Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surface-enhanced Raman spectroscopy for in vivo biosensing

Abstract

Surface-enhanced Raman scattering (SERS) is of interest for biomedical analysis and imaging because of its sensitivity, specificity and multiplexing capabilities. The successful application of SERS for in vivo biosensing requires probes to be biocompatible and procedures to be minimally invasive, challenges that have respectively been met by developing new nanoprobes and instrumentation. This Review presents recent developments in these areas, describing case studies in which sensors have been implemented, as well as outlining shortcomings that must be addressed before SERS sees clinical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some key developments in SERS research for in vivo applications.
Figure 2: Preparation and administration of in vivo SERS nanosensors.
Figure 3: State-of-the-art instrumentation and experimental configurations used to conduct in vivo SERS biosensing.
Figure 4: In vivo glucose monitoring using an implanted SERS probe and SESORS detection.
Figure 5: In vivo cancer detection using near-infrared optimized SERS probes.
Figure 6: Brain tumour imaging and guided tumour resection using triple-modality nanoparticles.
Figure 7: Nanoparticles and SERS for drug delivery and photothermal therapy in vivo.

Similar content being viewed by others

References

  1. Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).

    Article  CAS  Google Scholar 

  2. Raman, C. V. A new radiation. Indian J. Phys. 2, 387–398 (1928).

    CAS  Google Scholar 

  3. Diem, M., Romeo, M., Boydston-White, S., Miljkovic´, M. & Matthäus, C. A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004). Analyst 129, 880–885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kong, K., Kendall, C., Stone, N. & Notingher, I. Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 89, 121–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Byrne, H. J. et al. Spectropathology for the next generation: quo vadis? Analyst 140, 2066–2073 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Stone, N., Kendall, C., Smith, J., Crow, P. & Barr, H. Raman spectroscopy for identification of epithelial cancers. Faraday Discuss. 126, 141–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Jamieson, L. E. & Byrne, H. J. Vibrational spectroscopy as a tool for studying drug–cell interaction: could high throughput vibrational spectroscopic screening improve drug development? Vib. Spectrosc. 91, 16–30 (2017).

    Article  CAS  Google Scholar 

  8. Farhane, Z., Bonnier, F., Casey, A. & Byrne, H. J. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin. Analyst 140, 4212–4223 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Matthäus, C., Kale, A., Chernenko, T., Torchilin, V. & Diem, M. New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy. Mol. Pharm. 5, 287–293 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Atkins, P., de Paula, J. & Friedman, R. Physical Chemistry: Quanta, Matter, and Change (Oxford Univ. Press, 2013).

    Google Scholar 

  11. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    Article  CAS  Google Scholar 

  12. Bergman, I. et al. General discussion. Faraday Discuss. Chem. Soc. 56, 152–170 (1973).

    Article  Google Scholar 

  13. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).

    Article  CAS  Google Scholar 

  14. Yang, S., Dai, X., Stogin, B. B. & Wong, T.-S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl Acad. Sci. USA 113, 268–273 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kneipp, J., Kneipp, H. & Kneipp, K. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37, 1052–1060 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Smith, E. & Dent, G. Modern Raman Spectroscopy: A Practical Approach 113–133 (Wiley, 2013).

    Google Scholar 

  17. Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998).

    Article  CAS  Google Scholar 

  18. Schlücker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014).

    Article  CAS  Google Scholar 

  19. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. R. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    Article  CAS  Google Scholar 

  20. Vo-Dinh, T., Hiromoto, M. Y. K., Begun, G. M. & Moody, R. L. Surface-enhanced Raman spectrometry for trace organic analysis. Anal. Chem. 56, 1667–1670 (1984).

    Article  CAS  Google Scholar 

  21. Rohr, T. E., Cotton, T., Fan, N. & Tarcha, P. J. Immunoassay employing surface-enhanced Raman spectroscopy. Anal. Biochem. 182, 388–398 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Vo-Dinh, T., Houck, K. & Stokes, D. L. Surface-enhanced Raman gene probes. Anal. Chem. 66, 3379–3383 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Graham, D., Mallinder, B. J. & Smith, W. E. Surface-enhanced resonance Raman scattering as a novel method of DNA discrimination. Angew. Chem. Int. Ed. 39, 1061–1063 (2000).

    Article  CAS  Google Scholar 

  24. Faulds, K., Jarvis, R., Smith, W. E., Graham, D. & Goodacre, R. Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 133, 1505–1512 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Gracie, K. et al. Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chem. Sci. 5, 1030–1040 (2014).

    Article  CAS  Google Scholar 

  26. Song, J., Zhou, J. & Duan, H. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J. Am. Chem. Soc. 134, 13458–13469 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Nabiev, I. R., Morjani, H. & Manfait, M. Selective analysis of antitumor drug interaction with living cancer cells as probed by surface-enhanced Raman spectroscopy. Eur. Biophys. J. 19, 311–316 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Schlücker, S. et al. Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J. Raman Spectrosc. 37, 719–721 (2006).

    Article  CAS  Google Scholar 

  29. Stuart, D. A. et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78, 7211–7215 (2006). This first report of in vivo SERS, here applied to monitoring glucose concentrations in a live mouse using a SAM–AgFON SERS sensor and an optical window.

    Article  CAS  PubMed  Google Scholar 

  30. White, P. L. et al. Evaluation of a commercially developed semiautomated PCR–SERS assay for the diagnosis of invasive fungal disease. J. Clin. Microbiol. 52, 3536–3543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leask, F. Renishaw Diagnostics announces CE marking of Rendx Multiplex Assay System and Fungiplex Assay. SelectSciencehttp://www.selectscience.net/industry-news/renishaw-diagnostics-announces-ce-marking-of-rendx-multiplex-assay-system-and-fungiplex-assay/?artID=38483 (2015).

  32. Graham, D., Faulds, K., Smith, W. E. & Ricketts, A. Identification of nucleic acid sequences. WO 2009022125A1 (2009).

  33. Cai, W., Gao, T., Hong, H. & Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008:1, 17–32 (2008).

    Article  PubMed  Google Scholar 

  34. Caspers, P. J., Lucassen, G. W. & Puppels, G. J. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J. 85, 572–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boncheva, M., de Sterke, J., Caspers, P. J. & Puppels, G. J. Depth profiling of Stratum corneum hydration in vivo: a comparison between conductance and confocal Raman spectroscopic measurements. Exp. Dermatol. 18, 870–876 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Mahadevan-Jansen, A., Mitchell, M. F., Ramanujam, N., Utzinger, U. & Richards-Kortum, R. Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo. Photochem. Photobiol. 68, 427–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Draga, R. O. et al. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal. Chem. 82, 5993–5999 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Shim, M. G., Song, L. M., Marcon, N. E. & Wilson, B. C. In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem. Photobiol. 72, 146–150 (2000).

    CAS  PubMed  Google Scholar 

  39. Haka, A. S. et al. In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res. 66, 3317–3322 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Jermyn, M. et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med. 7, 274ra219 (2015).

    Article  CAS  Google Scholar 

  41. Walsh, F. Laser detects brain tumour cells during surgery. BBChttp://www.bbc.co.uk/news/health-34041863 (2015).

  42. UK hospital to trial Raman probe for brain tumors. optics.orghttp://optics.org/news/6/1/18 (2015).

  43. Evans, C. L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807–16812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu, Y., Huff, T. B., Wang, H. W., Wang, H. & Cheng, J. X. Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Opt. Express 16, 19396–19409 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Ji, M. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5, 201ra119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuen, J. M., Shah, N. C., Walsh, J. T., Glucksberg, M. R. & Van Duyne, R. P. Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal. Chem. 82, 8382–8385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oseledchyk, A., Andreou, C., Wall, M. A. & Kircher, M. F. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano 11, 1488–1497 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharma, B. et al. Bisboronic acids for selective, physiologically relevant direct glucose sensing with surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 138, 13952–13959 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Ma, K. et al. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83, 9146–9152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dinish, U. S., Balasundaram, G., Chang, Y.-T. & Olivo, M. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4, 4075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Samanta, A. et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. 50, 6089–6092 (2011). In this study, a library of tricarbocyanine reporters, optimized for NIR excitation, was synthesized and screened. Of these, the 1,2-dithiolane CyNAMLA-381 was used for sensitive and specific detection of tumours.

    Article  CAS  Google Scholar 

  53. Wang, Y. et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci. Rep. 6, 21242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian, F. et al. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 106, 87–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Papadopoulou, E. & Bell, S. E. J. Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 50, 9058–9061 (2011).

    Article  CAS  Google Scholar 

  56. Pavel, I. et al. Label-free SERS detection of small proteins modified to act as bifunctional linkers. J. Phys. Chem. C 112, 4880–4883 (2008).

    Article  CAS  Google Scholar 

  57. Graham, D. et al. Synthesis of novel monoazo benzotriazole dyes specifically for surface enhanced resonance Raman scattering. Chem. Commun. 1187–1188 (1998).

  58. Schütz, M., Müller, C. I., Salehi, M., Lambert, C. & Schlücker, S. Design and synthesis of Raman reporter molecules for tissue imaging by immuno-SERS microscopy. J. Biophoton. 4, 453–463 (2011).

    Article  CAS  Google Scholar 

  59. Faulds, K., Smith, W. E. & Graham, D. DNA detection by surface enhanced resonance Raman scattering (SERRS). Analyst 130, 1125–1131 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Drescher, D. & Kneipp, J. Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem. Soc. Rev. 41, 5780–5799 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Taylor, J., Huefner, A., Li, L., Wingfield, J. & Mahajan, S. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst 141, 5037–5055 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alkilany, A. M. & Murphy, C. J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12, 2313–2333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sakhtianchi, R. et al. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv. Colloid Interface Sci. 201, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Dykman, L. A. & Khlebtsov, N. G. Uptake of engineered gold nanoparticles into mammalian cells. Chem. Rev. 114, 1258–1288 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, X.-D. et al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int. J. Nanomed. 6, 2071–2081 (2011).

    Article  CAS  Google Scholar 

  66. Bhamidipati, M. & Fabris, L. Multiparametric assessment of gold nanoparticle cytotoxicity in cancerous and healthy cells: the role of size, shape, and surface chemistry. Bioconjug. Chem. 28, 449–460 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Schlinkert, P. et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J. Nanobiotechnol. 13, 1 (2015).

    Article  CAS  Google Scholar 

  68. Falagan-Lotsch, P., Grzincic, E. M. & Murphy, C. J. One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proc. Natl Acad. Sci. USA 113, 13318–13323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Albanese, A. & Chan, W. C. W. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5, 5478–5489 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Stuart, D. A. et al. Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy. Anal. Chem. 77, 4013–4019 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Mahajan, S. et al. Tuning plasmons on nano-structured substrates for NIR-SERS. Phys. Chem. Chem. Phys. 9, 104–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Greeneltch, N. G. et al. Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) for the identification of eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates. J. Phys. Chem. A 116, 11863–11869 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Yonzon, C. R., Haynes, C. L., Zhang, X., Walsh, J. T. & Van Duyne, R. P. A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal. Chem. 76, 78–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Asharani, P. V., Yi Lian, W., Zhiyuan, G. & Suresh, V. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19, 255102 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Asharani, P. V., Mun, G. L. K., Hande, M. P. & Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, 279–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, W. et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4, 319–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644–10654 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Averitt, R. D., Sarkar, D. & Halas, N. J. Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 78, 4217–4220 (1997).

    Article  CAS  Google Scholar 

  80. Oldenburg, S. J., Averitt, R. D., Westcott, S. L. & Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

    Article  CAS  Google Scholar 

  81. Oldenburg, S. J., Westcott, S. L., Averitt, R. D. & Halas, N. J. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J. Chem. Phys. 111, 4729–4735 (1999).

    Article  CAS  Google Scholar 

  82. Küstner, B. et al. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew. Chem. Int. Ed. 48, 1950–1953 (2009).

    Article  CAS  Google Scholar 

  83. Kang, H. et al. Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv. Funct. Mater. 23, 3719–3727 (2013).

    Article  CAS  Google Scholar 

  84. Sun, Y., Mayers, B. T. & Xia, Y. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481–485 (2002).

    Article  CAS  Google Scholar 

  85. Liang, H. P., Wan, L. J., Bai, C. L. & Jiang, L. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J. Phys. Chem. B 109, 7795–7800 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Schwartzberg, A. M., Olson, T. Y., Talley, C. E. & Zhang, J. Z. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J. Phys. Chem. B 110, 19935–19944 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Xie, H. N., Larmour, I. A., Smith, W. E., Faulds, K. & Graham, D. Surface-enhanced Raman scattering investigation of hollow gold nanospheres. J. Phys. Chem. C 116, 8338–8342 (2012).

    Article  CAS  Google Scholar 

  88. Xie, H. N. et al. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer. Nanoscale 5, 765–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Kearns, H., Shand, N. C., Smith, W. E., Faulds, K. & Graham, D. 1064 nm SERS of NIR active hollow gold nanotags. Phys. Chem. Chem. Phys. 17, 1980–1986 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Adams, S. & Zhang, J. Z. Unique optical properties and applications of hollow gold nanospheres (HGNs). Coord. Chem. Rev. 320, 18–37 (2016).

    Article  CAS  Google Scholar 

  91. von Maltzahn, G. et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21, 3175–3180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, L. et al. A SERS-based immunoassay with highly increased sensitivity using gold/silver core–shell nanorods. Biosens. Bioelectron. 38, 94–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Y., Qian, J., Wang, D., Wang, Y. & He, S. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew. Chem. Int. Ed. 52, 1148–1151 (2013).

    Article  CAS  Google Scholar 

  94. Park, J.-H. et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv. Mater. 22, 880–885 (2010). The authors demonstrated that functionalized AuNRs, under thermal stimulus, can release a drug directly at tumour sites. The delivery was confirmed by SERS, highlighting the potential of this technique for diagnostic and therapeutic applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Harmsen, S. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med. 7, 271ra277 (2015).

    Article  CAS  Google Scholar 

  96. Register, J. K. et al. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models. Anal. Bioanal. Chem. 407, 8215–8224 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Zeng, L. et al. Raman reporter-coupled Agcore@Aushell nanostars for in vivo improved surface enhanced Raman scattering imaging and near-infrared-triggered photothermal therapy in breast cancers. ACS Appl. Mater. Interfaces 7, 16781–16791 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, Y. et al. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics 5, 946–960 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maiti, K. K. et al. Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem. Commun. 47, 3514–3516 (2011).

    Article  CAS  Google Scholar 

  100. Samanta, A., Das, R. K., Park, S. J., Maiti, K. K. & Chang, Y. T. Multiplexing SERS nanotags for the imaging of differentiated mouse embryonic stem cells (mESC) and detection of teratoma in vivo. Am. J. Nucl. Med. Mol. Imaging 4, 114–124 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wustholz, K. L., Brosseau, C. L., Casadio, F. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas. Phys. Chem. Chem. Phys. 11, 7350–7359 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. McAughtrie, S., Lau, K., Faulds, K. & Graham, D. 3D optical imaging of multiple SERS nanotags in cells. Chem. Sci. 4, 3566–3572 (2013).

    Article  CAS  Google Scholar 

  103. Bedics, M. A. et al. Extreme red shifted SERS nanotags. Chem. Sci. 6, 2302–2306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harmsen, S. et al. Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat. Commun. 6, 9 (2015). A series of NIR dyes was designed and used with AuNPs to afford biocompatible SERRS probes that allow imaging at exceptionally high sensitivities.

    Article  CAS  Google Scholar 

  105. Kearns, H. et al. Sensitive SERS nanotags for use with 1550 nm (retina-safe) laser excitation. Analyst 141, 5062–5065 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Dinish, U. S. et al. Single molecule with dual function on nanogold: biofunctionalized construct for in vivo photoacoustic imaging and SERS biosensing. Adv. Funct. Mater. 25, 2316–2325 (2015).

    Article  CAS  Google Scholar 

  107. McQueenie, R. et al. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem 84, 5968–5975 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, X., Chen, J., Wu, M. & Zhao, J. X. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5, 322–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zong, S. et al. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core–shell nanorods. Talanta 97, 368–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Iacono, P., Karabeber, H. & Kircher, M. F. A ‘schizophotonic’ all-in-one nanoparticle coating for multiplexed SE(R)RS biomedical imaging. Angew. Chem. Int. Ed. 53, 11756–11761 (2014).

    Article  CAS  Google Scholar 

  111. Liu, Z. M. et al. Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 7, 6754–6761 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Jiang, C. H., Wang, Y., Wang, J. W., Song, W. & Lu, L. H. Achieving ultrasensitive in vivo detection of bone crack with polydopamine-capsulated surface-enhanced Raman nanoparticle. Biomaterials 114, 54–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, J. H. et al. Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal. Chem. 78, 6967–6973 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, Z. et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24, 1418–1423 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Doering, W. E. & Nie, S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 75, 6171–6176 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008). The first application of a SERS probe for cancer detection in vivo. The probes comprised AuNPs functionalized with diethylthiatricarbocyanine, a protective PEG layer and single-chain variable fragment antibodies, to selectively bind EGFR.

    Article  CAS  PubMed  Google Scholar 

  117. Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Potara, M., Baia, M., Farcau, C. & Astilean, S. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection. Nanotechnology 23, 055501 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Potara, M. et al. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular SERS sensing and imaging. Nanoscale 5, 6013–6022 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Keren, S. et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 5844–5849 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bohndiek, S. E. et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc. Natl Acad. Sci. USA 110, 12408–12413 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zavaleta, C. L. et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl Acad. Sci. USA 110, E2288–E2297 (2013). This article describes the development of a fibre-based Raman device that can be inserted through a clinical endoscope and detect up to ten labelled nanosensors using SERS with excellent sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Funovics, M. A., Alencar, H., Montet, X., Weissleder, R. & Mahmood, U. Simultaneous fluorescence imaging of protease expression and vascularity during murine colonoscopy for colonic lesion characterization. Gastrointest. Endosc. 64, 589–597 (2006).

    Article  PubMed  Google Scholar 

  124. Zavaleta, C. L. et al. Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small 7, 2232–2240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Thakor, A. S. et al. Oxidative stress mediates the effects of Raman-active gold nanoparticles in human cells. Small 7, 126–136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thakor, A. S. et al. The fate and toxicity of Raman-active silica–gold nanoparticles in mice. Sci. Transl. Med. 3, 79ra33 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Jeong, S. et al. Fluorescence–Raman dual modal endoscopic system for multiplexed molecular diagnostics. Sci. Rep. 5, 9455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, Y. W., Kang, S., Khan, A., Bao, P. Q. & Liu, J. T. C. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed. Opt. Express 6, 3714–3723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garai, E. et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS One 10, e0123185 (2015). A unique endoscopic opto-electromechanical Raman device was the first instrument to allow SERS imaging of tissue during gastrointestinal endoscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stone, N., Faulds, K., Graham, D. & Matousek, P. Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25 mm of mammalian tissue. Anal. Chem. 82, 3969–3973 (2010). The first report of SESORS.

    Article  CAS  PubMed  Google Scholar 

  131. Stone, N. et al. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging — the next dimension. Chem. Sci. 2, 776–780 (2011).

    Article  CAS  Google Scholar 

  132. Xie, H. N. et al. Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy. Angew. Chem. Int. Ed. 51, 8509–8511 (2012).

    Article  CAS  Google Scholar 

  133. Sharma, B., Ma, K., Glucksberg, M. R. & Van Duyne, R. P. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J. Am. Chem. Soc. 135, 17290–17293 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Tonyushkina, K. & Nichols, J. H. Glucose meters: a review of technical challenges to obtaining accurate results. J. Diabetes Sci. Technol. 3, 971–980 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lyandres, O. et al. Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes Technol. Ther. 10, 257–265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shafer-Peltier, K. E., Haynes, C. L., Glucksberg, M. R. & Van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 125, 588–593 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Lyandres, O. et al. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal. Chem. 77, 6134–6139 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Qi, G. et al. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Anal. Bioanal. Chem. 408, 7513–7520 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Maiti, K. K. et al. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens. Bioelectron 26, 398–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Maiti, K. K. et al. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7, 85–93 (2012).

    Article  CAS  Google Scholar 

  141. Mallia, R. J., McVeigh, P. Z., Fisher, C. J., Veilleux, I. & Wilson, B. C. Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes. Nanomedicine 10, 89–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Sinha, L. et al. Quantification of the binding potential of cell-surface receptors in fresh excised specimens via dual-probe modeling of SERS nanoparticles. Sci. Rep. 5, 8582 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18, 829–834 (2012). The authors report the design of a nanoprobe that can be imaged using three different techniques. The advantages of these complementary methods enabled successful brain tumour resection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Huschka, R. et al. Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc. 133, 12247–12255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Huo, S. et al. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 8, 5852–5862 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mackanic, D. G., Mabbott, S., Faulds, K. & Graham, D. Analysis of photothermal release of oligonucleotides from hollow gold nanospheres by surface-enhanced Raman scattering. J. Phys. Chem. C 120, 20677–20683 (2016).

    Article  CAS  Google Scholar 

  148. Cheng, Y. et al. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 130, 10643–10647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xia, Y. et al. Three dimensional plasmonic assemblies of AuNPs with an overall size of sub-200 nm for chemo-photothermal synergistic therapy of breast cancer. Nanoscale 8, 18682–18692 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Kang, B., Afifi, M. M., Austin, L. A. & El-Sayed, M. A. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy. ACS Nano 7, 7420–7427 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Gao, Y. et al. Multifunctional gold nanostar-based nanocomposite: synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials 60, 31–41 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.F. and S.L. thank the Leverhulme Trust for financial support through Research Project Grant RPG-2012-758.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan Graham.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laing, S., Jamieson, L., Faulds, K. et al. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat Rev Chem 1, 0060 (2017). https://doi.org/10.1038/s41570-017-0060

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing