Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The hidden enzymology of bacterial natural product biosynthesis

Abstract

Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacterial natural product chemical diversity.
Fig. 2: Remarkable transformations during nonribosomal peptide synthetase substrate biosynthesis.
Fig. 3: Noncanonical polyketide synthase/nonribosomal peptide synthetase reactions involving tethered thioester intermediates.
Fig. 4: Unusual post-polyketide synthase/nonribosomal peptide synthetase enzymology.
Fig. 5: Polyketide synthase-catalysed and nonribosomal peptide synthetase-catalysed transformations that define novel natural product families.
Fig. 6: Newly characterized on-line trans-acyltransferase polyketide synthase transformations.
Fig. 7: Unusual transformations from terpene biosynthesis.
Fig. 8: Post-translational modifications of ribosomally synthesized and post-translationally modified peptide natural products.
Fig. 9: Formation of the side-ring system during the biosynthesis of nosiheptide.
Fig. 10: Unusual enzymology from natural product pathways that lack signature biosynthetic genes.

Similar content being viewed by others

References

  1. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    CAS  PubMed  Google Scholar 

  2. Demain, A. L. Importance of microbial natural products and the need to revitalize their discovery. J. Ind. Microbiol. Biotechnol. 41, 185–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Cantrell, C. L., Dayan, F. E. & Duke, S. O. Natural products as sources for new pesticides. J. Nat. Prod. 75, 1231–1242 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oerke, E.-C. & Dehne, H.-W. Safeguarding production- losses in major crops and the role of crop protection. Crop Prot. 23, 275–285 (2004).

    Article  Google Scholar 

  6. Katz, L. & Baltz, R. H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43, 155–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Medema, M. H. et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625–631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skinnider, M. A. et al. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc. Natl. Acad. Sci. USA 113, E6343–E6351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blin, K. et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45, W36–W41 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skinnider, M. A., Merwin, N. J., Johnston, C. W. & Magarvey, N. A. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 45, W49–W54 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gross, H. et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14, 53–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Bernhardt, P. & O’Connor, S. E. Opportunities for enzyme engineering in natural product biosynthesis. Curr. Opin. Chem. Biol. 13, 35–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Süssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis-principles and prospects. Angew. Chem. Int. Ed. 56, 3770–3821 (2017).

    Article  CAS  Google Scholar 

  20. Donadio, S., Staver, M. J., McAlpine, J. B., Swanson, S. J. & Katz, L. Modular organization of genes required for complex polyketide biosynthesis. Science 252, 675–679 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Walsh, C. T., O’Brien, R. V. & Khosla, C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. 52, 7098–7124 (2013).

    Article  CAS  Google Scholar 

  22. Scott, T. A., Heine, D., Qin, Z. & Wilkinson, B. An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat. Commun. 8, 15935 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schaffer, J. E., Reck, M. R., Prasad, N. K. & Wencewicz, T. A. β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat. Chem. Biol. 13, 737–744 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Herbert, R. B. & Knaggs, A. R. Biosynthesis of the antibiotic obafluorin from r-aminophenylalanine and glycine (glyoxylate). J. Chem. Soc. Perkin Trans. 1 https://doi.org/10.1039/P19920000109 (1992).

  25. Deng, H., Cross, S. M., McGlinchey, R. P., Hamilton, J. T. & O’Hagan, D. In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase. Chem. Biol. 15, 1268–1276 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Barnard-Britson, S. et al. Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine:uridine-5ʹ-aldehyde transaldolase. J. Am. Chem. Soc. 134, 18514–18517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zelyas, N. J., Cai, H., Kwong, T. & Jensen, S. E. Alanylclavam biosynthetic genes are clustered together with one group of clavulanic acid biosynthetic genes in Streptomyces clavuligerus. J. Bacteriol. 190, 7957–7965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jensen, S. E. Biosynthesis of clavam metabolites. J. Ind. Microbiol. Biotechnol. 39, 1407–1419 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Fujimori, D. G. et al. Cloning and characterization of the biosynthetic gene cluster for kutznerides. Proc. Natl. Acad. Sci. USA 104, 16498–16503 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Blair, L. M. & Sperry, J. Natural products containing a nitrogen-nitrogen bond. J. Nat. Prod. 76, 794–812 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Du, Y. L., He, H. Y., Higgins, M. A. & Ryan, K. S. A heme-dependent enzyme forms the nitrogen-nitrogen bond in piperazate. Nat. Chem. Biol. 13, 836–838 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Park, S. R. et al. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat. Commun. 7, 10710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sit, C. S. et al. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants. Proc. Natl. Acad. Sci. USA 112, 13150–13154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leipoldt, F. et al. Warhead biosynthesis and the origin of structural diversity in hydroxamate metalloproteinase inhibitors. Nat. Commun. 8, 1965 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Du, Y. L., Dalisay, D. S., Andersen, R. J. & Ryan, K. S. N-Carbamoylation of 2,4-diaminobutyrate reroutes the outcome in padanamide biosynthesis. Chem. Biol. 20, 1002–1011 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Qu, X. et al. Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor. Mol. Biosyst. 7, 852–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ma, J. et al. Biosynthesis of himastatin: assembly line and characterization of three cytochrome P450 enzymes involved in the post-tailoring oxidative steps. Angew. Chem. Int. Ed. 50, 7797–7802 (2011).

    Article  CAS  Google Scholar 

  38. Matsuda, K. et al. Discovery of unprecedented hydrazine-forming machinery in bacteria. J. Am. Chem. Soc. 140, 9083–9086 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Verdier-Pinard, P. et al. Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. Mol. Pharmacol. 53, 62–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Chang, Z. et al. Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 67, 1356–1367 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Gu, L. et al. Polyketide decarboxylative chain termination preceded by O-sulfonation in curacin a biosynthesis. J. Am. Chem. Soc. 131, 16033–16035 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gehret, J. J. et al. Terminal alkene formation by the thioesterase of curacin A biosynthesis: structure of a decarboxylating thioesterase. J. Biol. Chem. 286, 14445–14454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fiers, W. D., Dodge, G. J., Sherman, D. H., Smith, J. L. & Aldrich, C. C. Vinylogous dehydration by a polyketide dehydratase domain in curacin biosynthesis. J. Am. Chem. Soc. 138, 16024–16036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Edwards, D. J. et al. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem. Biol. 11, 817–833 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Gu, L. et al. Metamorphic enzyme assembly in polyketide diversification. Nature 459, 731–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khare, D. et al. Conformational switch triggered by α-ketoglutarate in a halogenase of curacin A biosynthesis. Proc. Natl. Acad. Sci. USA 107, 14099–14104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khare, D. et al. Structural basis for cyclopropanation by a unique enoyl-acyl carrier protein reductase. Structure 23, 2213–2223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gaudelli, N. M., Long, D. H. & Townsend, C. A. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis. Nature 520, 383–387 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Long, D. H. & Townsend, C. A. Mechanism of integrated β-lactam formation by a nonribosomal peptide synthetase during antibiotic synthesis. Biochemistry 57, 3353–3358 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Gaudelli, N. M. & Townsend, C. A. Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis. Nat. Chem. Biol. 10, 251–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Keatinge-Clay, A. T. The uncommon enzymology of cis-acyltransferase assembly lines. Chem. Rev. 117, 5334–5366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Minami, A. & Oikawa, H. Recent advances of Diels-Alderases involved in natural product biosynthesis. J. Antibiot. 69, 500–506 (2016).

    Article  CAS  Google Scholar 

  53. Kim, H. J., Ruszczycky, M. W., Choi, S. H., Liu, Y. N. & Liu, H. W. Enzyme-catalysed [4 + 2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature 473, 109–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fage, C. D. et al. The structure of SpnF, a standalone enzyme that catalyzes [4 + 2] cycloaddition. Nat. Chem. Biol. 11, 256–258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hashimoto, T. et al. Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4 + 2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides. J. Am. Chem. Soc. 137, 572–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Tian, Z. et al. An enzymatic [4 + 2] cyclization cascade creates the pentacyclic core of pyrroindomycins. Nat. Chem. Biol. 11, 259–265 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Byrne, M. J. et al. The catalytic mechanism of a natural Diels-Alderase revealed in molecular detail. J. Am. Chem. Soc. 138, 6095–6098 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Jeon, B. S., Wang, S. A., Ruszczycky, M. W. & Liu, H. W. Natural [4 + 2]-cyclases. Chem. Rev. 117, 5367–5388 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Schorn, M. et al. Genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors. ACS Chem. Biol. 9, 301–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Owen, J. G. et al. Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors. Proc. Natl. Acad. Sci. USA 112, 4221–4226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Keller, L. et al. Macyranones: structure, biosynthesis, and binding mode of an unprecedented epoxyketone that targets the 20S proteasome. J. Am. Chem. Soc. 137, 8121–8130 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Zabala, D. et al. A flavin-dependent decarboxylase-dehydrogenase-monooxygenase assembles the warhead of α,β-epoxyketone proteasome inhibitors. J. Am. Chem. Soc. 138, 4342–4345 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Jomon, K., Kuroda, Y., Ajisaka, M. & Sakai, H. A new antibiotic, ikarugamycin. J. Antibiot. 25, 271–280 (1972).

    Article  CAS  Google Scholar 

  64. Hasumi, K., Shinohara, C., Naganuma, S. & Endo, A. Inhibition of the uptake of oxidized low-density lipoprotein in macrophage J774 by the antibiotic ikarugamycin. Eur. J. Biochem. 205, 841–846 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Luo, T., Fredericksen, B. L., Hasumi, K., Endo, A. & Garcia, J. V. Human immunodeficiency virus type 1 Nef-induced CD4 cell surface downregulation is inhibited by ikarugamycin. J. Virol. 75, 2488–2492 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Blodgett, J. A. et al. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc. Natl. Acad. Sci. USA 107, 11692–11697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Popescu, R. et al. Ikarugamycin induces DNA damage, intracellular calcium increase, p38 MAP kinase activation and apoptosis in HL-60 human promyelocytic leukemia cells. Mutat. Res. 709–710, 60–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Luo, Y. et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat. Commun. 4, 2894 (2013).

    Article  PubMed  CAS  Google Scholar 

  69. Ding, Y. et al. Alteramide B is a microtubule antagonist of inhibiting Candida albicans. Biochim. Biophys. Acta 1860, 2097–2106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ding, Y. et al. HSAF-induced antifungal effects in Candida albicans through ROS-mediated apoptosis. RSC Adv. 6, 30895–30904 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Malcomson, B. et al. Connectivity mapping (ssCMap) to predict A20-inducing drugs and their antiinflammatory action in cystic fibrosis. Proc. Natl. Acad. Sci. USA 113, E3725–E3734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Antosch, J., Schaefers, F. & Gulder, T. A. Heterologous reconstitution of ikarugamycin biosynthesis in E. coli. Angew. Chem. Int. Ed. 53, 3011–3014 (2014).

    Article  CAS  Google Scholar 

  73. Zhang, G. et al. Mechanistic insights into polycycle formation by reductive cyclization in ikarugamycin biosynthesis. Angew. Chem. Int. Ed. 53, 4840–4844 (2014).

    Article  CAS  Google Scholar 

  74. Greunke, C., Glöckle, A., Antosch, J. & Gulder, T. A. Biocatalytic total synthesis of ikarugamycin. Angew. Chem. Int. Ed. 56, 4351–4355 (2017).

    Article  CAS  Google Scholar 

  75. Scott, J. D. & Williams, R. M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev. 102, 1669–1730 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Koketsu, K., Watanabe, K., Suda, H., Oguri, H. & Oikawa, H. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms. Nat. Chem. Biol. 6, 408–410 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Helfrich, E. J. & Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 33, 231–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Butcher, R. A. et al. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 104, 1506–1509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ueoka, R., Bortfeld-Miller, M., Morinaka, B. I., Vorholt, J. A. & Piel, J. Toblerols: cyclopropanol-containing polyketide modulators of antibiosis in Methylobacteria. Angew. Chem. Int. Ed. 57, 977–981 (2018).

    Article  CAS  Google Scholar 

  80. Heine, D., Bretschneider, T., Sundaram, S. & Hertweck, C. Enzymatic polyketide chain branching to give substituted lactone, lactam, and glutarimide heterocycles. Angew. Chem. Int. Ed. 53, 11645–11649 (2014).

    Article  CAS  Google Scholar 

  81. Sundaram, S., Heine, D. & Hertweck, C. Polyketide synthase chimeras reveal key role of ketosynthase domain in chain branching. Nat. Chem. Biol. 11, 949–951 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Pöplau, P., Frank, S., Morinaka, B. I. & Piel, J. An enzymatic domain for the formation of cyclic ethers in complex polyketides. Angew. Chem. Int. Ed. 52, 13215–13218 (2013).

    Article  CAS  Google Scholar 

  83. Luhavaya, H. et al. Enzymology of pyran ring a formation in salinomycin biosynthesis. Angew. Chem. Int. Ed. 127, 13826–13829 (2015).

    Article  Google Scholar 

  84. Sung, K. H. et al. Insights into the dual activity of a bifunctional dehydratase-cyclase domain. Angew. Chem. Int. Ed. 57, 343–347 (2018).

    Article  CAS  Google Scholar 

  85. Ma, M., Lohman, J. R., Liu, T. & Shen, B. C-S bond cleavage by a polyketide synthase domain. Proc. Natl. Acad. Sci. USA 112, 10359–10364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, H., Fewer, D. P., Holm, L., Rouhiainen, L. & Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl. Acad. Sci. USA 111, 9259–9264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Iqbal, H. A., Low-Beinart, L., Obiajulu, J. U. & Brady, S. F. Natural product discovery through improved functional metagenomics in Streptomyces. J. Am. Chem. Soc. 138, 9341–9344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Meoded, R. A. et al. A polyketide synthase component for oxygen insertion into polyketide backbones. Angew. Chem. Int. Ed. 57, 11644–11648 (2018).

    Article  CAS  Google Scholar 

  91. Cociancich, S. et al. The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. Nat. Chem. Biol. 11, 195–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Chun, S. W., Hinze, M. E., Skiba, M. A. & Narayan, A. R. H. Chemistry of a unique polyketide-like synthase. J. Am. Chem. Soc. 140, 2430–2433 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cohen, D. R. & Townsend, C. A. A dual role for a polyketide synthase in dynemicin enediyne and anthraquinone biosynthesis. Nat. Chem. 10, 231–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Cohen, D. R. & Townsend, C. A. Characterization of an anthracene intermediate in dynemicin biosynthesis. Angew. Chem. Int. Ed. 57, 5650–5654 (2018).

    Article  CAS  Google Scholar 

  95. Pidot, S., Ishida, K., Cyrulies, M. & Hertweck, C. Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium. Angew. Chem. Int. Ed. 53, 7856–7859 (2014).

    Article  CAS  Google Scholar 

  96. Behnken, S. & Hertweck, C. Cryptic polyketide synthase genes in non-pathogenic Clostridium spp. PLoS One 7, e29609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vattekkatte, A., Garms, S., Brandt, W. & Boland, W. Enhanced structural diversity in terpenoid biosynthesis: enzymes, substrates and cofactors. Org. Biomol. Chem. 16, 348–362 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Yamada, Y. et al. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 112, 857–862 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Baunach, M., Franke, J. & Hertweck, C. Terpenoid biosynthesis off the beaten track: unconventional cyclases and their impact on biomimetic synthesis. Angew. Chem. Int. Ed. 54, 2604–2626 (2015).

    Article  CAS  Google Scholar 

  100. Dickschat, J. S. Bacterial terpene cyclases. Nat. Prod. Rep. 33, 87–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Heide, L. Prenyl transfer to aromatic substrates: genetics and enzymology. Curr. Opin. Chem. Biol. 13, 171–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Li, S. et al. Hapalindole/ambiguine biogenesis is mediated by a Cope rearrangement, C-C bond-forming cascade. J. Am. Chem. Soc. 137, 15366–15369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, S. et al. Decoding cyclase-dependent assembly of hapalindole and fischerindole alkaloids. Nat. Chem. Biol. 13, 467–469 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhu, Q. & Liu, X. Discovery of a calcium-dependent enzymatic cascade for the selective assembly of hapalindole-type alkaloids: on the biosynthetic origin of hapalindole U. Angew. Chem. Int. Ed. 56, 9062–9066 (2017).

    Article  CAS  Google Scholar 

  105. Newmister, S. A. et al. Structural basis of the Cope rearrangement and cyclization in hapalindole biogenesis. Nat. Chem. Biol. 14, 345–351 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Komatsu, M., Tsuda, M., Omura, S., Oikawa, H. & Ikeda, H. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc. Natl. Acad. Sci. USA 105, 7422–7427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rinkel, J., Lauterbach, L., Rabe, P. & Dickschat, J. S. Two diterpene synthases for spiroalbatene and cembrene A from Allokutzneria albata. Angew. Chem. Int. Ed. 57, 3238–3241 (2018).

    Article  CAS  Google Scholar 

  108. Yamada, Y. et al. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host. J. Antibiot. 68, 385–394 (2015).

    Article  CAS  Google Scholar 

  109. Domik, D. et al. A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13. Front. Microbiol. 7, 737 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. von Reuss, S. et al. Sodorifen biosynthesis in the rhizobacterium Serratia plymuthica involves methylation and cyclization of MEP-derived farnesyl pyrophosphate by a SAM-dependent C-methyltransferase. J. Am. Chem. Soc. 140, 11855–11862 (2018).

    Article  CAS  Google Scholar 

  111. Weise, T. et al. VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. FEMS Microbiol. Lett. 352, 45–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Ozaki, T. et al. Enzymatic formation of a skipped methyl-substituted octaprenyl side chain of longestin (KS-505a): involvement of homo-IPP as a common extender unit. Angew. Chem. Int. Ed. 57, 6629–6632 (2018).

    Article  CAS  Google Scholar 

  113. Awakawa, T. et al. A methyltransferase initiates terpene cyclization in teleocidin B biosynthesis. J. Am. Chem. Soc. 136, 9910–9913 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Nelson, D. R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta Proteins Proteom. 1866, 141–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, X. & Li, S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat. Prod. Rep. 34, 1061–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Greule, A., Stok, J. E., De Voss, J. J. & Cryle, M. J. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat. Prod. Rep. 35, 757–791 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Duan, L., Jogl, G. & Cane, D. E. The cytochrome P450-catalyzed oxidative rearrangement in the final step of pentalenolactone biosynthesis: substrate structure determines mechanism. J. Am. Chem. Soc. 138, 12678–12689 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Agrawal, P., Khater, S., Gupta, M., Sain, N. & Mohanty, D. RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res. 45, W80–W88 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van Heel, A. J. et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Banerjee, S. & Hansen, J. N. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263, 9508–9514 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Kelly, W. L., Pan, L. & Li, C. Thiostrepton biosynthesis: prototype for a new family of bacteriocins. J. Am. Chem. Soc. 131, 4327–4334 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Walsh, C. T. Blurring the lines between ribosomal and nonribosomal peptide scaffolds. ACS Chem. Biol. 9, 1653–1661 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Müller, M. M. Post-translational modifications of protein backbones: unique functions, mechanisms, and challenges. Biochemistry 57, 177–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Burkhart, B. J., Schwalen, C. J., Mann, G., Naismith, J. H. & Mitchell, D. A. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem. Rev. 117, 5389–5456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Crone, W. J. et al. Dissecting bottromycin biosynthesis using comparative untargeted metabolomics. Angew. Chem. Int. Ed. 55, 9639–9643 (2016).

    Article  CAS  Google Scholar 

  128. Franz, L., Adam, S., Santos-Aberturas, J., Truman, A. W. & Koehnke, J. Macroamidine formation in bottromycins is catalyzed by a divergent YcaO enzyme. J. Am. Chem. Soc. 139, 18158–18161 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Schwalen, C. J. et al. In vitro biosynthetic studies of bottromycin expand the enzymatic capabilities of the YcaO superfamily. J. Am. Chem. Soc. 139, 18154–18157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Metelev, M. et al. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat. Chem. Biol. 13, 1129–1136 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Travin, D. Y. et al. Biosynthesis of translation inhibitor klebsazolicin proceeds through heterocyclization and N-terminal amidine formation catalyzed by a single YcaO enzyme. J. Am. Chem. Soc. 140, 5625–5633 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Schwalen, C. J., Hudson, G. A., Kille, B. & Mitchell, D. A. Bioinformatic expansion and discovery of thiopeptide antibiotics. J. Am. Chem. Soc. 140, 9494–9501 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Frattaruolo, L., Lacret, R., Cappello, A. R. & Truman, A. W. A genomics-based approach identifies a thioviridamide-like compound with selective anticancer activity. ACS Chem. Biol. 12, 2815–2822 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Izawa, M., Kawasaki, T. & Hayakawa, Y. Cloning and heterologous expression of the thioviridamide biosynthesis gene cluster from Streptomyces olivoviridis. Appl. Environ. Microbiol. 79, 7110–7113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Izumikawa, M. et al. Novel thioviridamide derivative - JBIR-140: heterologous expression of the gene cluster for thioviridamide biosynthesis. J. Antibiot. 68, 533–536 (2015).

    Article  CAS  Google Scholar 

  136. Kawahara, T. et al. Neothioviridamide, a polythioamide compound produced by heterologous expression of a Streptomyces sp. cryptic RiPP biosynthetic gene cluster. J. Nat. Prod. 81, 264–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Kjaerulff, L. et al. Thioholgamides: thioamide-containing cytotoxic RiPP natural products. ACS Chem. Biol. 12, 2837–2841 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Lincke, T., Behnken, S., Ishida, K., Roth, M. & Hertweck, C. Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. Int. Ed. 49, 2011–2013 (2010).

    Article  CAS  Google Scholar 

  139. Dunbar, K. L. et al. Genome editing reveals novel thiotemplated assembly of polythioamide antibiotics in anaerobic bacteria. Angew. Chem. Int. Ed. 57, 14080–14084 (2018).

    Article  CAS  Google Scholar 

  140. Coyne, S. et al. Biosynthesis of the antimetabolite 6-thioguanine in Erwinia amylovora plays a key role in fire blight pathogenesis. Angew. Chem. Int. Ed. 52, 10564–10568 (2013).

    Article  CAS  Google Scholar 

  141. Litomska, A. et al. Enzymatic thioamide formation in a bacterial antimetabolite pathway. Angew. Chem. Int. Ed. 57, 11574–11578 (2018).

    Article  CAS  Google Scholar 

  142. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gerlt, J. A. Genomic enzymology: web tools for leveraging protein family sequence-function space and genome context to discover novel functions. Biochemistry 56, 4293–4308 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Byer, A. S. et al. Paradigm shift for radical S-adenosyl-L-methionine reactions: the organometallic intermediate Ω is central to catalysis. J. Am. Chem. Soc. 140, 8634–8638 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mehta, A. P. et al. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions. J. Biol. Chem. 290, 3980–3986 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Mahanta, N., Hudson, G. A. & Mitchell, D. A. Radical S-adenosylmethionine enzymes involved in RiPP biosynthesis. Biochemistry 56, 5229–5244 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, Q. et al. Radical-mediated enzymatic carbon chain fragmentation-recombination. Nat. Chem. Biol. 7, 154–160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nicolet, Y., Zeppieri, L., Amara, P. & Fontecilla-Camps, J. C. Crystal structure of tryptophan lyase (NosL): evidence for radical formation at the amino group of tryptophan. Angew. Chem. Int. Ed. 53, 11840–11844 (2014).

    Article  CAS  Google Scholar 

  149. Ji, X., Li, Y., Ding, W. & Zhang, Q. Substrate-tuned catalysis of the radical S-adenosyl-L-methionine enzyme NosL involved in nosiheptide biosynthesis. Angew. Chem. Int. Ed. 54, 9021–9024 (2015).

    Article  CAS  Google Scholar 

  150. Sicoli, G. et al. Fine-tuning of a radical-based reaction by radical S-adenosyl-L-methionine tryptophan lyase. Science 351, 1320–1323 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Bhandari, D. M., Fedoseyenko, D. & Begley, T. P. Mechanistic studies on the radical SAM enzyme tryptophan lyase (NosL). Meth. Enzymol. 606, 155–178 (2018).

    Article  CAS  Google Scholar 

  152. Badding, E. D. et al. Rerouting the pathway for the biosynthesis of the side ring system of nosiheptide: the roles of NosI, NosJ, and NosK. J. Am. Chem. Soc. 139, 5896–5905 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ding, W. et al. Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ. Nat. Commun. 8, 437 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Qiu, Y. et al. Thiolation protein-based transfer of indolyl to a ribosomally synthesized polythiazolyl peptide intermediate during the biosynthesis of the side-ring system of nosiheptide. J. Am. Chem. Soc. 139, 18186–18189 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. LaMattina, J. W. et al. NosN, a radical S-adenosylmethionine methylase, catalyzes both C1 transfer and formation of the ester linkage of the side-ring system during the biosynthesis of nosiheptide. J. Am. Chem. Soc. 139, 17438–17445 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yokoyama, K. & Lilla, E. A. C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products. Nat. Prod. Rep. 35, 660–694 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schramma, K. R., Bushin, L. B. & Seyedsayamdost, M. R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 7, 431–437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Davis, K. M. et al. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition. Proc. Natl. Acad. Sci. USA 114, 10420–10425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schramma, K. R. & Seyedsayamdost, M. R. Lysine-tryptophan-crosslinked peptides produced by radical SAM enzymes in pathogenic streptococci. ACS Chem. Biol. 12, 922–927 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Bushin, L. B., Clark, K. A., Pelczer, I. & Seyedsayamdost, M. R. Charting an unexplored streptococcal biosynthetic landscape reveals a unique peptide cyclization motif. J. Am. Chem. Soc. 140, 17674–17684 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Caruso, A., Bushin, L. B., Clark, K. A., Martinie, R. J. & Seyedsayamdost, M. R. Radical approach to enzymatic b-thioether bond formation. J. Am. Chem. Soc. 141, 990–997 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Schramma, K. R., Forneris, C. C., Caruso, A. & Seyedsayamdost, M. R. Mechanistic investigations of lysine-tryptophan cross-link formation catalyzed by streptococcal radical S-adenosylmethionine enzymes. Biochemistry 57, 461–468 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Bruender, N. A. & Bandarian, V. The radical S-adenosyl-L-methionine enzyme MftC catalyzes an oxidative decarboxylation of the C-terminus of the MftA peptide. Biochemistry 55, 2813–2816 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Khaliullin, B., Ayikpoe, R., Tuttle, M. & Latham, J. A. Mechanistic elucidation of the mycofactocin-biosynthetic radical S-adenosylmethionine protein, MftC. J. Biol. Chem. 292, 13022–13033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Flühe, L. et al. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat. Chem. Biol. 8, 350–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Flühe, L. et al. Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor. J. Am. Chem. Soc. 135, 959–962 (2013).

    Article  PubMed  CAS  Google Scholar 

  167. Wieckowski, B. M. et al. The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation. FEBS Lett. 589, 1802–1806 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Mori, T. et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc. Natl. Acad. Sci. USA 115, 1718–1723 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hamada, T., Matsunaga, S., Yano, G. & Fusetani, N. Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge. Theonella swinhoei. J. Am. Chem. Soc. 127, 110–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Freeman, M. F., Helf, M. J., Bhushan, A., Morinaka, B. I. & Piel, J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat. Chem. 9, 387–395 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Morinaka, B. I. et al. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products. Angew. Chem. Int. Ed. 53, 8503–8507 (2014).

    Article  CAS  Google Scholar 

  173. Morinaka, B. I., Verest, M., Freeman, M. F., Gugger, M. & Piel, J. An orthogonal D2O-based induction system that provides insights into D-amino acid pattern formation by radical S-adenosylmethionine peptide epimerases. Angew. Chem. Int. Ed. 56, 762–766 (2017).

    Article  CAS  Google Scholar 

  174. Renevey, A. & Riniker, S. The importance of N-methylations for the stability of the b6.3-helical conformation of polytheonamide B. Eur. Biophys. J. 46, 363–374 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Akiva, E. et al. The structure-function linkage database. Nucleic Acids Res. 42, D521–D530 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Haft, D. H. & Basu, M. K. Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol. 193, 2745–2755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Morinaka, B. I. et al. Natural noncanonical protein splicing yields products with diverse β-amino acid residues. Science 359, 779–782 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Wiebach, V. et al. The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nat. Chem. Biol. 14, 652–654 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Antunes, E. M., Copp, B. R., Davies-Coleman, M. T. & Samaai, T. Pyrroloiminoquinone and related metabolites from marine sponges. Nat. Prod. Rep. 22, 62–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Jordan, P. A. & Moore, B. S. Biosynthetic pathway connects cryptic ribosomally synthesized posttranslationally modified peptide genes with pyrroloquinoline alkaloids. Cell Chem. Biol. 23, 1504–1514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Viehrig, K. et al. Structure and biosynthesis of crocagins: polycyclic posttranslationally modified ribosomal peptides from Chondromyces crocatus. Angew. Chem. Int. Ed. 56, 7407–7410 (2017).

    Article  CAS  Google Scholar 

  182. Ogasawara, Y. & Dairi, T. Biosynthesis of oligopeptides using ATP-grasp enzymes. Chemistry 23, 10714–10724 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Ulrich, E. C. & van der Donk, W. A. Cameo appearances of aminoacyl-tRNA in natural product biosynthesis. Curr. Opin. Chem. Biol. 35, 29–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fortin, P. D., Walsh, C. T. & Magarvey, N. A. A transglutaminase homologue as a condensation catalyst in antibiotic assembly lines. Nature 448, 824–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Wolf, F. et al. Biosynthesis of the β-lactone proteasome inhibitors belactosin and cystargolide. Angew. Chem. Int. Ed. 56, 6665–6668 (2017).

    Article  CAS  Google Scholar 

  186. Meng, S. et al. A six-oxidase cascade for tandem C-H bond activation revealed by reconstitution of bicyclomycin biosynthesis. Angew. Chem. Int. Ed. 57, 719–723 (2018).

    Article  CAS  Google Scholar 

  187. Patteson, J. B., Cai, W., Johnson, R. A., Santa Maria, K. C. & Li, B. Identification of the biosynthetic pathway for the antibiotic bicyclomycin. Biochemistry 57, 61–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Vior, N. M. et al. Discovery and biosynthesis of the antibiotic bicyclomycin in distantly related bacterial classes. Appl. Environ. Microbiol. 84, e02828–17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Du, Y. L., Alkhalaf, L. M. & Ryan, K. S. In vitro reconstitution of indolmycin biosynthesis reveals the molecular basis of oxazolinone assembly. Proc. Natl. Acad. Sci. USA 112, 2717–2722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Du, Y. L. et al. A pyridoxal phosphate-dependent enzyme that oxidizes an unactivated carbon-carbon bond. Nat. Chem. Biol. 12, 194–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Thaker, M. N. et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31, 922–927 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Alanjary, M. et al. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res. 45, W42–W48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Panter, F., Krug, D., Baumann, S. & Müller, R. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem. Sci. 9, 4898–4908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jankowitsch, F. et al. A novel N,N-8-amino-8-demethyl-D-riboflavin dimethyltransferase (RosA) catalyzing the two terminal steps of roseoflavin biosynthesis in Streptomyces davawensis. J. Biol. Chem. 286, 38275–38285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jhulki, I., Chanani, P. K., Abdelwahed, S. H. & Begley, T. P. A remarkable oxidative cascade that replaces the riboflavin C8 methyl with an amino group during roseoflavin biosynthesis. J. Am. Chem. Soc. 138, 8324–8327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schwarz, J., Konjik, V., Jankowitsch, F., Sandhoff, R. & Mack, M. Identification of the key enzyme of roseoflavin biosynthesis. Angew. Chem. Int. Ed. 55, 6103–6106 (2016).

    Article  CAS  Google Scholar 

  197. Doroghazi, J. R. et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963–968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pye, C. R., Bertin, M. J., Lokey, R. S., Gerwick, W. H. & Linington, R. G. Retrospective analysis of natural products provides insights for future discovery trends. Proc. Natl. Acad. Sci. USA 114, 5601–5606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Wang, B., Guo, F., Dong, S. H. & Zhao, H. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 15, 111–114 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Xu, F. et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat. Chem. Biol. 15, 161–168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bouslimani, A., Sanchez, L. M., Garg, N. & Dorrestein, P. C. Mass spectrometry of natural products: current, emerging and future technologies. Nat. Prod. Rep. 31, 718–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Krug, D. & Müller, R. Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Nat. Prod. Rep. 31, 768–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Gruene, T. et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 57, 16313–16317 (2018).

    Article  CAS  Google Scholar 

  205. Jones, C. G. et al. The cryoEM method microED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Balskus, E. P. Colibactin: understanding an elusive gut bacterial genotoxin. Nat. Prod. Rep. 32, 1534–1540 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Castro-Falcón, G., Hahn, D., Reimer, D. & Hughes, C. C. Thiol probes to detect electrophilic natural products based on their mechanism of action. ACS Chem. Biol. 11, 2328–2336 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Maxson, T. et al. Targeting reactive carbonyls for identifying natural products and their biosynthetic origins. J. Am. Chem. Soc. 138, 15157–15166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Machado, H., Tuttle, R. N. & Jensen, P. R. Omics-based natural product discovery and the lexicon of genome mining. Curr. Opin. Microbiol. 39, 136–142 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Berdy, B., Spoering, A. L., Ling, L. L. & Epstein, S. S. In situ cultivation of previously uncultivable microorganisms using the ichip. Nat. Protoc. 12, 2232–2242 (2017).

    Article  PubMed  Google Scholar 

  211. Wilson, M. C. & Piel, J. Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem. Biol. 20, 636–647 (2013).

    Article  CAS  PubMed  Google Scholar 

  212. Charlop-Powers, Z., Milshteyn, A. & Brady, S. F. Metagenomic small molecule discovery methods. Curr. Opin. Microbiol. 19, 70–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Copp, J. N., Akiva, E., Babbitt, P. C. & Tokuriki, N. Revealing unexplored sequence-function space using sequence similarity networks. Biochemistry 57, 4651–4662 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Zhao, S. et al. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. eLife 3, e03275 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  215. Calhoun, S. et al. Prediction of enzymatic pathways by integrative pathway mapping. eLife 7, e31097 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Perry, C., de Los Santos, E. L. C., Alkhalaf, L. M. & Challis, G. L. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis. Nat. Prod. Rep. 35, 622–632 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Gao, S. S., Naowarojna, N., Cheng, R., Liu, X. & Liu, P. Recent examples of a-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat. Prod. Rep. 35, 792–837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Du, Y. L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep. 36, 430–457 (2018).

    Article  Google Scholar 

  220. Tolmie, C., Smit, M. S. & Opperman, D. J. Native roles of Baeyer-Villiger monooxygenases in the microbial metabolism of natural compounds. Nat. Prod. Rep. 36, 326–353 (2018).

    Article  Google Scholar 

  221. Cruz-Morales, P. et al. Phylogenomic analysis of natural products biosynthetic gene clusters allows discovery of arseno-organic metabolites in model Streptomycetes. Genome Biol. Evol. 8, 1906–1916 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Gerlt, J. A. et al. The enzyme function initiative. Biochemistry 50, 9950–9962 (2011).

    Article  CAS  PubMed  Google Scholar 

  223. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  226. Yu, F. et al. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob. Agents Chemother. 51, 64–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  227. Lou, L. et al. Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. J. Am. Chem. Soc. 133, 643–645 (2011).

    Article  CAS  PubMed  Google Scholar 

  228. Xu, L., Wu, P., Wright, S. J., Du, L. & Wei, X. Bioactive polycyclic tetramate macrolactams from Lysobacter enzymogenes and their absolute configurations by theoretical ECD calculations. J. Nat. Prod. 78, 1841–1847 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Wang, X., Shi, J. & Liu, Y. Oxidative rearrangement mechanism of pentalenolactone F catalyzed by cytochrome P450 CYP161C2 (PntM). Inorg. Chem. 57, 8933–8941 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.A.S. is financially supported by a European Molecular Biology Organization (EMBO) Long-Term Fellowship (ALTF 344-2018). The authors are additionally grateful for funding from the European Research Council (ERC; ERC Advanced Project SynPlex), the Swiss National Science Foundation (SNF; 31003A_146992/1 and NRP 72 ‘Antimicrobial resistance’, 407240_167051), the Helmut Horten Foundation and the Promedica Foundation. The authors would also like to thank S. Leopold-Messer for comments on the figures.

Reviewer information

Nature Reviews Chemistry thanks T. Simpson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

T.A.S. researched the literature and wrote the article, in addition to producing all of the figures. J.P. contributed to discussion, writing and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Jörn Piel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Orphan

Biosynthetic genes that can be detected bioinformatically in a natural product biosynthetic gene cluster context but are functionally unassigned or have been assigned an incorrect or nonspecific function.

Cryptic

Functionally unassigned genes not previously recognized as belonging to natural product biosynthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, T.A., Piel, J. The hidden enzymology of bacterial natural product biosynthesis. Nat Rev Chem 3, 404–425 (2019). https://doi.org/10.1038/s41570-019-0107-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0107-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing