introduction of REMARK guideline? A comparison of reporting in published articles. PLOS ONE 12, e0178531 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Strosberg, J. et al. Phase 3 trial of 117Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kwekkeboom, D. et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival. J. Clin. Oncol. 26, 2124–2130 (2008).

    CAS  PubMed  Google Scholar 

  69. Vaupel, P., Mayer, A. & Hockel, M. Tumour hypoxia and malignant progression. Meth. Enzymol. 381, 335–354 (2004).

    CAS  PubMed  Google Scholar 

  70. Lopci, E. et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am. J. Nucl. Med. Mol. Imag. 4, 365–384 (2014).

    Google Scholar 

  71. Welz, S. et al. Prognostic value of dynamic hypoxia PET in head and neck cancer: results from a planned interim analysis of a randomized phase II hypoxia-image guided dose escalation trial. Radiother. Oncol. 124, 526–532 (2017).

    PubMed  Google Scholar 

  72. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02352792?term=NCT02352792&rank=1 (2015).

  73. Lee, N. et al. Strategy of using intratreatment hypoxia imaging to selectively and safely guide radiation dose de-escalation concurrent with chemotherapy for locoregionally advanced human papillomavirus related oropharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 96, 9–17 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00606294?term=NCT00606294&rank=1 (2018).

  75. Lamberts, L. E. et al. Antibody positron emission tomography imaging in anticancer drug development. J. Clin. Oncol. 33, 1491–1504 (2015).

    CAS  PubMed  Google Scholar 

  76. Banerji, U. & Workman, P. Critical parameters in targeted drug development: the pharmacological audit trail. Semin. Oncol. 43, 436–445 (2016).

    CAS  PubMed  Google Scholar 

  77. van Kruchten, M. et al. Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer Discov. 5, 72–81 (2015).

    PubMed  Google Scholar 

  78. van der Veldt, A. A. et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012).

    PubMed  Google Scholar 

  79. Ho, A. L. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 368, 623–632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rothenberg, S. M., McFadden, D. G., Palmer, E. L., Daniels, G. H. & Wirth, L. J. Redifferentation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 21, 1025–1035 (2015).

    Google Scholar 

  81. Dunn, L. et al. Enhancing radioiodine (RAI) incorporation into BRAFV600E-mutant, RAI-refractory thyroid cancer with the BRAF inhibitor vemurafenib: a pilot study [abstract]. J. Clin. Oncol. 34 (Suppl. 15), 6099 (2016).

    Google Scholar 

  82. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS  PubMed  Google Scholar 

  83. Heneweer, C., Holland, J. P., Diviliv, V., Carlin, S. & Lewis, J. S. Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system. J. Nucl. Med. 52, 625–633 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  PubMed  Google Scholar 

  85. Nienhuis, H. H. et al. (18)F-fluoroestradiol tumor uptake is heterogeneous and influenced by site of metastasis in breast cancer patients. J. Nucl. Med. 59, 1212–1218 (2018).

    CAS  PubMed  Google Scholar 

  86. Fox, J. J. et al. Positron emission tomography/computed tomography-based assessments of androgen receptor expression and glycolytic activity as a prognostic biomarker for metastatic castration-resistant prostate cancer. JAMA Oncol. 4, 217–224 (2017).

    Google Scholar 

  87. Ribas, A. & Wolchok, D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  Google Scholar 

  88. Ingram, J. R. et al. PD-L1 is an activation-independent marker of brown adipocytes. Nat. Commun. 8, 647 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Lesniak, W. G. et al. PD-L1 detection in tumors using (64Cu)atezolizumab with PET. Bioconjug. Chem. 27, 2103–2110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chatterjee, S. et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget 7, 10215–10227 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Hettich, M., Braun, F., Bartholomä, M. D., Schirmbeck, R. & Niedermann, G. Resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6, 1629–1640 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Niemeijer, A. et al. Whole body PD-1 and PD-L1 PET in pts with NSCLC [abstract 1305PD]. Ann. Oncol. 28 (Suppl. 5), v460–v496 (2017).

    Google Scholar 

  93. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    CAS  PubMed  Google Scholar 

  94. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sedykh, S. E., Prinz, V. V., Buneva, V. N. & Nevinksky, G. A. Bispecific antibodies: design, therapy, perspectives. Drug Des. Devel. Ther. 12, 195–208 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Carter, P. J. & Lazar, G. A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug Discov. 17, 197–223 (2017).

    PubMed  Google Scholar 

  97. Brinkmann, U. & Kontermann, R. E. The making of bispecific antibodies. MAbs 9, 182–212 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mandikian, D. et al. Relative target affinities of T cell dependent bispecific antibodies determine biodistribution in a solid tumor mouse model. Mol. Cancer Ther. 17, 776–785 (2018).

    CAS  PubMed  Google Scholar 

  99. Glaudemans, A. W. et al. In vivo and in vitro evidence that 99mTc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Eur. J. Nucl. Med. Mol. Imag. 41, 1710–1719 (2014).

    CAS  Google Scholar 

  100. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02922283?term=NCT02922283&rank=1 (2016).

  101. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03107663?term=NCT03107663&rank=1 (2017).

  102. Blykers, A. et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled Camelid single-domain antibody fragments. J. Nucl. Med. 56, 1265–1271 (2015).

    CAS  PubMed  Google Scholar 

  103. Movahedi, K. et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 72, 4165–4177 (2012).

    CAS  PubMed  Google Scholar 

  104. Jiménez-Sánchez, A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Heinzmann, K., Carter, L. M., Lewis, J. S. & Aboagye, E. O. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng. 1, 697–713 (2017).

    Google Scholar 

  106. Lamberts, L. E. et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin. Cancer Res. 23, 2730–2741 (2017).

    CAS  PubMed  Google Scholar 

  107. Koch, M. et al. Threshold analysis and biodistribution of fluorescently labeled bevacizumab in human breast cancer. Cancer Res. 77, 623–631 (2017).

    CAS  PubMed  Google Scholar 

  108. Tunis, S. & Whicher, D. The National Oncologic PET Registry: lessons learned for coverage with evidence development. J. Am. Coll. Radiol. 6, 360–365 (2009).

    PubMed  Google Scholar 

  109. Lindsay, M. J. et al. The National Oncology PET Registry: expanded medicare coverage for PET under coverage with evidence development. Am. J. Roentgenol. 188, 1109–1113 (2007).

    Google Scholar 

  110. Bensch, F. et al. Comparative biodistribution analysis across four different 89Zr-monoclonal antibody tracers – the first step towards an imaging warehouse. Theranostics 8, 4295–4304 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Beam, A. L. & Kohane, I. S. Big data and machine learning in health care. JAMA 319, 1317–1318 (2018).

    PubMed  Google Scholar 

  112. Wilhelm-Benartzi, C. S. et al. Challenges and methodology in the incorporation of biomarkers in cancer clinical trials. Crit. Rev. Oncol. Hematol. 110, 49–61 (2017).

    PubMed  Google Scholar 

  113. Hilgers, R. D., Roes, K. & Stallard, N. Directions for new developments on statistical design and analysis of small population group trials. Orphanet J. Rare Dis. 11, 78 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Lambin, P. et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762 (2017).

    PubMed  Google Scholar 

  115. IJzerman, M. J., Koffijberg, H., Fenwick, E. & Krahn, M. Emerging use of early health technology assessment in medical product development: a scoping review of the literature. Pharmacoeconomics 35, 727–740 (2017).

    Google Scholar 

  116. Doble, B., Tan, M., Harris, A. & Lorgelly, P. Modeling companion diagnostics in economic evaluations of targeted oncology therapies: systemic review and methodological checklist. Expert Rev. Mol. Diagn. 15, 235–254 (2015).

    CAS  PubMed  Google Scholar 

  117. Jong, V. L., Novianti, P. W., Roes, K. C. & Eijkemans, M. J. Selecting a classification function for class prediction with gen expression data. Bioinformatics 32, 1814–1822 (2016).

    CAS  PubMed  Google Scholar 

  118. Bajard, A. et al. An in silico approach helped to identify the best experimental design, population, and outcome for future randomized clinical trials. J. Clin. Epidemiol. 69, 125–136 (2016).

    PubMed  Google Scholar 

  119. Ventz, S., Alexander, B. M., Parmigiani, G., Gelber, R. D. & Trippa, L. Designing clinical trials that accept new arms: an example in metastatic breast cancer. J. Clin. Oncol. 35, 3160–3168 (2017).

    CAS  PubMed  Google Scholar 

  120. Wallstrom, G., Anderson, K. S. & LaBaer, J. Biomarker discovery for heterogeneous diseases. Cancer Epidemiol. Biomarkers Prev. 22, 747–755 (2013).

    CAS  PubMed  Google Scholar 

  121. Kurland, B. F., Doot, R. K., Linden, H. M., Mankoff, D. A. & Kinahan, P. E. Multicenter trials using 18F-fluorodeoxyglucose (FDG) PET to predict chemotherapy response: effects of differential measurement error and bias on power calculations for unselected and enrichment designs. Clin. Trials 10, 886–995 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. The ABIM Foundation. PET scans after cancer treatment: when you need them — and when you don’t. choosingwisely http://www.choosingwisely.org/patient-resources/pet-scans-after-cancer-treatment/ (2014).

  123. Koleva-Kolarova, R. G. et al. The value of PET/CT with FES or FDG tracers in metastatic breast cancer: a computer simulation study in ER-positive patients. Br. J. Cancer 112, 1617–1625 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Thorwarth, D. et al. Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer. BMC Cancer 5, 152 (2005).

    PubMed  PubMed Central  Google Scholar 

  125. Rajendran, J. G. et al. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin. Cancer Res. 12, 5435–5441 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rischin, D. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24, 2098–2104 (2006).

    PubMed  Google Scholar 

  127. Eschmann, S. M. et al. Hypoxia-imaging with 18F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother. Oncol. 83, 406–410 (2007).

    CAS  PubMed  Google Scholar 

  128. Dirix, P. et al. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with 18F-FDG PET, 18F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J. Nucl. Med. 50, 1020–1027 (2009).

    PubMed  Google Scholar 

  129. Nehmeh, S. A. et al. Reproducibility of intratumor distribution of 18F fluoromisonidazole in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 235–242 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee, N. Y. et al. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 70, 12–13 (2008).

    Google Scholar 

  131. Lee, N. Y. et al. Prospective trial incorporating pre-/mid-treatment [18F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 75, 101–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kikuchi, M. et al. 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann. Nucl. Med. 25, 625–633 (2011).

    CAS  PubMed  Google Scholar 

  133. Yamane, T., Kikuchi, M., Shinohara, S. & Senda, M. Reduction of [18F]fluoromisonidazole uptake after neoadjuvant chemotherapy for head and neck squamous cell carcinoma. Mol. Imag. Biol. 13, 227–231 (2011).

    Google Scholar 

  134. Okamoto, S. et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J. Nucl. Med. 54, 201–207 (2013).

    CAS  PubMed  Google Scholar 

  135. Sato, J. et al. 18F-fluoromisonidazole PET uptake is correlated with hypoxia-inducible factor-1α expression in oral squamous cell carcinoma. J. Nucl. Med. 54, 1060–1065 (2013).

    CAS  PubMed  Google Scholar 

  136. Henriques de Figueiredo, B. et al. Potential of [18F]-fluoromisonidazole positron emission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlenther. Onkol. 189, 1015–1019 (2013).

    CAS  PubMed  Google Scholar 

  137. Bittner, M. I. et al. Exploratory geographical analysis of hypoxic subvolumes using 18F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother. Oncol. 108, 511–516 (2013).

    PubMed  Google Scholar 

  138. Wiedenmann, N. E. et al. Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother. Oncol. 117, 113–117 (2015).

    PubMed  Google Scholar 

  139. Okamoto, S. et al. The reoxygenation of hypoxia and the reduction of glucose metabolism in head and neck cancer by fractionated radiotherapy with intensity-modulated radiation therapy. Eur. J. Nucl. Med. Mol. Imag. 43, 2147–2154 (2016).

    CAS  Google Scholar 

  140. Grkovski, M. et al. Monitoring early response to chemoradiotherapy with 18F-FMISO dynamic PET in head and neck cancer. Eur. J. Nucl. Med. Mol. Imag. 44, 1682–1691 (2017).

    CAS  Google Scholar 

  141. Boeke, S. et al. Geometric analysis of loco-regional recurrences in relation to pre treatment hypoxia in patients with head and neck cancer. Acta Oncol. 56, 1571–1576 (2017).

    PubMed  Google Scholar 

  142. Zips, D. et al. Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother. Oncol. 105, 21–28 (2012).

    PubMed  Google Scholar 

  143. Löck, S. et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother. Oncol. 124, 533–540 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the European Research Council (ERC) Advanced Grant 2011 OnQView (293445), Innovative Medicines Initiative 2 (IMI2) TRISTAN grant 2016 (116106), and Dutch Cancer Society IMPACT (RUG 2012–5565) and POINTING (RUG 2016–10034) grants. The authors would like to thank C. Divgi and A. Glaudemans for their valuable input into this manuscript.

Reviewer information

Nature Reviews Clinical Oncology thanks J. O’Connor, N. Devoogdt, and other anonymous reviewer(s) for their contribution to the peer-review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Elisabeth G. E. de Vries.

Ethics declarations

Competing interests

E.G.E.d.V. has served on data safety monitoring boards or advisory boards for Pfizer and Sanofi and has received research funding from Amgen, Chugai, CytomX, Genentech/Roche, Nordic Nanovector, and Regeneron, with all reimbursements and funding made available to her institution (University Medical Center Groningen). The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

American Board of Internal Medicine (ABIM) foundation Choosing Wisely initiative: http://www.choosingwisely.org/

American College of Radiology Accreditation: https://www.acraccreditation.org/

American College of Radiology Imaging Network (ACRIN): https://www.acrin.org/HOME.aspx

ClinicalTrials.gov database: https://clinicaltrials.gov/

EANM Research Ltd (EARL): http://earl.eanm.org/cms/website.php

ESMO-Magnitude of Clinical Benefit Scale: http://www.esmo.org/Policy/Magnitude-of-Clinical-Benefit-Scale

European Association of Nuclear Medicine (EANM): https://www.eanm.org/

European Imaging Biomarkers Alliance: http://www.eibir.org/scientific-activities/joint-initiatives/eiball/

FDA Biomarker Qualification Program: https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/BiomarkerQualificationProgram/default.htm

FDA Clinical Trial Imaging Endpoint Process Standards Guidance for Industry: https://www.fda.gov/downloads/drugs/guidances/ucm268555.pdf

Innovative Medicines Initiative (IMI): http://www.imi.europa.eu/

National Biomarker Development Alliance (NBDA): http://nbdabiomarkers.org

National Biomedical Imaging Archive (NBIA): https://imaging.nci.nih.gov/ncia/login.jsf

National Cancer Institute (NCI) Cancer Imaging Program (CIP): https://imaging.cancer.gov/default.htm

NCI Clinical Trials Working Group (CTWG) Biomarker Study Evaluation Guidelines: https://www.cancer.gov/about-nci/organization/ccct/funding/biqsfp/2017-biomarker-study-eval-guide.pdf

NCI Quantitative Imaging Network (QIN): https://imaging.cancer.gov/programs_resources/specialized_initiatives/qin/about/default.htm

Quantitative Imaging Biomarkers Alliance (QIBA): https://www.rsna.org/QIBA/

Quantitative Imaging Data Warehouse (QIDW): https://www.rsna.org/QIDW/

RECIST criteria: http://recist.eortc.org/

Society of Nuclear Medicine and Molecular Imaging (SNMMI): http://www.snmmi.org/Research/ClinicalTrialsNetwork.aspx?ItemNumber=6831

The Cancer Imaging Archive (TCIA): http://www.cancerimagingarchive.net

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Vries, E.G.E., Kist de Ruijter, L., Lub-de Hooge, M.N. et al. Integrating molecular nuclear imaging in clinical research to improve anticancer therapy. Nat Rev Clin Oncol 16, 241–255 (2019). https://doi.org/10.1038/s41571-018-0123-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0123-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer