Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The active template approach to interlocked molecules

Abstract

The active template approach to interlocked molecules takes advantage of the ability of metal ions to both organize precursor fragments for mechanical bond formation and to mediate the final covalent bond-forming reaction that captures the interlocked structure. Since its inception just a decade ago, this new methodology has expanded rapidly from a single reaction for rotaxane synthesis to a range of metal-mediated bond formations for the synthesis of complex interlocked molecules. In this Review, we introduce the active template concept, its key advantages for the synthesis of interlocked molecules and outline recent advances that have been made using this technology. We will conclude with comments about future directions and challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Passive and active template synthesis of rotaxanes.
Figure 2: The formation of [3]rotaxanes in the AT-CuAAC reaction.
Figure 3: Complex interlocked molecules synthesized using the active template approach.
Figure 4: Interlocked electronic and oligomeric materials can be synthesized using the active template approach.
Figure 5: Interlocked molecules as catalysts.
Figure 6: Interlocked host molecules synthesized using the active template approach.
Figure 7: Examples of molecular machines synthesized using active template reactions.

Similar content being viewed by others

References

  1. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

    Book  Google Scholar 

  2. Wasserman, E. The preparation of interlocked rings: a catenane J. Am. Chem. Soc. 82, 4433–4434 (1960).

    Article  CAS  Google Scholar 

  3. Schill, G. & Lüttringhaus, A. The preparation of catena compounds by directed synthesis. Angew. Chem. Int. Ed. Engl. 3, 546–547 (1964).

    Article  Google Scholar 

  4. Dietrich-Buchecker, C. O., Sauvage, J. P. & Kintzinger, J. P. Une nouvelle famille de molecules: les metallo-catenanes [French]. Tetrahedron Lett. 24, 5095–5098 (1983).

    Article  CAS  Google Scholar 

  5. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  Google Scholar 

  6. Crowley, J. D., Goldup, S. M., Lee, A.-L., Leigh, D. A. & McBurney, R. T. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem. Soc. Rev. 38, 1530–1541 (2009).

    Article  CAS  Google Scholar 

  7. Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  Google Scholar 

  8. Rostovtsev, V. V, Green, L. G., Fokin, V. V & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  9. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  10. Aucagne, V., Hänni, K. D., Leigh, D. A., Lusby, P. J. & Walker, D. B. Catalytic ‘click’ rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 128, 2186–2187 (2006).

    Article  CAS  Google Scholar 

  11. Aucagne, V. et al. Catalytic ‘active-metal’ template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition. J. Am. Chem. Soc. 129, 11950–11963 (2007).

    Article  CAS  Google Scholar 

  12. Lahlali, H., Jobe, K., Watkinson, M. & Goldup, S. M. Macrocycle size matters: ‘small’ functionalized rotaxanes in excellent yield using the CuAAC active template approach. Angew. Chem. Int. Ed. 50, 4151–4155 (2011).

    Article  CAS  Google Scholar 

  13. Neal, E. A. & Goldup, S. M. Competitive formation of homocircuit [3]rotaxanes in synthetically useful yields in the bipyridine-mediated active template CuAAC reaction. Chem. Sci. 6, 2398–2404 (2015).

    Article  CAS  Google Scholar 

  14. Hou, X., Ke, C. & Stoddart, J. F. Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem. Soc. Rev. 45, 4–6 (2016). A rare example of a situation in which the rate of stoppering is dependent on the threading state, requiring aspects of thermodynamic templating and rate enhancement to favour interlocking.

    Article  Google Scholar 

  15. Neal, E. A. & Goldup, S. M. A kinetic self-sorting approach to heterocircuit [3]rotaxanes. Angew. Chem. Int. Ed. 55, 12488–12493 (2016).

    Article  CAS  Google Scholar 

  16. Noor, A., Lo, W. K. C., Moratti, S. C. & Crowley, J. D. CuAAC ‘click’ active-template synthesis of functionalised [2]rotaxanes using small exo-substituted macrocycles: how small is too small? Chem. Commun. 50, 7044–7047 (2014). The effect of macrocycle size appears to vary depending on the precise macrocycle structure and reaction used. See also reference 46.

    Article  CAS  Google Scholar 

  17. Dietrich-Buchecker, C. O., Edel, A., Kintzinger, J. P. & Sauvage, J. P. Synthese et etude d’un catenate de cuivre chiral comportant deux anneaux coordinant a 27 atomes [French]. Tetrahedron 43, 333–344 (1987).

    Article  CAS  Google Scholar 

  18. Berná, J. et al. Cadiot–Chodkiewicz active template synthesis of rotaxanes and switchable molecular shuttles with weak intercomponent interactions. Angew. Chem. Int. Ed. 47, 4392–4396 (2008).

    Article  Google Scholar 

  19. Ugajin, K. et al. Synthesis of [2]rotaxanes by the copper-mediated threading reactions of aryl iodides with alkynes. Org. Lett. 15, 2684–2687 (2013).

    Article  CAS  Google Scholar 

  20. Hoekman, S., Kitching, M. O., Leigh, D. A., Papmeyer, M. & Roke, D. Goldberg active template synthesis of a [2]rotaxane ligand for asymmetric transition metal catalysis. J. Am. Chem. Soc. 137, 7656–7659 (2015).

    Article  CAS  Google Scholar 

  21. Saito, S. Synthesis of interlocked compounds utilizing the catalytic activity of macrocyclic phenanthroline–Cu complexes. J. Incl. Phenom. Macrocycl. Chem. 82, 437–451 (2015).

    Article  CAS  Google Scholar 

  22. Saito, S., Takahashi, E. & Nakazono, K. Synthesis of [2]rotaxanes by the catalytic reactions of a macrocyclic copper complex. Org. Lett. 8, 5133–5136 (2006).

    Article  CAS  Google Scholar 

  23. Langton, M. J., Xiong, Y. & Beer, P. D. Active-metal template synthesis of a halogen-bonding rotaxane for anion recognition. Chem. Eur. J. 21, 18910–18914 (2015).

    Article  CAS  Google Scholar 

  24. Lim, J. Y. C., Bunchuay, T. & Beer, P. D. Strong and selective halide anion binding by neutral halogen-bonding [2]rotaxanes in wet organic solvents. Chem. Eur. J. 23, 4700–4707 (2017).

    Article  CAS  Google Scholar 

  25. Lim, J. Y. C. et al. Chalcogen bonding macrocycles and [2]rotaxanes for anion recognition. J. Am. Chem. Soc. 139, 3122–3133 (2017).

    Article  CAS  Google Scholar 

  26. Berná, J. et al. A catalytic palladium active-metal template pathway to [2]rotaxanes. Angew. Chem. Int. Ed. 46, 5709–5713 (2007).

    Article  Google Scholar 

  27. Crowley, J. D., Ha¨nni, K. D., Lee, A. & Leigh, D. A. [2]Rotaxanes through palladium active-template oxidative Heck cross-couplings. J. Am. Chem. Soc. 129, 12092–12093 (2007).

    Article  CAS  Google Scholar 

  28. Goldup, S. M., Leigh, D. A., Lusby, P. J., McBurney, R. T. & Slawin, A. M. Z. Active template synthesis of rotaxanes and molecular shuttles with switchable dynamics by four-component Pd(II)-promoted Michael additions. Angew. Chem. Int. Ed. 47, 3381–3384 (2008).

    Article  CAS  Google Scholar 

  29. Goldup, S. M., Leigh, D. A., McBurney, R. T., McGonigal, P. R. & Plant, A. Ligand-assisted nickel-catalysed sp3–sp3 homocoupling of unactivated alkyl bromides and its application to the active template synthesis of rotaxanes. Chem. Sci. 1, 383–386 (2010).

    Article  CAS  Google Scholar 

  30. Crowley, J. D. et al. An unusual nickel–copper-mediated alkyne homocoupling reaction for the active-template synthesis of [2]rotaxanes. J. Am. Chem. Soc. 132, 6243–6248 (2010).

    Article  CAS  Google Scholar 

  31. Danon, J. J., Leigh, D. A., McGonigal, P. R., Ward, J. W. & Wu, J. Triply threaded [4]rotaxanes. J. Am. Chem. Soc. 138, 12643–12647 (2016).

    Article  CAS  Google Scholar 

  32. Crowley, J. D., Ha¨nni, K. D., Leigh, D. A. & Slawin, A. M. Z. Diels–Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles. J. Am. Chem. Soc. 132, 5309–5314 (2010).

    Article  CAS  Google Scholar 

  33. Sato, Y., Yamasaki, R. & Saito, S. Synthesis of [2]catenanes by oxidative intramolecular diyne coupling mediated by macrocyclic copper(I) complexes. Angew. Chem. Int. Ed. 48, 504–507 (2009).

    Article  CAS  Google Scholar 

  34. Goldup, S. M. et al. Active metal template synthesis of [2]catenanes. J. Am. Chem. Soc. 131, 15924–15929 (2009).

    Article  CAS  Google Scholar 

  35. Barran, P. E. et al. Active-metal template synthesis of a molecular trefoil knot. Angew. Chem. Int. Ed. 50, 12280–12284 (2011).

    Article  CAS  Google Scholar 

  36. Goldup, S. M., Leigh, D. A., McGonigal, P. R., Ronaldson, V. E. & Slawin, A. M. Z. Two axles threaded using a single template site: active metal template macrobicyclic [3]rotaxanes. J. Am. Chem. Soc. 132, 315–320 (2010).

    Article  CAS  Google Scholar 

  37. Cheng, H. M. et al. En route to a molecular sheaf: active metal template synthesis of a [3]rotaxane with two axles threaded through one ring. J. Am. Chem. Soc. 133, 12298–12303 (2011).

    Article  CAS  Google Scholar 

  38. Prikhod’ko, A. I. & Sauvage, J.-P. Passing two strings through the same ring using an octahedral metal center as template: a new synthesis of [3]rotaxanes. J. Am. Chem. Soc. 131, 6794–6807 (2009).

    Article  Google Scholar 

  39. Hayashi, R., Mutoh, Y., Kasama, T. & Saito, S. Synthesis of [3]rotaxanes by the combination of copper-mediated coupling reaction and metal-template approach. J. Org. Chem. 80, 7536–7546 (2015).

    Article  CAS  Google Scholar 

  40. Yamashita, Y., Mutoh, Y., Yamasaki, R., Kasama, T. & Saito, S. Synthesis of [3]rotaxanes that utilize the catalytic activity of a macrocyclic phenanthroline–Cu complex: remarkable effect of the length of the axle precursor. Chem. Eur. J. 21, 2139–2145 (2015).

    Article  CAS  Google Scholar 

  41. Hayashi, R. et al. Synthesis of rotacatenanes by the combination of Cu-mediated threading reaction and the template method: the dual role of one ligand. Chem. Commun. 50, 204–206 (2014).

    Article  CAS  Google Scholar 

  42. Bordoli, R. J. & Goldup, S. M. An efficient approach to mechanically planar chiral rotaxanes. J. Am. Chem. Soc. 136, 4817–4820 (2014).

    Article  CAS  Google Scholar 

  43. Schmidt, T., Schmieder, R., Müller, W. M., Kiupel, B. & Vögtle, F. Chiral amide rotaxanes with glucose stoppers — synthesis, chiroptical properties and wheel–axle interactions. Eur. J. Org. Chem. 1998, 2003–2007 (1998).

    Article  Google Scholar 

  44. Rowan, S. J. & Stoddart, J. F. Precision molecular grafting: exchanging surrogate stoppers in [2]rotaxanes. J. Am. Chem. Soc. 122, 164–165 (1999).

    Article  Google Scholar 

  45. Barat, R. et al. A mechanically interlocked molecular system programmed for the delivery of an anticancer drug. Chem. Sci. 6, 2608–2613 (2015).

    Article  CAS  Google Scholar 

  46. Movsisyan, L. D. et al. Synthesis of polyyne rotaxanes. Org. Lett. 14, 3424–3426 (2012).

    Article  CAS  Google Scholar 

  47. Weisbach, N., Baranová, Z., Gauthier, S., Reibenspies, J. H. & Gladysz, J. A. A new type of insulated molecular wire: a rotaxane derived from a metal-capped conjugated tetrayne. Chem. Commun. 48, 75627564 (2012).

    Article  CAS  Google Scholar 

  48. Sahnoune, H., Baranová, Z., Bhuvanesh, N., Gladysz, J. A. & Halet, J. -F. A metal-capped conjugated polyyne threaded through a phenanthroline-based macrocycle. Probing beyond the mechanical bond to interactions in interlocked molecular architectures. Organometallics 32, 6360–6367 (2013).

    Article  CAS  Google Scholar 

  49. Baranová, Z., Amini, H., Bhuvanesh, N. & Gladysz, J. A. Rotaxanes derived from dimetallic polyynediyl complexes: extended axles and expanded macrocycles. Organometallics 33, 6746–6749 (2014).

    Article  Google Scholar 

  50. Langton, M. J., Matichak, J. D., Thompson, A. L. & Anderson, H. L. Template-directed synthesis of π-conjugated porphyrin [2]rotaxanes and a [4]catenane based on a six-porphyrin nanoring. Chem. Sci. 2, 1897–1901 (2011).

    Article  CAS  Google Scholar 

  51. Movsisyan, L. D. et al. Polyyne rotaxanes: stabilization by encapsulation. J. Am. Chem. Soc. 138, 1366–1376 (2016).

    Article  CAS  Google Scholar 

  52. Franz, M. et al. Cumulene rotaxanes: stabilization and study of [9]cumulenes. Angew. Chem. Int. Ed. 54, 6645–6649 (2015).

    Article  CAS  Google Scholar 

  53. Milan, D. C. et al. The single-molecule electrical conductance of a rotaxane-hexayne supramolecular assembly. Nanoscale 9, 355–361 (2017).

    Article  CAS  Google Scholar 

  54. Movsisyan, L. D. et al. Photophysics of threaded sp-carbon chains: the polyyne is a sink for singlet and triplet excitation. J. Am. Chem. Soc. 136, 17996–18008 (2014).

    Article  CAS  Google Scholar 

  55. Kohn, D. R., Movsisyan, L. D., Thompson, A. L. & Anderson, H. L. Porphyrin–polyyne [3]- and [5]rotaxanes. Org. Lett. 19, 348–351 (2017).

    Article  CAS  Google Scholar 

  56. Lewis, J. E. M., Winn, J., Cera, L. & Goldup, S. M. Iterative synthesis of oligo[n]rotaxanes in excellent yield. J. Am. Chem. Soc. 138, 16329–16336 (2016).

    Article  CAS  Google Scholar 

  57. Lewis, J., Winn, J. & Goldup, S. Stepwise, protecting group free synthesis of [4]rotaxanes. Molecules 22, 89 (2017).

    Article  Google Scholar 

  58. Lewis, J. E. M., Beer, P. D., Loeb, S. J. & Goldup, S. M. Metal ions in the synthesis of interlocked molecules and materials. Chem. Soc. Rev. 46, 2577–2591 (2017).

    Article  CAS  Google Scholar 

  59. Noor, A., Moratti, S. C. & Crowley, J. D. Active-template synthesis of ‘click’ [2]rotaxane ligands: self-assembly of mechanically interlocked metallo-supramolecular dimers, macrocycles and oligomers. Chem. Sci. 5, 4283–4290 (2014).

    Article  CAS  Google Scholar 

  60. Galli, M., Lewis, J. E. M. & Goldup, S. M. A stimuli-responsive rotaxane–gold catalyst: regulation of activity and diastereoselectivity. Angew. Chem. Int. Ed. 54, 13545–13549 (2015).

    Article  CAS  Google Scholar 

  61. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  CAS  Google Scholar 

  62. Matsuoka, Y. et al. Synthesis and shuttling behavior of [2]rotaxanes with a pyrrole moiety. J. Org. Chem. 81, 3479–3487 (2016).

    Article  CAS  Google Scholar 

  63. Gilday, L. C. et al. Halogen bonding in supramolecular chemistry. Chem. Rev. 115, 7118–7195 (2015).

    Article  CAS  Google Scholar 

  64. Tron, A., Thornton, P. J., Kauffmann, B., Tucker, J. H. R. & McClenaghan, N. D. [2]Rotaxanes comprising a macrocylic Hamilton receptor obtained using active template synthesis: synthesis and guest complexation. Supramol. Chem. 28, 733–741 (2016).

    Article  CAS  Google Scholar 

  65. Winn, J., Pinczewska, A. & Goldup, S. M. Synthesis of a rotaxane Cu(I) triazolide under aqueous conditions. J. Am. Chem. Soc. 135, 13318–13321 (2013).

    Article  CAS  Google Scholar 

  66. Albrecht-Gary, A. M., Saad, Z., Dietrich-Buchecker, C. O. & Sauvage, J. P. Interlocked macrocyclic ligands: a kinetic catenand effect in copper(I) complexes. J. Am. Chem. Soc. 107, 3205–3209 (1985).

    Article  CAS  Google Scholar 

  67. Lewis, J. E. M. et al. High yielding synthesis of 2,2′-bipyridine macrocycles, versatile intermediates in the synthesis of rotaxanes. Chem. Sci. 7, 3154–3161 (2016).

    Article  CAS  Google Scholar 

  68. Collin, J. P., Dietrich-Buchecker, C., Gaviña, P., Jimenez-Molero, M. C. & Sauvage, J. P. Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001).

    Article  CAS  Google Scholar 

  69. Hesseler, B., Zindler, M., Herges, R. & Lüning, U. A shuttle for the transport of protons based on a [2]rotaxane. Eur. J. Org. Chem. 2014, 3885–3901 (2014). Herges and co-workers synthesized a similar shuttle using the AT-CuAAC reaction.

    Article  CAS  Google Scholar 

  70. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  Google Scholar 

  71. Wu, C., Lecavalier, P. R., Shen, Y. X. & Gibson, H. W. Synthesis of a rotaxane via the template method. Chem. Mater. 3, 569–572 (1991).

    Article  CAS  Google Scholar 

  72. Evans, D. A. et al. C2-Symmetric copper (II) complexes as chiral Lewis acids. Scope and mechanism of catalytic enantioselective aldol additions of enolsilanes to (benzyloxy) acetaldehyde. J. Am. Chem. Soc. 2, 669–685 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

M.D. thanks the University of Southampton for financial support. S.M.G. acknowledges funding from the European Research Council (Consolidator Grant Agreement No. 724987) and is a Royal Society Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Goldup.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Catenanes

Molecules composed of macrocycles that are threaded through one another like links in a chain.

Rotaxanes

Molecules in which macrocycles are threaded on linear axle components and locked in place by bulky ‘stopper’ units.

Mechanical bond

Two or more independent covalent species are said to be mechanically bonded when they are threaded through one another in such a way that they cannot be separated without breaking a covalent bond. The archetypal examples of mechanically bonded structures are catenanes and rotaxanes.

Stoppering

The process in which ‘stopper’ units are introduced at the ends of a threaded complex to trap the threaded architecture and form the mechanical bond.

Clipping

Cyclization of a pre-macrocycle (sometimes termed a U-shape) around a pre-formed axle to make a rotaxane, or starting from a threaded complex to form a catenane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, M., Goldup, S. The active template approach to interlocked molecules. Nat Rev Chem 1, 0061 (2017). https://doi.org/10.1038/s41570-017-0061

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing