Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amino proton donors in excited-state intramolecular proton-transfer reactions

Abstract

Proton transfer involving site-specific hydrogen-bonding interactions is one of the most fundamental and important reactions in chemistry and biology. Deliberately triggering this reaction by photoexcitation enables unique and insightful mechanistic analyses. This Review describes a particularly effective method that involves exciting a photoacid containing both an amine and a basic residue and monitoring the ensuing excited-state intramolecular proton-transfer (ESIPT) reactions. Replacing a H atom on the amine with another substituent R modulates the acidity of the amine and allows for the excited-state hydrogen-bond strength to be tuned over a very broad range. In this way, one can draw empirical correlations between N−H bond distances, acidity, hydrogen-bond strength and the ESIPT kinetics and thermodynamics. For example, stronger intramolecular N−H···N hydrogen bonding leads to faster and more exergonic ESIPT. Tuning the amine and basic residues allows one to switch the ESIPT mechanism between the kinetic and thermodynamic regimes, such that molecules can generate ratiometric emission, which is suitable for white-light generation and two-colour imaging. The identity of the amine substituent R not only affects the acidity but can be differentially sensitive towards the local chemical environment. Thus, the R group transduces environmental changes into modified ESIPT rates and/or mechanisms. Such studies open new frontiers in the fundamental aspects of proton transfer in amines, as well as their largely unexplored potential applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An energy scheme for ESIPT and some prominent O–H-type and N–H-type emitters.
Fig. 2: Tuning ESIPT in 2-(2′-aminophenyl)benzothiazole (ABT) derivatives using substituent effects.
Fig. 3: Green fluorescent proteins have inspired the design of O–H-type and N–H-type emitters.
Fig. 4: Structures and photophysics of 10-aminobenzo[h]quinoline (ABQ) derivatives68.
Fig. 5: New N–H-type ESIPT molecules for unique applications.

Similar content being viewed by others

References

  1. Zhao, G.-J. & Han, K.-L. Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 45, 404–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Huynh, M. H. V. & Meyer, T. J. Proton-coupled electron transfer. Chem. Rev. 107, 5004–5064 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Demchenko, A. P., Tang, K.-C. & Chou, P.-T. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 42, 1379–1408 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Tomin, V. I., Demchenko, A. P. & Chou, P.-T. Thermodynamic versus kinetic control of excited-state proton transfer reactions. J. Photochem. Photobiol. C 22, 1–18 (2015).

    Article  CAS  Google Scholar 

  5. Tang, L. et al. An ESIPT-based fluorescent probe for selective detection of homocysteine and its application in live-cell imaging. Tetrahedron Lett. 57, 5227–5231 (2016).

    Article  CAS  Google Scholar 

  6. He, L., Dong, B., Liu, Y. & Lin, W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem. Soc. Rev. 45, 6449–6461 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Shynkar, V. V. et al. Fluorescent biomembrane probe for ratiometric detection of apoptosis. J. Am. Chem. Soc. 129, 2187–2193 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Oncul, S. et al. Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis. Biochim. Biophys. Acta 1798, 1436–1443 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Kwon, J. E. & Park, S. Y. Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv. Mater. 23, 3615–3642 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, J., Ji, S., Chen, Y., Guo, H. & Yang, P. Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys. Chem. Chem. Phys. 14, 8803–8817 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Tang, K.-C. et al. Fine tuning the energetics of excited-state intramolecular proton transfer (ESIPT): white light generation in a single ESIPT system. J. Am. Chem. Soc. 133, 17738–17745 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Azarias, C., Budzák, S., Laurent, A. D., Ulrich, G. & Jacquemin, D. Tuning ESIPT fluorophores into dual emitters. Chem. Sci. 7, 3763–3774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Padalkar, V. S. & Seki, S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 45, 169–202 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Z. et al. Control of the reversibility of excited-state intramolecular proton transfer (ESIPT) reaction: host-polarity tuning white organic light emitting diode on a new thiazolo[5,4-d]thiazole ESIPT system. Chem. Mater. 28, 8815–8824 (2016).

    Article  CAS  Google Scholar 

  15. Klymchenko, A. S. & Demchenko, A. P. Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors. J. Am. Chem. Soc. 124, 12372–12379 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Bountis, T. Proton Transfer in Hydrogen-Bonded Systems (Springer Science & Business Media, 2012).

  17. Desiraju, G. & Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford University Press, 2001).

  18. Abou-Zied, O. K., Jimenez, R. & Romesberg, F. E. Tautomerization dynamics of a model base pair in DNA. J. Am. Chem. Soc. 123, 4613–4614 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kwon, O.-H. & Zewail, A. H. Double proton transfer dynamics of model DNA base pairs in the condensed phase. Proc. Natl Acad. Sci. USA 104, 8703–8708 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, C. A., El-Bayoumi, M. A. & Kasha, M. Excited-state two-proton tautomerism in hydrogen-bonded N-heterocyclic base pairs. Proc. Natl Acad. Sci. USA 63, 253–260 (1969).

    Article  CAS  Google Scholar 

  21. Perun, S., Sobolewski, A. L. & Domcke, W. Role of electron-driven proton-transfer processes in the excited-state deactivation of the adenine–thymine base pair. J. Phys. Chem. A 110, 9031–9038 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ramazanov, R. R., Maksimov, D. A. & Kononov, A. I. Noncanonical stacking geometries of nucleobases as a preferred target for solar radiation. J. Am. Chem. Soc. 137, 11656–11665 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Kimsey, I. J. et al. Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Nature 554, 195–201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, W., Hellinga, H. W. & Beese, L. S. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc. Natl Acad. Sci. USA 108, 17644–17648 (2011).

    Article  PubMed  Google Scholar 

  25. Sholokh, M. et al. Tautomers of a fluorescent G surrogate and their distinct photophysics provide additional information channels. Angew. Chem. Int. Ed. 55, 7974–7978 (2016).

    Article  CAS  Google Scholar 

  26. Chou, P. T., Martinez, M. L. & Clements, J. H. Reversal of excitation behavior of proton-transfer versus charge-transfer by dielectric perturbation of electronic manifolds. J. Phys. Chem. 97, 2618–2622 (1993).

    Article  CAS  Google Scholar 

  27. Swinney, T. C. & Kelley, D. F. Proton transfer dynamics in substituted 3-hydroxyflavones: solvent polarization effects. J. Chem. Phys. 99, 211–221 (1993).

    Article  CAS  Google Scholar 

  28. Klymchenko, A. S., Pivovarenko, V. G., Ozturk, T. & Demchenko, A. P. Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J. Chem. 27, 1336–1343 (2003).

    Article  CAS  Google Scholar 

  29. Chou, P.-T. et al. Tuning excited-state charge/proton transfer coupled reaction via the dipolar functionality. J. Phys. Chem. A 108, 6452–6454 (2004).

    Article  CAS  Google Scholar 

  30. Hsieh, C.-C., Jiang, C.-M. & Chou, P.-T. Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction. Acc. Chem. Res. 43, 1364–1374 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Klymchenko, A. S. & Demchenko, A. P. Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys. Chem. Chem. Phys. 5, 461–468 (2003).

    Article  CAS  Google Scholar 

  32. Chou, P.-T. et al. Solvent-polarity tuning excited-state charge coupled proton-transfer reaction in p-N,N-ditolylaminosalicylaldehydes. J. Phys. Chem. A 108, 6487–6498 (2004).

    Article  CAS  Google Scholar 

  33. Smith, T. P., Zaklika, K. A., Thakur, K. & Barbara, P. F. Excited state intramolecular proton transfer in 1-(acylamino)anthraquinones. J. Am. Chem. Soc. 113, 4035–4036 (1991). This paper describes early examples of N–H-type ESIPT fluorophores.

    Article  CAS  Google Scholar 

  34. Santra, S., Krishnamoorthy, G. & Dogra, S. K. Excited state intramolecular proton transfer in 2-(2′-benzamidophenyl)benzimidazole: effect of solvents. Chem. Phys. Lett. 311, 55–61 (1999).

    Article  CAS  Google Scholar 

  35. Santra, S., Krishnamoorthy, G. & Dogra, S. K. Excited-state intramolecular proton transfer in 2-(2′-acetamidophenyl)benzimidazole. J. Phys. Chem. A 104, 476–482 (2000).

    Article  CAS  Google Scholar 

  36. Fahrni, C. J., Henary, M. M. & VanDerveer, D. G. Excited-state intramolecular proton transfer in 2-(2′-tosylaminophenyl)benzimidazole. J. Phys. Chem. A 106, 7655–7663 (2002).

    Article  CAS  Google Scholar 

  37. Henary, M. M., Wu, Y. G. & Fahrni, C. J. Zinc(ii)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer. Chem. Eur. J. 10, 3015–3025 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Henary, M. M. et al. Excited-state intramolecular proton transfer in 2-(2′-arylsulfonamidophenyl) benzimidazole derivatives: the effect of donor and acceptor substituents. J. Org. Chem. 72, 4784–4797 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Nayak, M. K. Synthesis, characterization and optical properties of aryl and diaryl substituted phenanthroimidazoles. J. Photochem. Photobiol. A 241, 26–37 (2012).

    Article  CAS  Google Scholar 

  40. Ciuciu, A. I., Skonieczny, K., Koszelewski, D., Gryko, D. T. & Flamigni, L. Dynamics of intramolecular excited state proton transfer in emission tunable, highly luminescent imidazole derivatives. J. Phys. Chem. C 117, 791–803 (2013).

    Article  CAS  Google Scholar 

  41. Yu, W.-S. et al. Excited-state intramolecular proton transfer in five-membered hydrogen-bonding systems: 2-pyridyl pyrazoles. J. Am. Chem. Soc. 125, 10800–10801 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Chung, M.-W. et al. Structural tuning intra- versus inter-molecular proton transfer reaction in the excited state. Phys. Chem. Chem. Phys. 14, 9006–9015 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, T.-Y. et al. The empirical correlation between hydrogen bonding strength and excited-state intramolecular proton transfer in 2-pyridyl pyrazoles. J. Phys. Chem. A 116, 4438–4444 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Kijak, M., Nosenko, Y., Singh, A., Thummel, R. P. & Waluk, J. Mode-selective excited-state proton transfer in 2-(2′-pyridyl)pyrrole isolated in a supersonic jet. J. Am. Chem. Soc. 129, 2738–2739 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Rode, M. F. & Sobolewski, A. L. Photophysics of inter- and intra-molecularly hydrogen-bonded systems: computational studies on the pyrrole–pyridine complex and 2-(2′-pyridyl)pyrrole. Chem. Phys. 347, 413–421 (2008).

    Article  CAS  Google Scholar 

  46. Hubin, P. O., Laurent, A. D., Vercauteren, D. P. & Jacquemin, D. Investigation of ESIPT in a panel of chromophores presenting N–H···N intramolecular hydrogen bonds. Phys. Chem. Chem. Phys. 16, 25288–25295 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Bordwell, F. G. & Algrim, D. J. Acidities of anilines in dimethyl sulfoxide solution. J. Am. Chem. Soc. 110, 2964–2968 (1988).

    Article  CAS  Google Scholar 

  48. Haynes, W. M. CRC Handbook of Chemistry and Physics 95th Ed. 5–97 (CRC press, 2014).

  49. Tseng, H.-W. et al. Harnessing excited-state intramolecular proton-transfer reaction via a series of amino-type hydrogen-bonding molecules. J. Phys. Chem. Lett. 6, 1477–1486 (2015). This article provides details on the photophysics and photodynamics of N−H-type ESIPT fluorophores.

    Article  CAS  PubMed  Google Scholar 

  50. Parada, G. A. et al. Control over excited state intramolecular proton transfer and photoinduced tautomerization: influence of the hydrogen-bond geometry. Chem. Eur. J. 21, 6362–6366 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Stasyuk, A. J., Bultinck, P., Gryko, D. T. & Cyrański, M. K. The effect of hydrogen bond strength on emission properties in 2-(2′-hydroxyphenyl)imidazo[1,2-a]pyridines. J. Photochem. Photobiol., A 314, 198–213 (2016).

    Article  CAS  Google Scholar 

  52. Chuang, W.-T. et al. Excited-state intramolecular proton transfer molecules bearing o-hydroxy analogues of green fluorescent protein chromophore. J. Org. Chem. 76, 8189–8202 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Hsieh, C.-C. et al. Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore. J. Am. Chem. Soc. 133, 2932–2943 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Hsu, Y.-H. et al. Locked ortho- and para-core chromophores of green fluorescent protein; dramatic emission enhancement via structural constraint. J. Am. Chem. Soc. 136, 11805–11812 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Meng, F.-Y. et al. The quest of excited-state intramolecular proton transfer via eight-membered ring π-conjugated hydrogen bonding system. Chem. Asian J. 12, 3010–3015 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Y.-A. et al. N–H-type excited-state proton transfer in compounds possessing a seven-membered-ring intramolecular hydrogen bond. Chem. Eur. J. 22, 14688–14695 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. An, B. et al. Theoretical insight into the excited-state intramolecular proton transfer mechanisms of three amino-type hydrogen-bonding molecules. Spectrochim. Acta Part A 175, 36–42 (2017).

    Article  CAS  Google Scholar 

  58. Yuan, H., Feng, S., Wen, K., Guo, X. & Zhang, J. The excited-state intramolecular proton transfer in N–H-type dye molecules with a seven-membered-ring intramolecular hydrogen bond: a theoretical insight. Spectrochim. Acta Part A 191, 421–426 (2018).

    Article  CAS  Google Scholar 

  59. Okamoto, H., Itani, K., Yamaji, M., Konishi, H. & Ota, H. Excited-state intramolecular proton transfer (ESIPT) fluorescence from 3-amidophthalimides displaying RGBY emission in the solid state. Tetrahedron Lett. 59, 388–391 (2018).

    Article  CAS  Google Scholar 

  60. Ma, Y., Yang, Y., Lan, R. & Li, Y. Effect of different substituted groups on excited-state intramolecular proton transfer of 1-(acylamino)-anthraquinons. J. Phys. Chem. C 121, 14779–14786 (2017).

    Article  CAS  Google Scholar 

  61. Zheng, D., Zhang, M. & Zhao, G. Combined TDDFT and AIM insights into photoinduced excited state intramolecular proton transfer (ESIPT) mechanism in hydroxyl- and amino-anthraquinone solution. Sci. Rep. 7, 13766 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Itoh, M. & Fujiwara, Y. Transient absorption and two-step laser excitation fluorescence studies of photoisomerization in 2-(2-hydroxyphenyl)benzoxazole and 2-(2-hydroxyphenyl)benzothiazole. J. Am. Chem. Soc. 107, 1561–1565 (1985).

    Article  CAS  Google Scholar 

  63. Becker, R. S., Lenoble, C. & Zein, A. Photophysics and photochemistry of the nitro derivatives of salicylideneaniline and 2-(2′-hydroxyphenyl)benzothiazole and solvent effects. J. Phys. Chem. 91, 3517–3524 (1987).

    Article  CAS  Google Scholar 

  64. Brewer, W. E., Martinez, M. L. & Chou, P. T. Mechanism of the ground-state reverse proton transfer of 2-(2-hydroxyphenyl)benzothiazole. J. Phys. Chem. 94, 1915–1918 (1990).

    Article  CAS  Google Scholar 

  65. Al-Soufi, W., Grellmann, K. H. & Nickel, B. Triplet state formation and cistrans isomerization in the excited singlet state of the keto tautomer of 2-(2′-hydroxyphenyl)benzothiazole. Chem. Phys. Lett. 174, 609–616 (1990).

    Article  CAS  Google Scholar 

  66. Chen, C.-L. et al. Insight into the amino-type excited-state intramolecular proton transfer cycle using N-tosyl derivatives of 2-(2′-aminophenyl)benzothiazole. J. Phys. Chem. A 120, 1020–1028 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Stasyuk, A. J., Chen, Y.-T., Chen, C.-L., Wu, P.-J. & Chou, P.-T. A new class of N–H excited-state intramolecular proton transfer (ESIPT) molecules bearing localized zwitterionic tautomers. Phys. Chem. Chem. Phys. 18, 24428–24436 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Tseng, H.-W. et al. A new class of N–H proton transfer molecules: wide tautomer emission tuning from 590 nm to 770 nm via a facile, single site amino derivatization in 10-aminobenzo[h]quinoline. Chem. Commun. 51, 16099–16102 (2015). This paper describes blue–near-infrared emission from N–H-type ESIPT fluorophores.

    Article  CAS  Google Scholar 

  69. Zhu, Q. et al. Theoretical insights into the excited-state intramolecular proton transfer (ESIPT) mechanism in a series of amino-type hydrogen-bonding dye molecules bearing the 10-aminobenzo[h]quinoline chromophore. Dyes Pigm. 141, 195–201 (2017).

    Article  CAS  Google Scholar 

  70. Demchenko, A. P. The concept of λ-ratiometry in fluorescence sensing and imaging. J. Fluoresc. 20, 1099–1128 (2010).

    Article  PubMed  Google Scholar 

  71. Demchenko, A. P. Visualization and sensing of intermolecular interactions with two-color fluorescent probes. FEBS Lett. 580, 2951–2957 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Shynkar, V. V., Klymchenko, A. S., Duportail, G., Demchenko, A. P. & Mély, Y. Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochim. Biophys. Acta 1712, 128–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Demchenko, A. P. Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 65, 157–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Pyrshev, K. A., Klymchenko, A. S., Csúcs, G. & Demchenko, A. P. Apoptosis and eryptosis: striking differences on biomembrane level. Biochim. Biophys. Acta 1860, 1362–1371 (2018).

    Article  CAS  Google Scholar 

  75. Liu, B.-Q. et al. Ethylene glycol modified 2-(2′-aminophenyl)benzothiazoles at the amino site: the excited-state N–H proton transfer reactions in aqueous solution, micelles and potential application in live-cell imaging. Methods Appl. Fluoresc. 4, 014004 (2016).

    Article  CAS  Google Scholar 

  76. Zhang, J. & Guo, W. A new fluorescent probe for gasotransmitter H2S: high sensitivity, excellent selectivity, and a significant fluorescence off–on response. Chem. Commun. 50, 4214–4217 (2014). This article discusses some potential applications of N–H ESIPT molecules.

    Article  CAS  Google Scholar 

  77. Sobolewski, A. L. Reversible molecular switch driven by excited-state hydrogen transfer. Phys. Chem. Chem. Phys. 10, 1243–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Lapinski, L., Nowak, M. J., Nowacki, J., Rode, M. F. & Sobolewski, A. L. A bistable molecular switch driven by photoinduced hydrogen-atom transfer. ChemPhysChem 10, 2290–2295 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Elsässer, T. & Van den Akker, H. Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase (Springer, 2002).

  80. Stephan, J. S., Rodríguez, C. R., Grellmann, K. H. & Zachariasse, K. A. Flash-photolysis of 2-(2′-hydroxyphenyl)-3-H-indole. Ground-state keto–enol tautomerization by mutual hydrogen exchange and by proton catalysis. Chem. Phys. 186, 435–446 (1994).

    Article  CAS  Google Scholar 

  81. Böhnke, H. et al. Ultrafast dynamics of the ESIPT photoswitch N-(3-pyridinyl)-2-pyridinecarboxamide. Phys. Chem. Chem. Phys. 20, 2646–2655 (2018).

    Article  PubMed  Google Scholar 

  82. Bahrenburg, J., Rode, M. F., Sobolewski, A. L. & Temps, F. in Ultrafast Phenomena XIX (eds Yamanouchi, Y. et al.) 399–402 (Springer International Publishing, Switzerland, 2015).

  83. Li, C., Xiao, P., Fang, W.-H. & Cui, G. Excited-state proton transfer induced [4 + 2] and [4 + 4] photocycloaddition reactions of an oxazoline: mechanism and selectivity. J. Photochem. Photobiol. A 355, 256–266 (2018).

    Article  CAS  Google Scholar 

  84. Mukhina, O. A. & Kutateladze, A. G. Oxazolines as dual-function traceless chromophores and chiral auxiliaries: enantioselective photoassisted synthesis of polyheterocyclic ketones. J. Am. Chem. Soc. 138, 2110–2113 (2016). This paper explains how we can exploit N–H ESIPT phenomena in synthetic chemistry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kumar, N. N. B., Mukhina, O. A. & Kutateladze, A. G. Photoassisted synthesis of enantiopure alkaloid mimics possessing unprecedented polyheterocyclic cores. J. Am. Chem. Soc. 135, 9608–9611 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Mukhina, O. A., Kuznetsov, D. M., Cowger, T. M. & Kutateladze, A. G. Amino azaxylylenes photogenerated from o-amido imines: photoassisted access to complex spiro-poly-heterocycles. Angew. Chem. Int. Ed. 54, 11516–11520 (2015).

    Article  CAS  Google Scholar 

  87. Kuznetsov, D. M. & Kutateladze, A. G. Step-economical photoassisted diversity-oriented synthesis: sustaining cascade photoreactions in oxalyl anilides to access complex polyheterocyclic molecular architectures. J. Am. Chem. Soc. 139, 16584–16590 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Strandjord, A. J. G. & Barbara, P. F. The proton-transfer kinetics of 3-hydroxyflavone: solvent effects. J. Phys. Chem. 89, 2355–2361 (1985).

    Article  CAS  Google Scholar 

  89. Das, R., Klymchenko, A. S., Duportail, G. & Mély, Y. Unusually slow proton transfer dynamics of a 3-hydroxychromone dye in protic solvents. Photochem. Photobiol. Sci. 8, 1583–1589 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Yushchenko, D. A. et al. Steric control of the excited-state intramolecular proton transfer in 3-hydroxyquinolones: steady-state and time-resolved fluorescence study. J. Phys. Chem. A 111, 8986–8992 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Ray, D., Pramanik, A. & Guchhait, N. Slow proton transfer dynamics of a four member intramolecular hydrogen bonded isoindole fused imidazole system: a spectroscopic approach to photophysical properties. J. Photochem. Photobiol. A 302, 42–50 (2015).

    Article  CAS  Google Scholar 

  92. Chou, P.-T. et al. Femtosecond dynamics on excited-state proton/charge-transfer reaction in 4′-N,N-diethylamino-3-hydroxyflavone. The role of dipolar vectors in constructing a rational mechanism. J. Phys. Chem. A 109, 3777–3787 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Takeuchi, S. & Tahara, T. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump–probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. J. Phys. Chem. A 109, 10199–10207 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

P.-T.C. and A.P.D. thank the Ministry of Science and Technology, Taiwan, for the financial support. A. Burger, V. Pivovarenko and M. Tukalo are acknowledged for reading the manuscript and making important comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the article, discussing the content and writing and editing of the article.

Corresponding authors

Correspondence to Alexander P. Demchenko or Pi-Tai Chou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CL., Chen, YT., Demchenko, A.P. et al. Amino proton donors in excited-state intramolecular proton-transfer reactions. Nat Rev Chem 2, 131–143 (2018). https://doi.org/10.1038/s41570-018-0020-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0020-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing