Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning

Abstract

More than 50 years have passed since Ziegler and Natta shared the Nobel Prize in Chemistry for their discovery of olefin polymerization catalysts. The field of metal-catalysed polymerization has since matured, in no small part owing to the development of several high-performance catalysts. Although polymerization research has in many ways been driven by catalyst development, this has often occurred as a result of trial and error discovery of a promising motif, followed by extensive tuning of the steric and electronic properties of the ligand(s) present in the lead complex. Recently, some alternative design strategies have emerged that afforded new classes of olefin polymerization catalysts. This Perspective highlights recently designed catalyst motifs and the novel reactivity patterns they enable. Special attention is given to methods specifically designed for the copolymerization of ethylene with polar-functionalized co-monomers — challenging reactions that showcase these creatively designed catalyst motifs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism for transition-metal-catalysed ethylene polymerization and copolymerization.
Fig. 2: Polymerization strategies making use of chain shuttling, phase transfer and metal–metal cooperativity.
Fig. 3: Chain-walking polymerization and copolymerization mediated by (α-diimine)methylpalladium complexes.
Fig. 4: Interactions between metal, ligand and substrate designed to overcome the polar monomer problem.
Fig. 5: Controlling the redox state of a catalyst can tune its olefin polymerization behaviour.

Similar content being viewed by others

References

  1. AlMaadeed, M. A.-A. & Krupa, I. Polyolefin Compounds and Materials (Springer, Heidelberg, 2016).

    Book  Google Scholar 

  2. Severn, J. R. & Chadwick, J. C. Tailor-Made Polymers (Wiley VCH, Weinheim, 2008).

    Book  Google Scholar 

  3. Sauter, D. W., Taoufik, M. & Boisson, C. Polyolefins, a success story. Polymers 9, 185 (2017).

    Article  Google Scholar 

  4. Sailors, H. R. & Hogan, J. P. History of polyolefins. J. Macromol. Sci. Part A Chem. 15, 1377–1402 (1981).

    Article  Google Scholar 

  5. Alt, H. G. & Köppl, A. Effect of the nature of metallocene complexes of group IV metals on their performance in catalytic ethylene and propylene polymerization. Chem. Rev. 100, 1205–1221 (2000).

    Article  CAS  Google Scholar 

  6. Coates, W. C. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 100, 1223–1252 (2000).

    Article  CAS  Google Scholar 

  7. Braunschweig, H. & Breitling, F. M. Constrained geometry complexes — synthesis and applications. Coord. Chem. Rev. 250, 2691–2720 (2006).

    Article  CAS  Google Scholar 

  8. Domski, G. J., Rose, J. M., Coates, G. W., Bolig, A. D. & Brookhart, M. Living alkene polymerization: new methods for the precision synthesis of polyolefins. Prog. Polym. Sci. 32, 30–92 (2007).

    Article  CAS  Google Scholar 

  9. Guan, Z. B. & Popeney, C. S. Recent progress in late transition metal α-diimine catalysts for olefin polymerization. Top. Organomet. Chem. 26, 179–220 (2009).

    Article  CAS  Google Scholar 

  10. Flisak, Z. & Sun, W.-H. Progression of diiminopyridines: from single application to catalytic versatility. ACS Catal. 5, 4713–4724 (2015).

    Article  CAS  Google Scholar 

  11. Makio, H., Terao, H., Iwashita, A. & Fujita, T. FI catalysts for olefin polymerization — a comprehensive treatment. Chem. Rev. 111, 2363–2449 (2011).

    Article  CAS  Google Scholar 

  12. Collins, R. A., Russell, A. F. & Mountford, P. Group 4 metal complexes for homogeneous olefin polymerisation: a short tutorial review. Appl. Petrochem. Res. 5, 153–171 (2015).

    Article  CAS  Google Scholar 

  13. Gibson, V. C. & Solan, G. A. Iron-based and cobalt-based olefin polymerisation catalysts. Top. Organomet. Chem. 26, 107–158 (2009).

    Article  CAS  Google Scholar 

  14. Mu, H., Pan, L., Song, D. & Li, Y. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev. 115, 12091–12137 (2015).

    Article  CAS  Google Scholar 

  15. Wei, Y., Wang, S. & Zhou, S. Aluminum alkyl complexes: synthesis, structure, and application in ROP of cyclic esters. Dalton Trans. 45, 4471–4485 (2016).

    Article  CAS  Google Scholar 

  16. Pintauer, T. & Matyjaszewski, K. Structural and mechanistic aspects of copper catalyzed atom transfer radical polymerization. Top. Organomet. Chem. 26, 221–251 (2009).

    Article  CAS  Google Scholar 

  17. Kim, J. & Hong, S. H. Ligand-promoted direct C–H arylation of simple arenes: evidence for a cooperative bimetallic mechanism. ACS Catal. 7, 3336–3343 (2017).

    Article  CAS  Google Scholar 

  18. Obligacion, J. V. & Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2, 0149 (2018).

    Article  Google Scholar 

  19. Tondreau, A. M. et al. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 335, 567–570 (2012).

    Article  CAS  Google Scholar 

  20. Paul, J. C. Carbon–carbon bond formation in a weak ligand field: leveraging open-shell first-row transition-metal catalysts. Angew. Chem. Int. Ed. 56, 5170–5181 (2017).

    Article  Google Scholar 

  21. Hoyt, J. M., Schmidt, V. A., Tondreau, A. M. & Chirik, P. J. Iron-catalyzed intermolecular [2 + 2] cycloadditions of unactivated alkenes. Science 349, 960–963 (2015).

    Article  CAS  Google Scholar 

  22. Busico, V. Ziegler–Natta catalysis: forever young. MRS Bull. 38, 224–228 (2013).

    Google Scholar 

  23. Spaleck, W. et al. The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts. Organometallics 13, 954–963 (1994).

    Article  CAS  Google Scholar 

  24. Boffa, L. S. & Novak, B. M. Copolymerization of polar monomers with olefins using transition-metal complexes. Chem. Rev. 100, 1479–1494 (2000).

    Article  CAS  Google Scholar 

  25. Franssen, N. M. G., Reek, J. N. H. & de Bruin, B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem. Soc. Rev. 42, 5809–5832 (2013).

    Article  CAS  Google Scholar 

  26. Nakamura, A., Ito, S. & Nozaki, K. Coordination–insertion copolymerization of fundamental polar monomers. Chem. Rev. 109, 5215–5244 (2009).

    Article  CAS  Google Scholar 

  27. Chen, E. Y.-X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem. Rev. 109, 5157–5214 (2009).

    Article  CAS  Google Scholar 

  28. Gladysz, J. A. et al. Organometallics roundtable 2011. Organometallics 31, 1–18 (2012).

    CAS  Google Scholar 

  29. Arriola, D. J., Carnahan, E. M., Hustad, P. D., Kuhlman, R. L. & Wenzel, T. T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 312, 714–719 (2006).

    Article  CAS  Google Scholar 

  30. Hustad, P. D. Frontiers in olefin polymerization: reinventing the world’s most common synthetic polymers. Science 325, 704–707 (2009).

    Article  CAS  Google Scholar 

  31. Pan, L., Zhang, K., Nishiura, M. & Hou, Z. Chain-shuttling polymerization at two different scandium sites: regio- and stereospecific “one-pot” block copolymerization of styrene, isoprene, and butadiene. Angew. Chem. Int. Ed. 50, 12012–12015 (2011).

    Article  CAS  Google Scholar 

  32. Chen, E. Y.-X. & Marks, T. J. Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure–activity relationships. Chem. Rev. 100, 1391–1434 (2000).

    Article  CAS  Google Scholar 

  33. Younkin, T. R. et al. Neutral, single-component nickel(ii) polyolefin catalysts that tolerate heteroatoms. Science 287, 460–462 (2000).

    Article  CAS  Google Scholar 

  34. Xi, Z., Bazzi, H. S. & Gladysz, J. A. Activation of single-component nickel(ii) polyethylene catalysts via phase transfer of fluorous phosphine ligands. J. Am. Chem. Soc. 137, 10930–10933 (2015).

    Article  CAS  Google Scholar 

  35. da Costa, R. C. & Gladysz, J. A. Fluorous phase transfer activation of catalysts: application of a new rate-enhancement strategy to alkene metathesis. Chem. Commun. 42, 2619–2621 (2006).

  36. Delferro, M. & Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 111, 2450–2485 (2011).

    Article  CAS  Google Scholar 

  37. Takeuchi, D., Chiba, Y., Takano, S. & Osakada, K. Double-decker-type dinuclear nickel catalyst for olefin polymerization: efficient incorporation of functional co-monomers. Angew. Chem. Int. Ed. 52, 12536–12540 (2013).

    Article  CAS  Google Scholar 

  38. Takano, S., Takeuchi, D., Osakada, K., Akamatsu, N. & Shishido, A. Dipalladium catalyst for olefin polymerization: introduction of acrylate units into the main chain of branched polyethylene. Angew. Chem. Int. Ed. 53, 9246–9250 (2014).

    Article  CAS  Google Scholar 

  39. Radlauer, M. R., Buckley, A. K., Henling, L. M. & Agapie, T. Bimetallic coordination insertion polymerization of unprotected polar monomers: copolymerization of amino olefins and ethylene by dinickel bisphenoxyiminato catalysts. J. Am. Chem. Soc. 135, 3784–3787 (2013).

    Article  CAS  Google Scholar 

  40. Johnson, L. K., Killian, C. M. & Brookhart, M. New Pd(ii)- and Ni(ii)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc. 117, 6414–6415 (1995).

    Article  CAS  Google Scholar 

  41. Johnson, L. K., Mecking, S. & Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(ii) catalysts. J. Am. Chem. Soc. 118, 267–268 (1996).

    Article  CAS  Google Scholar 

  42. Juliá-Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017).

    Article  Google Scholar 

  43. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  CAS  Google Scholar 

  44. Camacho, D. H. & Guan, Z. Designing late-transition metal catalysts for olefin insertion polymerization and copolymerization. Chem. Commun. 46, 7879–7893 (2010).

    Article  CAS  Google Scholar 

  45. Dong, Z. & Ye, Z. Hyperbranched polyethylenes by chain walking polymerization: synthesis, properties, functionalization, and applications. Polym. Chem. 3, 286–301 (2012).

    Article  CAS  Google Scholar 

  46. Guo, L. & Chen, C. (α-Diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers. Sci. China Chem. 58, 1663–1673 (2015).

    Article  CAS  Google Scholar 

  47. Chen, Z., Liu, W., Daugulis, O. & Brookhart, M. Mechanistic studies of Pd(ii)-catalyzed copolymerization of ethylene and vinylalkoxysilanes: evidence for a β-silyl elimination chain transfer mechanism. J. Am. Chem. Soc. 138, 16120–16129 (2016).

    Article  CAS  Google Scholar 

  48. Guo, L., Dai, S., Sui, X. & Chen, C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal. 6, 428–441 (2016).

    Article  CAS  Google Scholar 

  49. Guo, L., Liu, W. & Chen, C. Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Mater. Chem. Front. 1, 2487–2494 (2017).

    Article  CAS  Google Scholar 

  50. Nakamura, A. et al. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination–insertion copolymerization of polar vinyl monomers. Acc. Chem. Res. 46, 1438–1449 (2013).

    Article  CAS  Google Scholar 

  51. Williams, B. S., Leatherman, M. D., White, P. S. & Brookhart, M. Reactions of vinyl acetate and vinyl trifluoroacetate with cationic diimine Pd(ii) and Ni(ii) alkyl complexes: identification of problems connected with copolymerizations of these monomers with ethylene. J. Am. Chem. Soc. 127, 5132–5146 (2005).

    Article  CAS  Google Scholar 

  52. Chen, C. & Jordan, R. F. Palladium-catalyzed dimerization of vinyl ethers to acetals. J. Am. Chem. Soc. 132, 10254–10255 (2010).

    Article  CAS  Google Scholar 

  53. Chen, C., Luo, S. & Jordan, R. F. Cationic polymerization and insertion chemistry in the reactions of vinyl ethers with (α-diimine)PdMe+ species. J. Am. Chem. Soc. 132, 5273–5284 (2010).

    Article  CAS  Google Scholar 

  54. Chen, C., Luo, S. & Jordan, R. F. Multiple insertion of a silyl vinyl ether by (α-diimine)PdMe+ species. J. Am. Chem. Soc. 130, 12892–12893 (2008).

    Article  CAS  Google Scholar 

  55. Kang, M., Sen, A., Zakharov, L. & Rheingold, A. L. Diametrically opposite trends in alkene insertion in late and early transition metal compounds: relevance to transition-metal-catalyzed polymerization of polar vinyl monomers. J. Am. Chem. Soc. 124, 12080–12081 (2002).

    Article  CAS  Google Scholar 

  56. Foley, S. R., Stockland, R. A., Shen, H. & Jordan, R. F. Reaction of vinyl chloride with late transition metal olefin polymerization catalysts. J. Am. Chem. Soc. 125, 4350–4361 (2003).

    Article  CAS  Google Scholar 

  57. Li, S. & Ye, Z. Synthesis of narrowly distributed ω-telechelic hyperbranched polyethylenes by efficient end-capping of Pd-diimine-catalyzed ethylene “living” polymerization with styrene derivatives. Macromol. Chem. Phys. 211, 1917–1924 (2010).

    Article  CAS  Google Scholar 

  58. Dai, S., Sui, X. & Chen, C. Highly robust palladium(ii) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed. 54, 9948–9953 (2015).

    Article  CAS  Google Scholar 

  59. Dai, S. & Chen, C. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. Int. Ed. 55, 13281–13285 (2016).

    Article  CAS  Google Scholar 

  60. Dai, S., Zhou, S., Zhang, W. & Chen, C. Systematic investigations of ligand steric effects on α-diimine palladium catalyzed olefin polymerization and copolymerization. Macromolecules 49, 8855–8862 (2016).

    Article  CAS  Google Scholar 

  61. Iwashita, A., Chan, M. C. W., Makio, H. & Fujita, T. Attractive interactions in olefin polymerization mediated by post-metallocene catalysts with fluorine-containing ancillary ligands. Catal. Sci. Technol. 4, 599–610 (2014).

    Article  CAS  Google Scholar 

  62. Weberski, M. P. et al. Suppression of β-hydride chain transfer in nickel(ii)-catalyzed ethylene polymerization via weak fluorocarbon ligand–product interactions. Organometallics 31, 3773–3789 (2012).

    Article  CAS  Google Scholar 

  63. Stephenson, C. J. et al. Ni(ii) phenoxyiminato olefin polymerization catalysis: striking coordinative modulation of hyperbranched polymer microstructure and stability by a proximate sulfonyl group. ACS Catal. 4, 999–1003 (2014).

    Article  CAS  Google Scholar 

  64. Popeney, C. S., Rheingold, A. L. & Guan, Z. Nickel(ii) and palladium(ii) polymerization catalysts bearing a fluorinated cyclophane ligand: stabilization of the reactive intermediate. Organometallics 28, 4452–4463 (2009).

    Article  CAS  Google Scholar 

  65. Bryliakov, K. P., Talsi, E. P., Möller, H. M., Baier, M. C. & Mecking, S. Noncovalent interactions in o-fluorinated post-titanocene living ethylene polymerization catalyst. Organometallics 29, 4428–4430 (2010).

    Article  CAS  Google Scholar 

  66. Li, M., Wang, X., Luo, Y. & Chen, C. A second-coordination-sphere strategy to modulate nickel- and palladium-catalyzed olefin polymerization and copolymerization. Angew. Chem. Int. Ed. 56, 11604–11609 (2017).

    Article  CAS  Google Scholar 

  67. Zhang, D. & Chen, C. Influence of polyethylene glycol unit on palladium- and nickel-catalyzed ethylene polymerization and copolymerization. Angew. Chem. Int. Ed. 56, 14672–14676 (2017).

    Article  CAS  Google Scholar 

  68. Liu, D. et al. Highly isoselective coordination polymerization of ortho-methoxystyrene with β-diketiminato rare-earth-metal precursors. Angew. Chem. Int. Ed. 54, 5205–5209 (2015).

    Article  CAS  Google Scholar 

  69. Liu, D. et al. Stereoselective copolymerization of unprotected polar and nonpolar styrenes by an yttrium precursor: control of polar-group distribution and mechanism. Angew. Chem. Int. Ed. 56, 2714–2719 (2017).

    Article  CAS  Google Scholar 

  70. Leicht, H., Göttker-Schnetmann, I. & Mecking, S. Synergetic effect of monomer functional group coordination in catalytic insertion polymerization. J. Am. Chem. Soc. 139, 6823–6826 (2017).

    Article  CAS  Google Scholar 

  71. Wang, C. et al. Heteroatom-assisted olefin polymerization by rare-earth metal catalysts. Sci. Adv. 3, e1701011 (2017).

    Article  Google Scholar 

  72. Leibfarth, F. A., Mattson, K. M., Fors, B. P., Collins, H. A. & Hawker, C. J. External regulation of controlled polymerizations. Angew. Chem. Int. Ed. 52, 199–210 (2013).

    Article  CAS  Google Scholar 

  73. Teator, A. J., Lastovickova, D. N. & Bielawski, C. W. Switchable polymerization catalysts. Chem. Rev. 116, 1969–1992 (2016).

    Article  CAS  Google Scholar 

  74. Yoon, H. J., Kuwabara, J., Kim, J.-H. & Mirkin, C. A. Allosteric supramolecular triple-layer catalysts. Science 330, 66–69 (2010).

    Article  CAS  Google Scholar 

  75. Magenau, A. J. D., Strandwitz, N. C., Gennaro, A. & Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 332, 81–84 (2011).

    Article  CAS  Google Scholar 

  76. Theriot, J. C. et al. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 352, 1082–1086 (2016).

    Article  CAS  Google Scholar 

  77. Gregson, C. K. A. et al. Redox control within single-site polymerization catalysts. J. Am. Chem. Soc. 128, 7410–7411 (2006).

    Article  CAS  Google Scholar 

  78. Wang, X. et al. Redox control of group 4 metal ring-opening polymerization activity toward l-lactide and ε-caprolactone. J. Am. Chem. Soc. 136, 11264–11267 (2014).

    Article  CAS  Google Scholar 

  79. Biernesser, A. B., Chiaie, K. R. D., Curley, J. B. & Byers, J. A. Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst. Angew. Chem. Int. Ed. 55, 5251–5254 (2016).

    Article  CAS  Google Scholar 

  80. Savka, R., Foro, S., Gallei, M., Rehahn, M. & Plenio, H. Oxidation-triggered ring-opening metathesis polymerization. Chem. Eur. J. 19, 10655–10662 (2013).

    Article  CAS  Google Scholar 

  81. Varnado Jr., C. D., Rosen, E. L., Collins, M. S., Lynch, V. M. & Bielawski, C. W. Synthesis and study of olefin metathesis catalysts supported by redox-switchable diaminocarbene[3]ferrocenophanes. Dalton Trans. 42, 13251–13264 (2013).

    Article  CAS  Google Scholar 

  82. Teator, A. J. & Bielawski, C. W. Remote control grubbs catalysts that modulate ring-opening metathesis polymerizations. J. Poly. Sci. A Poly. Chem. 55, 2949–2960 (2017).

    Article  CAS  Google Scholar 

  83. Gibson, V. C., Long, N. J., Oxford, P. J., White, A. J. P. & Williams, D. J. Ferrocene-substituted bis-(imino)pyridine iron and cobalt complexes: toward redox-active catalysts for the polymerization of ethylene. Organometallics 25, 1932–1939 (2006).

    Article  CAS  Google Scholar 

  84. Chen, M., Yang, B. & Chen, C. Redox-controlled olefin (co)polymerization catalyzed by ferrocene bridged phosphine-sulfonate palladium complexes. Angew. Chem. Int. Ed. 54, 15520–15524 (2015).

    Article  CAS  Google Scholar 

  85. Zhao, M. & Chen, C. Accessing multiple catalytically active states in redox controlled olefin polymerization. ACS Catal. 7, 7490–7494 (2017).

    Article  CAS  Google Scholar 

  86. Anderson Jr., W. C., Rhinehart, J. L., Tennyson, A. G. & Long, B. K. Redox-active ligands: an advanced tool to modulate polyethylene microstructure. J. Am. Chem. Soc. 138, 774–777 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 51522306 and 21690071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changle Chen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat Rev Chem 2, 6–14 (2018). https://doi.org/10.1038/s41570-018-0003-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0003-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing