Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using biology to guide the treatment of sarcomas and aggressive connective-tissue tumours

Abstract

Sarcomas are a heterogeneous group of malignancies that arise from cells of a mesenchymal origin. Surgery forms the mainstay of the treatment of most patients with localized sarcoma and might be followed or preceded by chemotherapy and/or radiotherapy. In the metastatic setting, systemic treatments tend to improve survival and control symptoms. However, the adverse events and sometimes disappointing outcomes associated with these empirical approaches to treatment indicate a need for new approaches. The advent of next-generation sequencing (NGS) has enabled more targeted treatment of many malignancies based on the presence of specific alterations. NGS analyses of sarcomas have revealed the presence of many alterations that can be targeted using therapies that are already used in patients with other forms of cancer. In this Review, we describe the genomic alterations considered to define specific nosological subgroups of sarcoma and whose contribution to oncogenesis provides a biological rationale for the use of a specific targeted therapy. We also report several less successful examples that should guide researchers and clinicians to better define the extent to which the identification of driver molecular alterations should influence the development of novel treatments.

Key points

  • Certain genomic alterations define specific nosological subgroups of sarcoma, and their contribution to oncogenesis provides a biological rationale for the use of a specific targeted therapy.

  • Receptor tyrosine-kinase activation in gastrointestinal stromal tumours (GISTs) is a paradigmatic model in which the genomic characterization of a tumour provides information on diagnosis, prognosis, and response to treatment and enables improved patient outcomes.

  • Translocation-related sarcomas constitute a classical subgroup of sarcoma; however, the translation of a specific fusion protein into an effective targeted treatment has sometimes proved difficult to achieve.

  • Many therapeutic strategies are under development in an attempt to target other mechanisms of carcinogenesis, such as inactivation of tumour suppressor genes, gene amplification, or epigenetic dysregulation.

  • Research strategies should attempt to increase the use of genomic screening and integrate analyses of multiple genomic events to guide treatment and continue to improve the outcomes of patients with sarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fletcher, C. D. M., Bridge, J. A., Hogendoorn, P. C. & Mertens, F. WHO Classification of Tumours of Soft Tissue and Bone. 4th edn (IARC Press, Lyon, 2013).

    Google Scholar 

  2. Stiller, C. A. et al. Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur. J. Cancer. 49, 684–695 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. Heinrich, M. C. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299, 708–710 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. Medeiros, F. et al. KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am. J. Surg. Pathol. 28, 889–894 (2004).

    Article  PubMed  Google Scholar 

  6. West, R. B. et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am. J. Pathol. 165, 107–113 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liegl, B., Hornick, J. L., Corless, C. L. & Fletcher, C. D. Monoclonal antibody DOG1.1 shows higher sensitivity than KIT in the diagnosis of gastrointestinal stromal tumors, including unusual subtypes. Am. J. Surg. Pathol. 33, 437–446 (2009).

    Article  PubMed  Google Scholar 

  8. Gramza, A. W., Corless, C. L. & Heinrich, M. C. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin. Cancer Res. 15, 7510–7518 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. Janeway, K. A. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl Acad. Sci. USA 108, 314–318 (2011).

    Article  PubMed  Google Scholar 

  10. Nannini, M., Urbini, M., Astolfi, A., Biasco, G. & Pantaleo, M. A. The progressive fragmentation of the KIT/PDGFRA wild-type (WT) gastrointestinal stromal tumors (GIST). J. Transl Med. 15, 113 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kawanowa, K. et al. High incidence of microscopic gastrointestinal stromal tumors in the stomach. Hum. Pathol. 37, 1527–1535 (2006).

    Article  PubMed  Google Scholar 

  12. Schaefer, I. M., Marino-Enriquez, A. & Fletcher, J. A. What is new in gastrointestinal stromal tumor? Adv. Anat. Pathol. 24, 259–267 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Casali, P. G. et al. Ten-year progression-free and overall survival in patients with unresectable or metastatic GI stromal tumors: long-term analysis of the European Organisation for Research and Treatment of Cancer, Italian Sarcoma Group, and Australasian Gastrointestinal Trials Group Intergroup phase III randomized trial on imatinib at two dose levels. J. Clin. Oncol. 35, 1713–1720 (2017).

    Article  PubMed  Google Scholar 

  14. Farag, S. et al. Clinical characteristics and treatment outcome in a large multicentre observational cohort of PDGFRA exon 18 mutated gastrointestinal stromal tumour patients. Eur. J. Cancer 76, 76–83 (2017).

    Article  PubMed  Google Scholar 

  15. Cassier, P. A. et al. Outcome of patients with platelet-derived growth factor receptor alpha-mutated gastrointestinal stromal tumors in the tyrosine kinase inhibitor era. Clin. Cancer Res. 18, 4458–4464 (2012).

    Article  PubMed  CAS  Google Scholar 

  16. Joensuu, H. et al. One versus three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA 307, 1265–1272 (2012).

    Article  PubMed  CAS  Google Scholar 

  17. Joensuu, H. et al. Adjuvant imatinib for high-risk GI stromal tumor: analysis of a randomized trial. J. Clin. Oncol. 34, 244–250 (2016).

    Article  PubMed  CAS  Google Scholar 

  18. Miettinen, M. & Lasota, J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch. Pathol. Lab. Med. 130, 1466–1478 (2006).

    PubMed  CAS  Google Scholar 

  19. Joensuu, H. et al. Effect of KIT and PDGFRA mutations on survival in patients with gastrointestinal stromal tumors treated with adjuvant imatinib: an exploratory analysis of a randomized clinical trial. JAMA Oncol. 3, 602–609 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Antonescu, C. R. et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res. 11, 4182–4190 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. Heinrich, M. C. et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol. 24, 4764–4774 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329–1338 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. George, S. et al. Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur. J. Cancer 45, 1959–1968 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Demetri, G. D. et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381, 295–302 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Heinrich, M. C. et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J. Clin. Oncol. 26, 5352–5359 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Reichardt, P. et al. Correlation of KIT and PDGFRA mutational status with clinical benefit in patients with gastrointestinal stromal tumor treated with sunitinib in a worldwide treatment-use trial. BMC Cancer 16, 22 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. The ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25 (Suppl. 3), iii102–iii112 (2014).

    Article  Google Scholar 

  28. Heinrich, M. C. et al. GIST: imatinib and beyond — clinical activity of BLU-285 in advanced gastrointestinal stromal tumor (GIST) [abstract]. J. Clin. Oncol. 35 (Suppl.), 11011 (2017).

    Article  Google Scholar 

  29. Janku, F. et al. Encouraging activity of novel pan-KIT and PDGFRa inhibitor DCC-2618 in patients (pts) with gastrointestinal stromal tumor (GIST) [abstract]. Ann. Oncol. 28 (Suppl. 5), 1473O (2017).

    Google Scholar 

  30. Kurokawa, Y. et al. Phase II study of TAS-116, an oral inhibitor of heat shock protein 90 (HSP90), in metastatic or unresectable gastrointestinal stromal tumor refractory to imatinib, sunitinib and regorafenib [abstract]. Ann. Oncol. 28 (Suppl. 5), 1479PD (2017).

    Google Scholar 

  31. Evans, E. K. et al. BLU-285, the first selective inhibitor of PDGFRα D842V and KIT exon 17 mutants [abstract]. Cancer Res. 75 (Suppl.), 791 (2015).

    Article  Google Scholar 

  32. von Mehren, M. et al. Soft Tissue Sarcoma, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Cancer Netw. 14, 758–786 (2016).

    Article  Google Scholar 

  33. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2716 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Badalian-Very, G. et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116, 1919–1923 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Simon, M. P. et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat. Genet. 15, 95–98 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Greco, A. et al. Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet derived growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene 17, 1313–1319 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. Rubin, B. P. et al. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J. Clin. Oncol. 20, 3586–3591 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Stacchiotti, S. et al. Efficacy and biological activity of imatinib in metastatic dermatofibrosarcoma protuberans (DFSP). Clin. Cancer Res. 22, 837–846 (2016).

    Article  PubMed  CAS  Google Scholar 

  40. Tazzari, M. et al. Adaptive immunity in fibrosarcomatous dermatofibrosarcoma protuberans and response to imatinib treatment. J. Invest. Dermatol. 137, 484–493 (2017).

    Article  PubMed  CAS  Google Scholar 

  41. Rutkowski, P. et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J. Clin. Oncol. 28, 1772–1779 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. West, R. B. et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc. Natl Acad. Sci. USA 103, 690–695 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Blay, J. Y., El, S. H., Thiesse, P., Garret, J. & Ray-Coquard, I. Complete response to imatinib in relapsing pigmented villonodular synovitis/tenosynovial giant cell tumor (PVNS/TGCT). Ann. Oncol. 19, 821–822 (2008).

    Article  PubMed  Google Scholar 

  44. Cassier, P. A. et al. Efficacy of imatinib mesylate for the treatment of locally advanced and/or metastatic tenosynovial giant cell tumor/pigmented villonodular synovitis. Cancer 118, 1649–1655 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Sankhala, K. K. et al. A phase I/II dose escalation and expansion study of cabiralizumab (cabira; FPA-008), an anti-CSF1R antibody, in tenosynovial giant cell tumor (TGCT, diffuse pigmented villonodular synovitis D-PVNS) [abstract]. J. Clin. Oncol. 35 (Suppl.), 11078 (2017).

    Article  Google Scholar 

  47. Tap, W. D. et al. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N. Engl. J. Med. 373, 428–437 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. Marino-Enriquez, A. et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am. J. Surg. Pathol. 35, 135–144 (2011).

    Article  PubMed  Google Scholar 

  49. Butrynski, J. E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yamamoto, H. et al. ALK, ROS1 and NTRK3 gene rearrangements in inflammatory myofibroblastic tumours. Histopathology 69, 72–83 (2016).

    Article  PubMed  Google Scholar 

  51. Lovly, C. M. et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 4, 889–895 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Alassiri, A. H. et al. ETV6-NTRK3 Is expressed in a subset of ALK-negative inflammatory myofibroblastic tumors. Am. J. Surg. Pathol. 40, 1051–1061 (2016).

    Article  PubMed  Google Scholar 

  53. Hyman, D. M. et al. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers. J. Clin. Oncol. 35 (Suppl.), LBA2501 (2017).

    Article  Google Scholar 

  54. Menichincheri, M. et al. Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J. Med. Chem. 59, 3392–3408 (2016).

    Article  PubMed  CAS  Google Scholar 

  55. Prieur, A., Tirode, F., Cohen, P. & Delattre, O. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol. Cell. Biol. 24, 7275–7283 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Delattre, O. et al. The Ewing family of tumors — a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N. Engl. J. Med. 331, 294–299 (1994).

    Article  PubMed  CAS  Google Scholar 

  57. Kovar, H. Downstream EWS/FLI-1 — upostream Ewing’s sarcoma. Genome Med. 2, 8 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Scotlandi, K. et al. Insulin-like growth factor I receptor-mediated circuit in Ewing’s sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res. 56, 4570–4574 (1996).

    PubMed  CAS  Google Scholar 

  59. Kurzrock, R. et al. A phase I study of weekly R1507, a human monoclonal antibody insulin-like growth factor-I receptor antagonist, in patients with advanced solid tumors. Clin. Cancer Res. 16, 2458–2465 (2010).

    Article  PubMed  CAS  Google Scholar 

  60. Tolcher, A. W. et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J. Clin. Oncol. 27, 5800–5807 (2009).

    Article  PubMed  CAS  Google Scholar 

  61. Pappo, A. S. et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J. Clin. Oncol. 29, 4541–4547 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Anderson, P. M. et al. A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma. Pediatr. Blood Cancer 63, 1761–1770 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Asmane, I. et al. Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: a predictive biomarker for IGF-1R monoclonal antibody (Ab) therapy in sarcomas. Eur. J. Cancer 48, 3027–3035 (2012).

    Article  PubMed  CAS  Google Scholar 

  64. Ayalon, D., Glaser, T. & Werner, H. Transcriptional regulation of IGF-I receptor gene expression by the PAX3-FKHR oncoprotein. Growth Horm. IGF Res. 11, 289–297 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. Pappo, A. S. et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: results of a Sarcoma Alliance for Research Through Collaboration study. Cancer 120, 2448–2456 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Kobos, R. et al. Combining integrated genomics and functional genomics to dissect the biology of a cancer-associated, aberrant transcription factor, the ASPSCR1-TFE3 fusion oncoprotein. J. Pathol. 229, 743–754 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Stacchiotti, S. et al. Activity of pazopanib and trabectedin in advanced alveolar soft part sarcoma. Oncologist 23, 62–70 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Stacchiotti, S. et al. Sunitinib in advanced alveolar soft part sarcoma: evidence of a direct antitumor effect. Ann. Oncol. 22, 1682–1690 (2011).

    Article  PubMed  CAS  Google Scholar 

  69. Kummar, S. et al. Cediranib for metastatic alveolar soft part sarcoma. J. Clin. Oncol. 31, 2296–2302 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Judson, I. R. et al. Activity of cediranib in alveolar soft part sarcoma (ASPS) confirmed by CASPS (cediranib in ASPS), an international, randomised phase II trial (C2130/A12118) [abstract]. J. Clin. Oncol. 35 (Suppl.), 11004 (2017).

    Article  Google Scholar 

  71. Schöffski, P. et al. Activity and safety of crizotinib in patients with advanced clear cell sarcoma with MET alterations: European Organization for Research and Treatment of Cancer phase 2 trial 90101 “CREATE”. Ann. Oncol. 28, 3000–3008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Trautmann, M. et al. FUS-DDIT3 fusion protein-driven IGF-IR signaling is a therapeutic target in myxoid liposarcoma. Clin. Cancer Res. 23, 6227–6238 (2017).

    Article  PubMed  CAS  Google Scholar 

  73. Negri, T. et al. Functional mapping of receptor tyrosine kinases in myxoid liposarcoma. Clin. Cancer Res. 16, 3581–3593 (2010).

    Article  PubMed  CAS  Google Scholar 

  74. Andersson, M. K., Goransson, M., Olofsson, A., Andersson, C. & Aman, P. Nuclear expression of FLT1 and its ligand PGF in FUS-DDIT3 carrying myxoid liposarcomas suggests the existence of an intracrine signaling loop. BMC. Cancer 10, 249 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Demetri, G. D. et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J. Clin. Oncol. 34, 786–793 (2016).

    Article  PubMed  CAS  Google Scholar 

  76. Grosso, F. et al. Trabectedin in myxoid liposarcomas (MLS): a long-term analysis of a single-institution series. Ann. Oncol. 20, 1439–1444 (2009).

    Article  PubMed  CAS  Google Scholar 

  77. Gronchi, A. et al. Phase II clinical trial of neoadjuvant trabectedin in patients with advanced localized myxoid liposarcoma. Ann. Oncol. 23, 771–776 (2012).

    Article  PubMed  CAS  Google Scholar 

  78. Di, G. S. et al. Mode of action of trabectedin in myxoid liposarcomas. Oncogene 33, 5201–5210 (2014).

    Article  CAS  Google Scholar 

  79. Le Cesne, A. et al. A retrospective analysis of antitumour activity with trabectedin in translocation-related sarcomas. Eur. J. Cancer 48, 3036–3044 (2012).

    Article  PubMed  CAS  Google Scholar 

  80. Kawai, A. et al. Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study. Lancet Oncol. 16, 406–416 (2015).

    Article  PubMed  CAS  Google Scholar 

  81. Blay, J. Y. et al. Randomised phase III trial of trabectedin versus doxorubicin-based chemotherapy as first-line therapy in translocation-related sarcomas. Eur. J. Cancer 50, 1137–1147 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Kenerson, H., Folpe, A. L., Takayama, T. K. & Yeung, R. S. Activation of the mTOR pathway in sporadic angiomyolipomas and other perivascular epithelioid cell neoplasms. Hum. Pathol. 38, 1361–1371 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Agaram, N. P. et al. Dichotomy of genetic abnormalities in PEComas with therapeutic implications. Am. J. Surg. Pathol. 39, 813–825 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Italiano, A. et al. Treatment with the mTOR inhibitor temsirolimus in patients with malignant PEComa. Ann. Oncol. 21, 1135–1137 (2010).

    Article  PubMed  CAS  Google Scholar 

  85. Wagner, A. J. et al. Clinical activity of mTOR inhibition with sirolimus in malignant perivascular epithelioid cell tumors: targeting the pathogenic activation of mTORC1 in tumors. J. Clin. Oncol. 28, 835–840 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Dobashi, Y. et al. EGFR-dependent and independent activation of Akt/mTOR cascade in bone and soft tissue tumors. Mod. Pathol. 22, 1328–1340 (2009).

    Article  PubMed  CAS  Google Scholar 

  87. Demetri, G. D. et al. Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J. Clin. Oncol. 31, 2485–2492 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Gasparotto, D. et al. Quadruple-negative GIST is a sentinel for unrecognized neurofibromatosis type 1 syndrome. Clin. Cancer Res. 23, 273–282 (2017).

    Article  PubMed  CAS  Google Scholar 

  89. Taylor, B. S. et al. Advances in sarcoma genomics and new therapeutic targets. Nat. Rev. Cancer 11, 541–557 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Dodd, R. D. et al. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition. Mol. Cancer Ther. 12, 1906–1917 (2013).

    Article  PubMed  CAS  Google Scholar 

  91. Kawaguchi, K. et al. Genetic and epigenetic alterations of the PTEN gene in soft tissue sarcomas. Hum. Pathol. 36, 357–363 (2005).

    Article  PubMed  CAS  Google Scholar 

  92. Gibault, L. et al. From PTEN loss of expression to RICTOR role in smooth muscle differentiation: complex involvement of the mTOR pathway in leiomyosarcomas and pleomorphic sarcomas. Mod. Pathol. 25, 197–211 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. Movva, S. et al. Multi-platform profiling of over 2000 sarcomas: identification of biomarkers and novel therapeutic targets. Oncotarget 6, 12234–12247 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Okuno, S. et al. A phase 2 study of temsirolimus (CCI-779) in patients with soft tissue sarcomas: a study of the Mayo phase 2 consortium (P2C). Cancer 117, 3468–3475 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. Geenen, J. J. J. & Schellens, J. H. M. Molecular pathways: targeting the protein kinase Wee1 in cancer. Clin. Cancer Res. 23, 4540–4544 (2017).

    Article  PubMed  CAS  Google Scholar 

  96. Fletcher, C. D., Unni, K. K. & Mertens, F. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Soft Tissue and Bone. (IARC Press, Lyon, 2002).

    Google Scholar 

  97. Coindre, J. M., Pedeutour, F. & Aurias, A. Well-differentiated and dedifferentiated liposarcomas. Virchows Arch. 456, 167–179 (2010).

    Article  PubMed  CAS  Google Scholar 

  98. Rayburn, E., Zhang, R., He, J. & Wang, H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr. Cancer Drug Targets. 5, 27–41 (2005).

    Article  PubMed  CAS  Google Scholar 

  99. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  PubMed  CAS  Google Scholar 

  100. Manfredi, J. J. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev. 24, 1580–1589 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ray-Coquard, I. et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 13, 1133–1140 (2012).

    Article  PubMed  CAS  Google Scholar 

  102. de Jonge, M. et al. A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur. J. Cancer 76, 144–151 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Kurzrock, R. et al. A phase I study of MDM2 antagonist RG7112 in patients with relapsed/refractory solid tumors [abstract]. J. Clin. Oncol. 30 (Suppl.), e13600 (2012).

    Google Scholar 

  104. Italiano, A. et al. HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int. J. Cancer 122, 2233–2241 (2008).

    Article  PubMed  CAS  Google Scholar 

  105. Dickson, M. A. et al. Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor palbociclib: a phase 2 clinical trial. JAMA Oncol. 2, 937–940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bode-Lesniewska, B. et al. Gains of 12q13–14 and overexpression of MDM2 are frequent findings in patients with intimal sarcomas of the pulmonary artery. Virchows Arch. 438, 57–65 (2001).

    Article  PubMed  CAS  Google Scholar 

  107. Laroche-Clary, A. et al. Combined targeting of MDM2 and CDK4 is synergistic in dedifferentiated liposarcomas. J. Hematol. Oncol. 10, 123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kadoch, C., Copeland, R. A. & Keilhack, H. PRC2 and SWI/SNF chromatin remodeling complexes in health and disease. Biochemistry 55, 1600–1614 (2016).

    Article  PubMed  CAS  Google Scholar 

  109. Hornick, J. L., Dal, C. P. & Fletcher, C. D. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am. J. Surg. Pathol. 33, 542–550 (2009).

    Article  PubMed  Google Scholar 

  110. Bourdeaut, F. et al. hSNF5/INI1-deficient tumours and rhabdoid tumours are convergent but not fully overlapping entities. J. Pathol. 211, 323–330 (2007).

    Article  PubMed  CAS  Google Scholar 

  111. Rousseau-Merck, M. F. et al. hSNF5/INI1 inactivation is mainly associated with homozygous deletions and mitotic recombinations in rhabdoid tumors. Cancer Res. 59, 3152–3156 (1999).

    PubMed  CAS  Google Scholar 

  112. Le Loarer, F. et al. SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat. Genet. 47, 1200–1205 (2015).

    Article  PubMed  CAS  Google Scholar 

  113. Gounder, M. M. et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with INI1 negative epithelioid sarcoma (NCT02601950) [abstract]. J. Clin. Oncol. 35 (Suppl.), 11058 (2017).

    Article  Google Scholar 

  114. Schoffski, P. et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with synovial sarcoma (NCT02601950) [abstract]. J. Clin. Oncol. 35 (Suppl.), 11057 (2017).

    Article  Google Scholar 

  115. Huang, L., Xu, J., Wood, D. J. & Zheng, M. H. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am. J. Pathol. 156, 761–767 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Atkins, G. J. et al. Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone 28, 370–377 (2001).

    Article  PubMed  CAS  Google Scholar 

  117. Roux, S. & Mariette, X. RANK and RANKL expression in giant-cell tumour of bone. Lancet Oncol. 11, 514 (2010).

    Article  PubMed  Google Scholar 

  118. Thomas, D. et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 11, 275–280 (2010).

    Article  PubMed  CAS  Google Scholar 

  119. Chawla, S. et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 14, 901–908 (2013).

    Article  PubMed  CAS  Google Scholar 

  120. Palmerini, E. et al. Long-term efficacy of denosumab in giant cell tumor of bone: results of an open-label phase 2 study [abstract]. Ann. Oncol. 28 (Suppl. 5), LBA56 (2017).

    Google Scholar 

  121. Amary, F. et al. H3F3A (Histone 3.3) G34W immunohistochemistry: a reliable marker defining benign and malignant giant cell tumor of bone. Am. J. Surg. Pathol. 41, 1059–1068 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Heldin, C. H. & Westermark, B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283–1316 (1999).

    Article  PubMed  CAS  Google Scholar 

  123. Loizos, N. et al. Targeting the platelet-derived growth factor receptor alpha with a neutralizing human monoclonal antibody inhibits the growth of tumor xenografts: implications as a potential therapeutic target. Mol. Cancer Ther. 4, 369–379 (2005).

    PubMed  CAS  Google Scholar 

  124. Tap, W. D. et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet 388, 488–497 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Nielsen, T. O. et al. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359, 1301–1307 (2002).

    Article  PubMed  CAS  Google Scholar 

  126. van der Graaf, W. T. et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379, 1879–1886 (2012).

    Article  PubMed  CAS  Google Scholar 

  127. Mir, O. et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 17, 1732–1742 (2016).

    Article  PubMed  CAS  Google Scholar 

  128. Sleijfer, S. et al. Cytokine and angiogenic factors associated with efficacy and toxicity of pazopanib in advanced soft-tissue sarcoma: an EORTC-STBSG study. Br. J. Cancer 107, 639–645 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Jiang, X. et al. The sum of gains and losses of genes encoding the protein tyrosine kinase targets predicts response to multi-kinase inhibitor treatment: characterization, validation, and prognostic value. Oncotarget 6, 26388–26399 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Ray-Coquard, I. L. et al. Paclitaxel given once per week with or without bevacizumab in patients with advanced angiosarcoma: a randomized phase II trial. J. Clin. Oncol. 33, 2797–2802 (2015).

    Article  PubMed  CAS  Google Scholar 

  131. Antonescu, C. R. et al. KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res. 69, 7175–7179 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Fleuren, E. D. et al. The role of AXL and the in vitro activity of the receptor tyrosine kinase inhibitor BGB324 in Ewing sarcoma. Oncotarget 5, 12753–12768 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Dantas-Barbosa, C. et al. Expression and role of TYRO3 and AXL as potential therapeutical targets in leiomyosarcoma. Br. J. Cancer 117, 1787–1797 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Thanapolou, E., Aleksic, A., Thway, K., Khabra, K. & Judson, I. Hormonal treaments in metastatic endometrial stromal sarcomathe 10-year experience of the sarcoma unit of Royal Mardsen Hospital. Clin. Sarcoma Res. 5, 8 (2015).

    Article  CAS  Google Scholar 

  135. Geroge, S. et al. Phase 2 trial of aromatase inhibition with letrozole in patients with uterine leiomyosarcomas expressing estrogen and/or progesterone receptors. Cancer 120, 738 (2014).

    Article  CAS  Google Scholar 

  136. Ben-Ami, E. et al. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: results of a phase 2 study. Cancer 123, 3285–3290 (2017).

    Article  PubMed  CAS  Google Scholar 

  137. Toulmonde, M. et al. Use of PD-1 targeting, macrophage infiltration, and IDO pathway activation in sarcomas: a phase 2 clinical trial. JAMA Oncol. 4, 93–97 (2018).

    Article  PubMed  Google Scholar 

  138. Burgess, M. & Tawbi, H. Immunotherapeutic approaches to sarcoma. Curr. Treat. Opt. Oncol. 16, 26 (2015).

    Article  Google Scholar 

  139. Burgess, M. et al. Multicenter phase II study of pembrolizumab (P) in advanced soft tissue (STS) and bone sarcomas (BS): final results of SARC028 and biomarker analyses [abstract]. J. Clin. Oncol. 35 (Suppl.), 11008 (2017).

    Article  Google Scholar 

  140. D’Angelo, S. P. et al. A multi-center phase II study of nivolumab + /- ipilimumab for patients with metastatic sarcoma (Alliance A091401) [abstract]. J. Clin. Oncol. 35 (Suppl.), 11007 (2017).

    Article  Google Scholar 

  141. Gounder, M. M. et al. Impact of next-generation sequencing (NGS) on diagnostic and therapeutic options in soft-tissue and bone sarcoma [abstract]. J. Clin. Oncol. 35 (Suppl.), 11001 (2017).

    Article  Google Scholar 

  142. George, S. et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46, 197–204 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Pollack, S. M., Ingham, M., Spraker, M. B. & Schwartz, G. K. Emerging targeted and immune-based therapies in sarcoma. J. Clin. Oncol. 36, 125–135 (2018).

    Article  PubMed  Google Scholar 

  144. Migliorini, D. et al. First report of clinical responses to immunotherapy in 3 relapsing cases of chordoma after failure of standard therapies. Oncoimmunology 6, e1338235 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Coindre, J. M. et al. Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas: a study of 1240 patients from the French Federation of Cancer Centers Sarcoma Group. Cancer 91, 1914–1926 (2001).

    Article  PubMed  CAS  Google Scholar 

  146. Chibon, F. et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat. Med. 16, 781–787 (2010).

    Article  PubMed  CAS  Google Scholar 

  147. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Salawu, A. et al. Establishment and molecular characterisation of seven novel soft-tissue sarcoma cell lines. Br. J. Cancer. 115, 1058–1068 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Brahmi, M. et al. KIT exon 10 variant (c.1621 A> C) single nucleotide polymorphism as predictor of GIST patient outcome. BMC. Cancer 15, 780 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Guo, J. et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J. Clin. Oncol. 29, 2904–2909 (2011).

    Article  PubMed  CAS  Google Scholar 

  151. Italiano, A. et al. Genetic landscape of soft-tissue sarcomas: Moving toward personalized medicine [abstract]. J. Clin. Oncol. 35 (Suppl.), 11002 (2017).

    Article  Google Scholar 

  152. Drilon, A. et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 7, 400–409 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Gelderblom, H. et al. Nilotinib in locally advanced pigmented villonodular synovitis: a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(18)30143-8 (2018).

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Association DAM’s, Ensemble contre Le GIST, Eurosarc (FP7-278742), Info Sarcomes, InterSARC (INCA), la Fondation ARC, LabEx DEVweCAN (ANR-10-LABX-0061), Ligue de L’Ain contre le Cancer, Lyon Integrative Cancer Research Program (Lyric) (DGOS-INCa-4664), NetSARC (INCA), and RREPS (INCA).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to researching data for this article, discussions of content, writing the manuscript, and editing and/or reviewing the manuscript before submission.

Corresponding author

Correspondence to Armelle Dufresne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dufresne, A., Brahmi, M., Karanian, M. et al. Using biology to guide the treatment of sarcomas and aggressive connective-tissue tumours. Nat Rev Clin Oncol 15, 443–458 (2018). https://doi.org/10.1038/s41571-018-0012-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0012-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer