Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Stereospecific and stereoconvergent cross-couplings between alkyl electrophiles

Abstract

The development of metal-catalysed cross-coupling reactions between one electrophilic and one organometallic nucleophilic partner has revolutionized the practice of chemical synthesis, with coupling reactions between sp2 centres now commonplace in both academic and industrial research. Methods to allow coupling of sp3 centres are rapidly being developed, with many recent advances even enabling control of the absolute configuration of newly formed stereogenic centres. The related cross-electrophile couplings have not been developed as thoroughly owing to the challenge of obtaining cross-selectivity between two substrates with similar reactivity. However, the discovery of improved methods to address this challenge has led to significant recent progress. The development of enantioselective cross-electrophile coupling reactions is an emerging area of research. Both stereoconvergent and stereospecific variants have been reported for the synthesis of a range of products containing tertiary stereogenic centres. Many of these transformations build on lessons learnt from traditional (electrophile–nucleophile) cross-couplings of alkyl electrophiles. For example, all enantioselective transformations described to date use a nickel catalyst. Continued progression is likely to provide strategic disconnections for asymmetric synthesis of natural products and medicinal agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variations of cross-coupling reactions.
Figure 2: Typical catalytic cycles for cross-coupling and cross-electrophile coupling reactions.
Figure 3: Radical oxidative addition.
Figure 4: Polar oxidative addition.

Similar content being viewed by others

References

  1. de Meijere, A. & Diederich, F. (eds) Metal-Catalyzed Cross-coupling Reactions 2nd edn (Wiley, 2004).

    Book  Google Scholar 

  2. Hartwig, J. Organotransition Metal Chemistry 1st edn (Univ. Sci. Books, 2009).

    Google Scholar 

  3. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  Google Scholar 

  4. Knappke, C. E. I. et al. Reductive cross-coupling reactions between two electrophiles. Chem. Eur. J. 20, 6828–6842 (2014).

    Article  CAS  Google Scholar 

  5. Wang, X., Dai, Y. & Gong, H. Nickel-catalyzed reductive couplings. Top. Curr. Chem. 374, 43 (2016).

    Article  Google Scholar 

  6. Gu, J., Wang, X., Xue, W. & Gong, H. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations. Org. Chem. Front. 2, 1411–1421 (2015).

    Article  CAS  Google Scholar 

  7. Moragas, T., Correa, A. & Martin, R. Metal-catalyzed reductive coupling reactions of organic halides with carbonyl-type compounds. Chem. Eur. J. 20, 8242–8258 (2014).

    Article  CAS  Google Scholar 

  8. Zuo, Z. et al. Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J. Am. Chem. Soc. 138, 1832–1835 (2016).

    Article  CAS  Google Scholar 

  9. Suzuki, N., Hofstra, J. L., Poremba, K. E. & Reisman, S. E. Nickel-catalyzed enantioselective cross-coupling of N-hydroxyphthalimide esters with vinyl bromides. Org. Lett. 19, 2150–2153 (2017).

    Article  CAS  Google Scholar 

  10. Liu, J. et al. Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides. Chem. Eur. J. 20, 15334–15338 (2014).

    Article  CAS  Google Scholar 

  11. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  Google Scholar 

  12. Rosen, B. M. et al. Nickel-catalyzed cross-couplings involving carbon–oxygen bonds. Chem. Rev. 111, 1346–1416 (2011).

    Article  CAS  Google Scholar 

  13. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  CAS  Google Scholar 

  14. Schley, N. D. & Fu, G. C. Nickel-catalyzed Negishi arylations of propargylic bromides: a mechanistic investigation. J. Am. Chem. Soc. 136, 16588–16593 (2014).

    Article  CAS  Google Scholar 

  15. Colon, I. & Kelsey, D. R. Coupling of aryl chlorides by nickel and reducing metals. J. Org. Chem. 51, 2627–2637 (1986).

    Article  CAS  Google Scholar 

  16. Amatore, C. & Jutand, A. Rates and mechanism of biphenyl synthesis catalyzed by electrogenerated coordinatively unsaturated nickel complexes. Organometallics 7, 2203–2214 (1988).

    Article  CAS  Google Scholar 

  17. Hegedus, L. S. & Miller, L. L. Reaction of π-allylnickel bromide complexes with organic halides. Stereochemistry and mechanism. J. Am. Chem. Soc. 97, 459–460 (1975).

    Article  CAS  Google Scholar 

  18. Tsou, T. T. & Kochi, J. K. Mechanism of biaryl synthesis with nickel complexes. J. Am. Chem. Soc. 101, 7547–7560 (1979).

    Article  CAS  Google Scholar 

  19. Biswas, S. & Weix, D. J. Mechanism and selectivity in nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides. J. Am. Chem. Soc. 135, 16192–16197 (2013).

    Article  CAS  Google Scholar 

  20. Everson, D. A., Jones, B. A. & Weix, D. J. Replacing conventional carbon nucleophiles with electrophiles: nickel-catalyzed reductive alkylation of aryl bromides and chlorides. J. Am. Chem. Soc. 134, 6146–6159 (2012).

    Article  CAS  Google Scholar 

  21. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  CAS  Google Scholar 

  22. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    Article  CAS  Google Scholar 

  23. Kadunce, N. T. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling between heteroaryl iodides and α-chloronitriles. J. Am. Chem. Soc. 137, 10480–10483 (2015).

    Article  CAS  Google Scholar 

  24. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  Google Scholar 

  25. Fischer, C. & Fu, G. C. Asymmetric nickel-catalyzed Negishi cross-couplings of secondary α-bromo amides with organozinc reagents. J. Am. Chem. Soc. 127, 4594–4595 (2005).

    Article  CAS  Google Scholar 

  26. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    Article  CAS  Google Scholar 

  27. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Catalytic asymmetric reductive acyl cross-coupling: synthesis of enantioenriched acyclic α,α-disubstituted ketones. J. Am. Chem. Soc. 135, 7442–7445 (2013).

    Article  CAS  Google Scholar 

  28. Cherney, A. H. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling between vinyl and benzyl electrophiles. J. Am. Chem. Soc. 136, 14365–14368 (2014).

    Article  CAS  Google Scholar 

  29. Poremba, K. E., Kadunce, N. T., Suzuki, N., Cherney, A. H. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling to access 1,1-diarylalkanes. J. Am. Chem. Soc. 139, 5684–5687 (2017).

    Article  CAS  Google Scholar 

  30. Ackerman, L. K. G., Anka-Lufford, L. L., Naodovic, M. & Weix, D. J. Cobalt co-catalysis for cross-electrophile coupling: diarylmethanes from benzyl mesylates and aryl halides. Chem. Sci. 6, 1115–1119 (2015).

    Article  CAS  Google Scholar 

  31. Zhao, Y. & Weix, D. J. Enantioselective cross-coupling of meso-epoxides with aryl halides. J. Am. Chem. Soc. 137, 3237–3240 (2015).

    Article  CAS  Google Scholar 

  32. Woods, B. P., Orlandi, M., Huang, C., Sigman, M. S. & Doyle, A. G. Nickel-catalyzed enantioselective reductive cross-coupling of styrenyl aziridines. J. Am. Chem. Soc. 139, 5688–5691 (2017).

    Article  CAS  Google Scholar 

  33. Tollefson, E. J., Hanna, L. E. & Jarvo, E. R. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters. Acc. Chem. Res. 48, 2344–2353 (2015).

    Article  CAS  Google Scholar 

  34. Tollefson, E. J., Erickson, L. W. & Jarvo, E. R. Stereospecific intramolecular reductive cross-electrophile coupling reactions for cyclopropane synthesis. J. Am. Chem. Soc. 137, 9760–9763 (2015).

    Article  CAS  Google Scholar 

  35. Erickson, L. W., Lucas, E. L., Tollefson, E. J. & Jarvo, E. R. Nickel-catalyzed cross-electrophile coupling of alkyl fluorides: stereospecific synthesis of vinylcyclopropanes. J. Am. Chem. Soc. 138, 14006–14011 (2016).

    Article  CAS  Google Scholar 

  36. LaBerge, N. A. & Love, J. A. Activation and formation of aromatic C–F bonds. Top. Organomet. Chem. 52, 55–112 (2015).

    Article  CAS  Google Scholar 

  37. Shen, Q. et al. Review of recent advances in C–F bond activation of aliphatic fluorides. J. Fluorine Chem. 179, 14–22 (2015).

    Article  CAS  Google Scholar 

  38. Stahl, T., Klare, H. F. T. & Oestreich, M. Main-group Lewis acids for C–F bond activation. ACS Catal. 3, 1578–1587 (2013).

    Article  CAS  Google Scholar 

  39. Konev, M. O., Hanna, L. E. & Jarvo, E. R. Intra- and intermolecular nickel-catalyzed reductive cross-electrophile coupling reactions of benzylic esters with aryl halides. Angew. Chem. Int. Ed. 55, 6730–6733 (2016).

    Article  CAS  Google Scholar 

  40. Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    Article  CAS  Google Scholar 

  41. Breitenfeld, J., Ruiz, J., Wodrich, M. D. & Hu, X. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl–alkyl Kumada coupling reactions. J. Am. Chem. Soc. 135, 12004–12012 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (NSF-CHE-1464980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R. Jarvo.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, E., Jarvo, E. Stereospecific and stereoconvergent cross-couplings between alkyl electrophiles. Nat Rev Chem 1, 0065 (2017). https://doi.org/10.1038/s41570-017-0065

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing