Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions

Abstract

The excitation of surface plasmons (SPs) — collective oscillation of conduction-band electrons in nanostructures — can afford photon, electron and heat energy redistribution over time and space. Making use of this ability, plasmon-enhanced molecular spectroscopy (PEMS) techniques with ultra-high sensitivity and surface selectivity have attracted much attention and have undergone considerable development over the past four decades. Recently, the development of plasmon-mediated chemical reactions (PMCRs) has shown the potential to have a large impact on the practice of chemistry. PMCRs exhibit some obvious differences from and potential advantages over traditional thermochemistry, photochemistry and photocatalysis. However, our physicochemical understanding of PMCRs is still far from complete. In this Review, we analyse the similarities and distinctive features of PEMS and PMCRs and compare PMCRs with traditional photochemical and thermochemical reactions. We then discuss how PMCRs can be improved by rationally designing and fabricating plasmonic nanostructures, selecting suitable surface and interface mediators and teaming them synergistically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface plasmon excitation, optical confinement and spectral features of some typical nanostructures.
Fig. 2: Three main effects induced by the excitation and relaxation of surface plasmons.
Fig. 3: The plasmon-enhanced Raman scattering process.
Fig. 4: A microscopic view of plasmon-mediated chemical reactions.
Fig. 5: The three key components of plasmon-mediated chemical reactions.
Fig. 6: A graphical summary of novel mechanisms of SP-mediated energy and/or charge transfer processes.
Fig. 7: Comparison of plasmon-enhanced molecular spectroscopy and plasmon-mediated chemical reactions.

Similar content being viewed by others

References

  1. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    CAS  PubMed  Google Scholar 

  2. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    CAS  PubMed  Google Scholar 

  3. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    CAS  Google Scholar 

  4. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).

    CAS  Google Scholar 

  5. Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978).

    CAS  Google Scholar 

  6. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    CAS  Google Scholar 

  7. Tian, Z. Q., Ren, B. & Wu, D. Y. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106, 9463–9483 (2002).

    CAS  Google Scholar 

  8. Ding, S. Y., You, E. M., Tian, Z. Q. & Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46, 4042–4076 (2017).

    CAS  PubMed  Google Scholar 

  9. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    CAS  PubMed  Google Scholar 

  10. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    CAS  PubMed  Google Scholar 

  11. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    CAS  Google Scholar 

  12. Emmanuel, F. & Samuel, G. Surface enhanced fluorescence. J. Phys. D Appl. Phys. 41, 013001 (2008).

    Google Scholar 

  13. Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393 (2016).

    CAS  Google Scholar 

  14. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotech. 8, 247–251 (2013).

    CAS  Google Scholar 

  15. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    CAS  PubMed  Google Scholar 

  16. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    CAS  Google Scholar 

  17. Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    CAS  PubMed  Google Scholar 

  18. Christopher, P. & Moskovits, M. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68, 379–398 (2017).

    CAS  PubMed  Google Scholar 

  19. Ostovar pour, S. et al. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat. Chem. 7, 591 (2015).

    CAS  PubMed  Google Scholar 

  20. Nitzan, A. & Brus, L. E. Theoretical model for enhanced photochemistry on rough surfaces. J. Chem. Phys. 75, 2205–2214 (1981).

    CAS  Google Scholar 

  21. Chen, C. J. & Osgood, R. M. Direct observation of the local-field-enhanced surface photochemical reactions. Phys. Rev. Lett. 50, 1705–1708 (1983).

    CAS  Google Scholar 

  22. Chen, X. J., Cabello, G., Wu, D. Y. & Tian, Z. Q. Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures. J. Photochem. Photobiol. C 21, 54–80 (2014).

    CAS  Google Scholar 

  23. Suh, J. S., Moskovits, M. & Shakhesemampour, J. Photochemical decomposition at colloid surfaces. J. Phys. Chem. 97, 1678–1683 (1993).

    CAS  Google Scholar 

  24. Suh, J. S., Jang, N. H., Jeong, D. H. & Moskovits, M. Adsorbate photochemistry on a colloid surface: phthalazine on silver. J. Phys. Chem. 100, 805–813 (1996).

    CAS  Google Scholar 

  25. Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    CAS  PubMed  Google Scholar 

  26. Huang, Y. F. et al. When the signal is not from the original molecule to be detected: chemical transformation of para-Aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244–9246 (2010).

    CAS  PubMed  Google Scholar 

  27. Wimmer, E., Fu, C. L. & Freeman, A. J. Catalytic promotion and poisoning: all-electron Local-density-functional theory of CO on Ni(001) surfaces coadsorbed with K or S. Phys. Rev. Lett. 55, 2618–2621 (1985).

    CAS  PubMed  Google Scholar 

  28. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008).

    CAS  PubMed  Google Scholar 

  29. Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  PubMed  Google Scholar 

  30. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003).

    CAS  PubMed  Google Scholar 

  31. Le Ru, E. C. & Etchegoin, P. G. in Principles of Surface-Enhanced Raman Spectroscopy Ch. 3, 121–183 (Elsevier, Amsterdam, 2009).

    Google Scholar 

  32. Maier, S. A. in Plasmonics: fundamentals and applications Ch. 5 (Springer Science & Business Media, 2007).

  33. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    CAS  Google Scholar 

  34. Hao, F. et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 8, 3983–3988 (2008).

    CAS  PubMed  Google Scholar 

  35. Frischkorn, C. & Wolf, M. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem. Rev. 106, 4207–4233 (2006).

    CAS  PubMed  Google Scholar 

  36. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotech. 10, 2–6 (2015).

    CAS  Google Scholar 

  37. Cho, G. C., Dekorsy, T., Bakker, H. J., Hövel, R. & Kurz, H. Generation and relaxation of coherent majority plasmons. Phys. Rev. Lett. 77, 4062–4065 (1996).

    CAS  PubMed  Google Scholar 

  38. Inouye, H., Tanaka, K., Tanahashi, I. & Hirao, K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998).

    CAS  Google Scholar 

  39. Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    CAS  PubMed  Google Scholar 

  40. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25–34 (2015).

    CAS  Google Scholar 

  41. Osawa, M., Ataka, K. I., Yoshii, K. & Nishikawa, Y. Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47, 1497–1502 (1993).

    CAS  Google Scholar 

  42. Aroca, R. F., Ross, D. J. & Domingo, C. Surface-enhanced infrared spectroscopy. Appl. Spectrosc. 58, 324A–338A (2004).

    CAS  PubMed  Google Scholar 

  43. Ortolani, M. & Limaj, O. in Handbook of Enhanced Spectroscopy 443–483 (Pan Stanford, 2015).

  44. Tian, Z. Q., Ren, B., Li, J. F. & Yang, Z. L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 34, 3514–3534 (2007).

    Google Scholar 

  45. Stadler, J., Schmid, T. & Zenobi, R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 4, 1856–1870 (2012).

    CAS  PubMed  Google Scholar 

  46. Li, J. F., Anema, J. R., Wandlowski, T. & Tian, Z. Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 44, 8399–8409 (2015).

    CAS  PubMed  Google Scholar 

  47. Gruenke, N. L. et al. Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 45, 2263–2290 (2016).

    CAS  PubMed  Google Scholar 

  48. Ding, S. Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    CAS  Google Scholar 

  49. Li, J. F., Li, C. Y. & Aroca, R. F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 46, 3962–3979 (2017).

    CAS  PubMed  Google Scholar 

  50. Gray, S. K. Surface plasmon-enhanced spectroscopy and photochemistry. Plasmonics 2, 143–146 (2007).

    CAS  Google Scholar 

  51. Le Ru, E. C. & Etchegoin, P. G. in Principles of Surface-Enhanced Raman Spectroscopy. 185–264 (Elsevier Science, 2008).

  52. Etchegoin, P. G. & Le Ru, E. C. in Surface Enhanced Raman Spectroscopy (ed. Schlucker, S.) 1–37 (Wiley VCH, 2010).

  53. Ding, S. Y., Zhang, X. M., Ren, B. & Tian, Z. Q. in Encyclopedia of Analytical Chemistry (Wiley-Blackwell, 2006).

  54. Wang, X. et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 46, 4020–4041 (2017).

    CAS  PubMed  Google Scholar 

  55. Schmid, T., Opilik, L., Blum, C. & Zenobi, R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52, 5940–5954 (2013).

    CAS  Google Scholar 

  56. Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014).

    Google Scholar 

  57. Michaels, A. M., Nirmal, M. & Brus, L. E. Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939 (1999).

    CAS  Google Scholar 

  58. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  PubMed  Google Scholar 

  59. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    CAS  PubMed  Google Scholar 

  60. Yampolsky, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photon. 8, 650–656 (2014).

    CAS  Google Scholar 

  61. Kerker, M., Wang, D. S. & Chew, H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl. Opt. 19, 3373–3388 (1980).

    CAS  PubMed  Google Scholar 

  62. Gersten, J. & Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73, 3023–3037 (1980).

    CAS  Google Scholar 

  63. Aravind, P. K., Nitzan, A. & Metiu, H. The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surf. Sci. 110, 189–204 (1981).

    CAS  Google Scholar 

  64. Le Ru, E. & Etchegoin, P. in Principles of Surface-Enhanced Raman Spectroscopy Ch. 2 (Elsevier, Amsterdam, 2009).

    Google Scholar 

  65. Otto, A. Surface-enhanced Raman scattering: “Classical” and “Chemical” origins (Springer Berlin Heidelberg, 1984).

    Google Scholar 

  66. Tian, Z. Q. General Discussion. Faraday Discuss. 132, 147–158 (2006).

    Google Scholar 

  67. Wu, D. Y., Li, J. F., Ren, B. & Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008).

    CAS  PubMed  Google Scholar 

  68. Schatz, G. C. & Van Duyne, R. P. in Handbook of Vibrational Spectroscopy (John Wiley & Sons, Ltd, 2006).

  69. Klessinger, M. & Michl, J. Excited States and Photochemistry of Organic Molecules (VCH Publishers, New York, 1995).

    Google Scholar 

  70. Turro, N. J. Modern Molecular Photochemistry (Univ. Science Books, Mill Valley, CA, 1991).

    Google Scholar 

  71. Karny, Z. & Zare, R. N. Infrared laser photochemistry: Evidence for heterogeneous decomposition. Chem. Phys. 23, 321–325 (1977).

    CAS  Google Scholar 

  72. Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    CAS  PubMed  Google Scholar 

  73. Ottosson, H. Exciting excited-state aromaticity. Nat. Chem. 4, 969 (2012).

    CAS  PubMed  Google Scholar 

  74. Van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

    Google Scholar 

  75. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    CAS  PubMed  Google Scholar 

  76. Liu, Z., Hou, W., Pavaskar, P., Aykol, M. & Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2011).

    CAS  PubMed  Google Scholar 

  77. Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011).

    CAS  PubMed  Google Scholar 

  78. Ueno, K. et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J. Am. Chem. Soc. 130, 6928–6929 (2008).

    CAS  PubMed  Google Scholar 

  79. Murdoch, M. et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3, 489 (2011).

    CAS  PubMed  Google Scholar 

  80. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    CAS  Google Scholar 

  81. Honda, K. & Fujishima, A. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    PubMed  Google Scholar 

  82. Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    CAS  Google Scholar 

  83. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    CAS  PubMed  Google Scholar 

  84. Denzler, D. N., Frischkorn, C., Hess, C., Wolf, M. & Ertl, G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 91, 226102 (2003).

    CAS  PubMed  Google Scholar 

  85. Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 1810–1811 (2004).

  86. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    CAS  PubMed  Google Scholar 

  87. Huang, Y. F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 53, 2353–2357 (2014).

    CAS  Google Scholar 

  88. Xie, W. & Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 6, 7570 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    CAS  PubMed  Google Scholar 

  90. Martirez, J. M. P. & Carter, E. A. Excited-state N2 dissociation pathway on Fe-functionalized Au. J. Am. Chem. Soc. 139, 4390–4398 (2017).

    CAS  PubMed  Google Scholar 

  91. Hou, W. et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 1, 929–936 (2011).

    CAS  Google Scholar 

  92. Oshikiri, T., Ueno, K. & Misawa, H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed. 53, 9802–9805 (2014).

    CAS  Google Scholar 

  93. Zhang, N. et al. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon. 10, 473–482 (2016).

    Google Scholar 

  94. Baffou, G., Quidant, R. & Girard, C. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett. 94, 153109 (2009).

    Google Scholar 

  95. Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 7, 171–187 (2013).

    CAS  Google Scholar 

  96. Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

    CAS  PubMed  Google Scholar 

  97. Yang, Q., Xu, Q., Yu, S. H. & Jiang, H. L. Pd Nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. Int. Ed. 55, 3685–3689 (2016).

    CAS  Google Scholar 

  98. Kim, K. et al. Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015).

    CAS  PubMed  Google Scholar 

  99. Hogan, N. J. et al. Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014).

    CAS  PubMed  Google Scholar 

  100. Govorov, A. O., Zhang, H., Demir, H. V. & Gun’ko, Y. K. Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today 9, 85–101 (2014).

    CAS  Google Scholar 

  101. Sundararaman, R. et al. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mubeen, S., Lee, J., Liu, D., Stucky, G. D. & Moskovits, M. Panchromatic photoproduction of H2 with surface plasmons. Nano Lett. 15, 2132–2136 (2015).

    CAS  PubMed  Google Scholar 

  103. Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotech. 10, 770–774 (2015).

    CAS  Google Scholar 

  104. Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    CAS  PubMed  Google Scholar 

  105. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997).

    CAS  Google Scholar 

  106. Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    CAS  PubMed  Google Scholar 

  107. Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015).

    CAS  PubMed  Google Scholar 

  108. Zheng, B. Y. et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6, 7797 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Li, J. et al. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 9, 601–607 (2015).

    CAS  Google Scholar 

  110. Maher, R. C. et al. Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions. J. Chem. Phys. 120, 11746–11753 (2004).

    CAS  PubMed  Google Scholar 

  111. Sushchinskii, M. M. & Rousseau, D. L. Raman spectra of molecules and crystals. Phys. Today 26, 61–62 (2008).

    Google Scholar 

  112. Sun, M., Zhang, Z., Zheng, H. & Xu, H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci. Rep. 2, 647–650 (2012).

    PubMed  PubMed Central  Google Scholar 

  113. Zhang, Z. et al. Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5, 3249–3252 (2013).

    CAS  PubMed  Google Scholar 

  114. Haslett, T. L., Tay, L. & Moskovits, M. Can surface-enhanced Raman scattering serve as a channel for strong optical pumping? J. Chem. Phys. 113, 1641–1646 (2000).

    CAS  Google Scholar 

  115. Brolo, A. G., Sanderson, A. C. & Smith, A. P. Ratio of the surface-enhanced anti-Stokes scattering to the surface-enhanced Stokes-Raman scattering for molecules adsorbed on a silver electrode. Phys. Rev. B 69, 045424 (2004).

    Google Scholar 

  116. Maher, R. C. et al. Resonance contributions to anti-Stokes/Stokes ratios under surface enhanced Raman scattering conditions. J. Chem. Phys. 123, 084702 (2005).

    CAS  PubMed  Google Scholar 

  117. S., Y. Y. & Tamitake, I. Why and how do the shapes of surface-enhanced Raman scattering spectra change? Recent progress from mechanistic studies. J. Raman Spectrosc. 47, 78–88 (2016).

    Google Scholar 

  118. Itoh, T. et al. Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra. Phys. Rev. B 76, 085405 (2007).

    Google Scholar 

  119. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    CAS  PubMed  Google Scholar 

  120. Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotech. 12, 1000–1005 (2017).

    CAS  Google Scholar 

  122. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    CAS  Google Scholar 

  123. Lalisse, A., Tessier, G., Plain, J. & Baffou, G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 119, 25518–25528 (2015).

    CAS  Google Scholar 

  124. Voiry, D., Shin, H. S., Loh, K. P. & Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2, 0105 (2018).

    CAS  Google Scholar 

  125. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    CAS  PubMed  Google Scholar 

  126. Cushing, S. K. et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012).

    CAS  PubMed  Google Scholar 

  127. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).

    CAS  PubMed  Google Scholar 

  129. Schlather, A. E. et al. Hot hole photoelectrochemistry on Au@SiO2@Au nanoparticles. J. Phys. Chem. Lett. 8, 2060–2067 (2017).

    CAS  PubMed  Google Scholar 

  130. Zhu, W. et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cortés, E. et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Wang, P., Krasavin, A. V., Nasir, M. E., Dickson, W. & Zayats, A. V. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat. Nanotech. 13, 159–164 (2018).

    CAS  Google Scholar 

  133. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    CAS  PubMed  Google Scholar 

  134. Zhang, Y. et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 531, 623–627 (2016).

    CAS  PubMed  Google Scholar 

  135. Zhang, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 8, 15225 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, X. & Swihart, M. T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem. Soc. Rev. 43, 3908–3920 (2014).

    CAS  PubMed  Google Scholar 

  137. V., N. G., M., S. V. & Alexandra, B. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    Google Scholar 

  138. Stensitzki, T. et al. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation. Nat. Chem. 10, 126 (2018).

    CAS  PubMed  Google Scholar 

  139. Petek, H. Photoexcitation of adsorbates on metal surfaces: one-step or three-step. J. Chem. Phys. 137, 091704 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to M. Moskovits for his very helpful suggestions and careful academic and English editing of the manuscript. This work is financially supported by the National Natural Science Foundation of China (21533006, 21621091, 91427304 and 21403180) and the Ministry of Science and Technology of China (2015CB932300).

Reviewers information

Nature Reviews Chemistry thanks R. Aroca, S. Schlücker and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Z-Q.T. conceived the outline. C.Z., X-J.C. and Z-Q.T. wrote the manuscript. J.Y. supplied the calculation in Figure 1. All authors contributed to discussions, editing and corrections. C.Z. and Z-Q.T. revised the manuscript before the final submission.

Corresponding author

Correspondence to Zhong-Qun Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Optical diffraction limit

The fundamental maximum of the spatial resolution of an optical system that is due to diffraction.

Landau damping

The damping effect of longitudinal space charge waves in plasma or a similar environment. Landau damping occurs because of the energy exchange between an electromagnetic wave and particles (for example, electrons) in the plasma, which can interact strongly with the wave. In a surface plasmon system, the Landau damping process represents the direct absorption of a photon assisted by the surface plasmon momentum, creating a hot hole and a hot electron.

Fermi–Dirac distribution

The distribution of particles over energy states in systems consisting of many identical particles that obey the Pauli exclusion principle.

Electrostatic approximation

The assumption that the phase of the harmonically oscillating electromagnetic field is practically constant over the particle volume, so that one can calculate the spatial field distribution by assuming the simplified problem of a particle in an electrostatic field.

Drude model

A model used to explain the transport properties of electrons in materials in which the microscopic behaviour of electrons in a solid is treated classically. It is the basic model used in the study of optical properties of different materials and is commonly used to explain the dielectric function of plasmonic nanostructures.

Fermi level

The highest energy level that an electron can fill in the solid state at absolute zero temperature.

Förster resonance energy transfer

(FRET). A mechanism describing the energy transfer between two light-sensitive dipoles, in which energy non-radiatively transfers from a blueshifted emitter to a redshifted absorber through dipole–dipole coupling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, C., Chen, XJ., Yi, J. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat Rev Chem 2, 216–230 (2018). https://doi.org/10.1038/s41570-018-0031-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0031-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing