Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

New avenues for the large-scale harvesting of blue energy

Abstract

Salinity gradients have been identified as promising clean, renewable and non-intermittent sources of energy — so-called blue energy. However, the low efficiency of current harvesting technologies is a major limitation for large-scale viability and is mostly due to the low performances of the membrane processes currently in use. Advances in materials fabrication with dedicated chemical properties can resolve this bottleneck and lead to a new class of membranes for blue-energy conversion. In this Perspective, we briefly present current technologies for the conversion of blue energy, describe their performances and note their limitations. We then discuss new avenues for the development of a new class of membranes, combining considerations in nanoscale fluid dynamics and surface chemistry. Finally, we discuss how new functionalities originating from the exotic behaviour of fluids in the nanoscale regime can further boost energy conversion, making osmotic energy a tangible, clean alternative.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Osmotic energy conversion power plant.
Figure 2: Diffusio-osmotic process for osmotic energy conversion.
Figure 3: Material structures for new membranes.
Figure 4: Asymmetric membranes.

Similar content being viewed by others

References

  1. Chu, S. & Majumder, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  2. Daw, R., Finkelstein, J. & Helmer, M. Chemisty and energy. Nature 488, 293 (2012).

    Article  CAS  Google Scholar 

  3. Graetzel, M., Janssen, R. A., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012).

    Article  CAS  Google Scholar 

  4. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  Google Scholar 

  5. Yip, N. Y. & Elimelech, M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 46, 5230–5239 (2012).

    Article  CAS  Google Scholar 

  6. British Petroleum. Statistical review of world energy. British Petroleumhttps://www.bp.com/content/dam/bp-country/de_de/PDFs/brochures/statistical_review_of_world_energy_full_report_2011.pdf (2011).

  7. Wang, X. et al. Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability. Proc. Natl Acad. Sci. USA 112, 1630–1635 (2015).

    Article  CAS  Google Scholar 

  8. Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D. & Abad, J. D. Impact of shale gas development on regional water quality. Science 340, 1235009 (2013).

    Article  CAS  Google Scholar 

  9. Shaffer, D. L. et al. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol. 47, 9569–9583 (2013).

    Article  CAS  Google Scholar 

  10. Gregory, K. B., Vidic, R. D. & Dzombak, D. A. Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7, 181–186 (2011).

    Article  Google Scholar 

  11. Chou, S. et al. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. J. Membr. Sci. 389, 25–33 (2012).

    Article  CAS  Google Scholar 

  12. Lee, K. P., Arnot, T. C. & Mattia, D. A review of reverse osmosis membrane materials for desalination — development to date and future potential. J. Membr. Sci. 370, 1–22 (2011).

    Article  CAS  Google Scholar 

  13. Post, J. W., Hamelers, H. V. & Buisman, C. J. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ. Sci. Technol. 42, 5785–5790 (2008).

    Article  CAS  Google Scholar 

  14. Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Environ. Sci. Technol. 44, 9207–9212 (2010).

    Article  CAS  Google Scholar 

  15. Nijmeijer, K. & Metz, S. in Sustainability Science and Engineering Vol. 2 Ch. 5 (eds Escobar, I. C. & Schafer, A. I. ) (Elsevier, 2010).

    Google Scholar 

  16. Gerstandt, K., Peinemann, K. V., Skilhagen, S. E., Thorsen, T. & Holt, T. Membrane processes in energy supply for an osmotic power plant. Desalination 224, 64–70 (2008).

    Article  CAS  Google Scholar 

  17. Skilhagen, S. E. Osmotic power — a new, renewable energy source. Desalin. Water Treat. 15, 271–278 (2010).

    Article  Google Scholar 

  18. Kim, D., Duan, C., Chen, Y. & Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 9, 1215–1224 (2010).

    Article  CAS  Google Scholar 

  19. Porada, S. et al. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. J. Mater. Chem. A 24, 9313–9321 (2014).

    Article  Google Scholar 

  20. Straub, A. P., Deshmukh, A. & Elimelech, M. Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energy Environ. Sci. 9, 31–48 (2016).

    Article  CAS  Google Scholar 

  21. Siria, A. et al. Giant osmotic energy conversion measure in individual transmembrane boron nitride nanotubes. Nature 494, 455–458 (2013).

    Article  CAS  Google Scholar 

  22. Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    Article  CAS  Google Scholar 

  23. Walker, M. I. Extrinsic cation selectivity of 2D membranes. ACS Nano 11, 1340–1346 (2017).

    Article  CAS  Google Scholar 

  24. Fair, J. C. & Osterle, J. F. Reverse electrodialysis in charged capillary membranes. J. Chem. Phys. 54, 3307–3316 (1971).

    Article  CAS  Google Scholar 

  25. Anderson, J. L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 61–99 (1989).

    Article  Google Scholar 

  26. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    Article  CAS  Google Scholar 

  27. Ajdari, A. & Bocquet, L. Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys. Rev. Lett. 96, 186102 (2006).

    Article  Google Scholar 

  28. Lee, C. et al. Osmotic flow through fully permeable nanochannels. Phys. Rev. Lett. 112, 244501 (2014).

    Article  CAS  Google Scholar 

  29. Bechelany, M. et al. Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process. J. Phys. Chem. C 111, 13378–13384 (2007).

    Article  CAS  Google Scholar 

  30. Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289–292 (2014).

    Article  CAS  Google Scholar 

  31. O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    Article  Google Scholar 

  32. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol 10, 459–464 (2015).

    Article  CAS  Google Scholar 

  33. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  34. Yoshida, H. & Bocquet, L. Labyrinthine water flow across multilayer graphene-based membranes: molecular dynamics versus continuum predictions. J. Chem. Phys. 144, 234701 (2016).

    Article  Google Scholar 

  35. Majumder, M., Siria, A. & Bocquet, L. Flows in one-dimensional and two-dimensional carbon nanochannels: fast and curious. MRS Bull. 42, 278–282 (2017).

    Article  CAS  Google Scholar 

  36. Secchi, E., et al. Massive radius-dependent flow slippage in single carbon nanotubes. Nature 537, 210–213 (2016).

    Article  CAS  Google Scholar 

  37. Rankin, D. J. & Huang, D. M. The effect of hydrodynamic slip on membrane-based salinity-gradient-driven energy harvesting. Langmuir 32, 3420–3432 (2016).

    Article  CAS  Google Scholar 

  38. Grosjean, B. et al. Chemisorption of hydroxide on 2D materials from DFT calculations: graphene versus hexagonal boron nitride. J. Phys. Chem. Lett. 7, 4695–4700 (2016).

    Article  CAS  Google Scholar 

  39. Bonthuis, D. & Netz, R. R. Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity. Langmuir 28, 16049–16059 (2012).

    Article  CAS  Google Scholar 

  40. Prakash, S. & Karacor, M. B. & Banerjee, S. Surface modification in microsystems and nanosystems. Surf. Sci. Rep. 64, 233–254 (2009).

    Article  CAS  Google Scholar 

  41. Fuest, M., Rangharajan, K. K., Boone, C., Conlisk, A. T. & Prakash, S. Cation dependent surface charge regulation in gated nanofluidic devices. Anal. Chem. 89, 1593–1601 (2017).

    Article  CAS  Google Scholar 

  42. Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    Article  CAS  Google Scholar 

  43. Guo, W. et al. Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010).

    Article  CAS  Google Scholar 

  44. Costa, R. R. & Mano, J. F. Polyelectrolyte multilayered assemblies in biomedical technologies. Chem. Soc. Rev. 43, 3453–3479 (2014).

    Article  CAS  Google Scholar 

  45. Tocci, G. Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures,. Nano Lett. 14, 6872–6877 (2014).

    Article  CAS  Google Scholar 

  46. Sulpizi, M. & Sprik, M. Acidity constants from vertical energy gaps: density functional theory based molecular dynamics implementation. Phys. Chem. Chem. Phys. 10, 5238–5249 (2008).

    Article  CAS  Google Scholar 

  47. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  Google Scholar 

  48. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. . Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  52. Zhang, Z. et al. Engineered asymmetric heterogeneous membrance: a concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 137, 14765–14772 (2015).

    Article  CAS  Google Scholar 

  53. Schasfoort, R. B., Schlautmann, S., Hendrikse, J. & van den Berg, A. Field-effect flow control for microfabricated fluidic networks. Science 286, 942–945 (1999).

    Article  CAS  Google Scholar 

  54. Karnik, R. et al. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5, 943–948 (2005).

    Article  CAS  Google Scholar 

  55. Karnik, R. et al. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

    Article  CAS  Google Scholar 

  56. Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

    Article  CAS  Google Scholar 

  57. Siwy, Z., Kosinska, I. D., Fulinski, A. & Martin, C. R. Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 94, 048102 (2005).

    Article  CAS  Google Scholar 

  58. Picallo, C. B., Gravelle, S., Joly, L., Charlaix, E. & Bocquet, L. Nanofluidic osmotic diodes: theory and molecular dynamics simulations. Phys. Rev. Lett. 111, 244501 (2013).

    Article  Google Scholar 

  59. Kittel, C. Introduction to Solid State Physics 5th edn (Wiley, 1976).

    Google Scholar 

  60. Andelman, D. in Handbook of Biological Physics Vol. 1 Ch. 12 (eds Lipowsky, R. & Sackmann, E. ) (Elsevier, 1995).

    Google Scholar 

  61. Biance, A.-L. & Bocquet, L. Une Energie en osmose avec l’avenir. La Recherche Magazine (Dec 2013).

    Google Scholar 

Download references

Acknowledgements

A.S. acknowledges funding from the European Union's Horizon 2020 Framework Programme/European Research Council (ERC) Starting Grant agreement number 637748 — NanoSOFT. L.B. acknowledges support from the European Union's FP7 Framework Programme/ERC Advanced Grant Micromegas and funding from a Paris Sciences et Lettres (PSL) chair of excellence. All authors acknowledge funding from the Agence Nationale de la Recherche (ANR) project BlueEnergy.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Alessandro Siria, Marie-Laure Bocquet or Lydéric Bocquet.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Bjerrum length

The distance at which the magnitude of the electrostatic interaction between two charged particles is comparable to their thermal energy.

Plug-like profile

The velocity profile of a fluid flowing in a pipe under interfacially driven flows (for example, electro-osmosis or diffusio-osmosis). A plug flow is characterized by a constant flux velocity across any cross section of the pipe perpendicular to the direction of the flow, except within the first few nanometres from the surface.

Shockley diode

A semiconductor device based on several layers of p-doped and n-doped regions. In the original realization, the diode is a p–n diode.

Zeta potential

The electric potential at the interfacial double layer, usually defined at the location of the slipping plane (typically within a molecular distance from the bare surface). The zeta potential is measured by electro-osmotic or streaming current measurements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siria, A., Bocquet, ML. & Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat Rev Chem 1, 0091 (2017). https://doi.org/10.1038/s41570-017-0091

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing