Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts

Abstract

Modern energy challenges have amplified interest in transition metal-based molecular electrocatalysts for fuel-forming reactions. The activity of these homogeneous electrocatalysts, and the mechanisms by which they operate, can be uncovered using state-of-the-art electrochemical methods. Catalyst performance can be benchmarked according to metrics obtainable from cyclic voltammograms by analysis of catalytic plateau currents and peak potentials, as well as by foot-of-the-wave analysis. The application of complementary spectroscopic techniques, including spectroelectrochemistry, stopped-flow rapid mixing and transient absorption, are also discussed. In this Review, we present case studies highlighting the utility of these analytical methods in the context of renewable energy. Alongside these examples is a discussion of the theoretical underpinnings of each method, outlining the conditions necessary for the analysis to be rigorous and the type of information that can then be extracted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of a three-electrode cell and an idealized example of a cyclic voltammogram.
Figure 2: Kinetic zone diagram describing the expected voltammetric responses for electrocatalysts operating by a EC′ mechanism.
Figure 3: Examples for catalytic plateau current and foot-of-the-wave analyses.
Figure 4: Applications of peak shift analysis in electrocatalysis.
Figure 5: Illustrations of UV–visible and infrared spectroelectrochemical cells.
Figure 6: Experimental setup for and sample data from stopped-flow rapid mixing and transient absorption spectroscopy.

Similar content being viewed by others

References

  1. Dempsey, J. L. et al. Molecular chemistry of consequence to renewable energy. Inorg. Chem. 44, 6879–6892 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. McKone, J. R., Marinescu, S. C., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. 5, 865–878 (2014).

    Article  CAS  Google Scholar 

  6. Artero, V. & Savéant, J.-M. Toward the rational benchmarking of homogeneous H2-evolving catalysts. Energy Environ. Sci. 7, 3808–3814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Costentin, C. & Savéant, J.-M. Multielectron, multistep molecular catalysis of electrochemical reactions: benchmarking of homogeneous catalysts. ChemElectroChem 1, 1226–1236 (2014).

    Article  CAS  Google Scholar 

  8. Elgrishi, N., McCarthy, B. D., Rountree, E. S. & Dempsey, J. L. Reaction pathways of hydrogen-evolving electrocatalysts: electrochemical and spectroscopic studies of proton-coupled electron transfer processes. ACS Catal. 6, 3644–3659 (2016).

    Article  CAS  Google Scholar 

  9. Compton, R. G. & Banks, C. E. Understanding Voltammetry 2nd edn (Imperial College Press, 2011).

    Book  Google Scholar 

  10. Kissinger, P. T. & Heineman, W. R. Cyclic voltammetry. J. Chem. Educ. 60, 702–706 (1983).

    Article  CAS  Google Scholar 

  11. Mabbott, G. A. An introduction to cyclic voltammetry. J. Chem. Educ. 60, 697–702 (1983).

    Article  CAS  Google Scholar 

  12. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

    Google Scholar 

  13. Savéant, J.-M. & Su, K. B. Homogeneous redox catalysis of electrochemical reaction: part VI. Zone diagram representation of the kinetic regimes. J. Electroanal. Chem. Interfacial Electrochem. 171, 341–349 (1984).

    Article  Google Scholar 

  14. Savéant, J.-M. Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem. Rev. 108, 2348–2378 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Savéant, J.-M. Elements of Molecular and Biomolecular Electrochemistry (Wiley, 2006).

    Book  Google Scholar 

  16. Rountree, E. S., McCarthy, B. D., Eisenhart, T. T. & Dempsey, J. L. Evaluation of homogeneous electrocatalysts by cyclic voltammetry. Inorg. Chem. 53, 9983–10002 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Martin, D. J., McCarthy, B. D., Rountree, E. S. & Dempsey, J. L. Qualitative extension of the EC′ zone diagram to a molecular catalyst for a multi-electron, multi-substrate electrochemical reaction. Dalton Trans. 45, 9970–9976 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Nadjo, L., Savéant, J.-M. & Su, K. B. Homogeneous redox catalysis of multielectron electrochemical reactions: part II. Competition between homogeneous electron transfer and addition on the catalyst. J. Electroanal. Chem. Interfacial Electrochem. 196, 23–34 (1985).

    Article  CAS  Google Scholar 

  19. Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 134, 11235–11242 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Rountree, E. S., Martin, D. J., McCarthy, B. D. & Dempsey, J. L. Linear free energy relationships in the hydrogen evolution reaction: kinetic analysis of a cobaloxime catalyst. ACS Catal. 6, 3326–3335 (2016).

    Article  CAS  Google Scholar 

  21. Evans, D. H., O'Connell, K. M., Petersen, R. A. & Kelly, M. J. Cyclic voltammetry. J. Chem. Educ. 60, 290–293 (1983).

    Article  CAS  Google Scholar 

  22. Sampson, M. D. & Kubiak, C. P. Manganese electrocatalysts with bulky bipyridine ligands: utilizing Lewis acids to promote carbon dioxide reduction at low overpotentials. J. Am. Chem. Soc. 138, 1386–1393 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Sawyer, D. T., Sobkowiak, A. & Roberts, J. L. Electrochemistry for Chemists 2nd edn (Wiley, 1995).

    Google Scholar 

  24. Izutsu, K. Electrochemistry in Nonaqueous Solutions (Wiley, 2003).

    Google Scholar 

  25. Zoski, C. G. (ed.) Handbook of electrochemistry (Elsevier, 2006).

    Google Scholar 

  26. Costentin, C. & Savéant, J.-M. Cyclic voltammetry of electrocatalytic films: fast catalysis regimes. ChemElectroChem 2, 1774–1784 (2015).

    Article  CAS  Google Scholar 

  27. Costentin, C. & Savéant, J.-M. Cyclic voltammetry analysis of electrocatalytic films. J. Phys. Chem. C 119, 12174–12182 (2015).

    Article  CAS  Google Scholar 

  28. Costentin, C., Dridi, H. & Savéant, J.-M. Molecular catalysis of H2 evolution: diagnosing heterolytic versus homolytic pathways. J. Am. Chem. Soc. 136, 13727–13734 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Rountree, E. S. & Dempsey, J. L. Potential-dependent electrocatalytic pathways: controlling reactivity with p Ka for mechanistic investigation of a nickel-based hydrogen evolution catalyst. J. Am. Chem. Soc. 137, 13371–13380 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Rountree, E. S. & Dempsey, J. L. Reactivity of proton sources with a nickel hydride complex in acetonitrile: implications for the study of fuel-forming catalysts. Inorg. Chem. 55, 5079–5087 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Savéant, J.-M. & Vianello, E. Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents). Electrochim. Acta 10, 905–920 (1965).

    Article  Google Scholar 

  32. Delahay, P. & Stiehl, G. L. Theory of catalytic polarographic currents. J. Am. Chem. Soc. 74, 3500–3505 (1952).

    Article  CAS  Google Scholar 

  33. Bullock, R. M., Appel, A. M. & Helm, M. L. Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides. Chem. Commun. 50, 3125–3143 (2014).

    Article  CAS  Google Scholar 

  34. Thoi, V. S., Karunadasa, H. I., Surendranath, Y., Long, J. R. & Chang, C. J. Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum–oxo catalyst. Energy Environ. Sci. 5, 7762–7770 (2012).

    Article  CAS  Google Scholar 

  35. Hartley, C. L., DiRisio, R. J., Screen, M. E., Mayer, K. J. & McNamara, W. R. Iron polypyridyl complexes for photocatalytic hydrogen generation. Inorg. Chem. 55, 8865–8870 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Machan, C. W., Sampson, M. D. & Kubiak, C. P. A molecular ruthenium electrocatalyst for the reduction of carbon dioxide to CO and formate. J. Am. Chem. Soc. 137, 8564–8571 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Kal, S., Filatov, A. S. & Dinolfo, P. H. Electrocatalytic proton reduction by a dicobalt tetrakis-Schiff base macrocycle in nonaqueous electrolyte. Inorg. Chem. 53, 7137–7145 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Connor, G. P., Mayer, K. J., Tribble, C. S. & McNamara, W. R. Hydrogen evolution catalyzed by an iron polypyridyl complex in aqueous solutions. Inorg. Chem. 53, 5408–5410 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Bigi, J. P., Hanna, T. E., Harman, W. H., Chang, A. & Chang, C. J. Electrocatalytic reduction of protons to hydrogen by a water-compatible cobalt polypyridyl platform. Chem. Commun. 46, 958–960 (2010).

    Article  CAS  Google Scholar 

  41. Liu, T., DuBois, D. L. & Bullock, R. M. An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nat. Chem. 5, 228–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Costentin, C., Robert, M. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Costentin, C., Drouet, S., Passard, G., Robert, M. & Savéant, J.-M. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2 . J. Am. Chem. Soc. 135, 9023–9031 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Wiedner, E. S., Brown, H. J. S. & Helm, M. L. Kinetic analysis of competitive electrocatalytic pathways: new insights into hydrogen production with nickel electrocatalysts. J. Am. Chem. Soc. 138, 604–616 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Gomez-Mingot, M. et al. Bioinspired tungsten dithiolene catalysts for hydrogen evolution: a combined electrochemical, photochemical, and computational study. J. Phys. Chem. B 119, 13524–13533 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Graham, D. J. & Nocera, D. G. Electrocatalytic H2 evolution by proton-gated hangman iron porphyrins. Organometallics 33, 4994–5001 (2014).

    Article  CAS  Google Scholar 

  48. Elgrishi, N., Chambers, M. B. & Fontecave, M. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogenous CO2 reduction by cobalt–terpyridine complexes. Chem. Sci. 6, 2522–2531 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wiedner, E. S. & Bullock, R. M. Electrochemical detection of transient cobalt hydride intermediates of electrocatalytic hydrogen production. J. Am. Chem. Soc. 138, 8309–8318 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. A. Local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Costentin, C., Robert, M., Savéant, J.-M. & Tatin, A. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. Proc. Natl Acad. Sci. USA 112, 6882–6886 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Costentin, C., Passard, G., Robert, M. & Savéant, J.-M. Pendant acid–base groups in molecular catalysts: H-bond promoters or proton relays? Mechanisms of the conversion of CO2 to CO by electrogenerated iron(0) porphyrins bearing prepositioned phenol functionalities. J. Am. Chem. Soc. 136, 11821–11829 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Wasylenko, D. J., Rodríguez, C., Pegis, M. L. & Mayer, J. M. Direct comparison of electrochemical and spectrochemical kinetics for catalytic oxygen reduction. J. Am. Chem. Soc. 136, 12544–12547 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Pegis, M. L. et al. Homogenous electrocatalytic oxygen reduction rates correlate with reaction overpotential in acidic organic solutions. ACS Cent. Sci. 2, 850–856 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matheu, R., Neudeck, S., Meyer, F., Sala, X. & Llobet, A. Foot of the wave analysis for mechanistic elucidation and benchmarking applications in molecular water oxidation catalysis. ChemSusChem 9, 3361–3369 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Bediako, D. K. et al. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins. Proc. Natl Acad. Sci. USA 111, 15001–15006 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. McCarthy, B. D., Donley, C. L. & Dempsey, J. L. Electrode initiated proton-coupled electron transfer to promote degradation of a nickel(II) coordination complex. Chem. Sci. 6, 2827–2834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elgrishi, N., Kurtz, D. A. & Dempsey, J. L. Reaction parameters influencing cobalt hydride formation kinetics: implications for benchmarking H2-evolution catalysts. J. Am. Chem. Soc. 139, 239–244 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Roubelakis, M. M., Bediako, D. K., Dogutan, D. K. & Nocera, D. G. Proton-coupled electron transfer kinetics for the hydrogen evolution reaction of hangman porphyrins. Energy Environ. Sci. 5, 7737–7740 (2012).

    Article  CAS  Google Scholar 

  60. Costentin, C., Passard, G., Robert, M. & Savéant, J.-M. Concertedness in proton-coupled electron transfer cleavages of carbon–metal bonds illustrated by the reduction of an alkyl cobalt porphyrin. Chem. Sci. 4, 819–823 (2013).

    Article  CAS  Google Scholar 

  61. Rakowski DuBois, M. & DuBois, D. L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 38, 62–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. DuBois, D. L. Development of molecular electrocatalysts for energy storage. Inorg. Chem. 53, 3935–3960 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Connolly, P. & Espenson, J. H. Cobalt-catalyzed evolution of molecular hydrogen. Inorg. Chem. 25, 2684–2688 (1986).

    Article  CAS  Google Scholar 

  64. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Solis, B. H. & Hammes-Schiffer, S. Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes. Inorg. Chem. 50, 11252–11262 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Dempsey, J. L., Winkler, J. R. & Gray, H. B. Mechanism of H2 evolution from a photogenerated hydridocobaloxime. J. Am. Chem. Soc. 132, 16774–16776 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Dempsey, J. L., Winkler, J. R. & Gray, H. B. Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts. J. Am. Chem. Soc. 132, 1060–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Muckerman, J. T. & Fujita, E. Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime. Chem. Commun. 47, 12456–12458 (2011).

    Article  CAS  Google Scholar 

  69. Hu, X., Brunschwig, B. S. & Peters, J. C. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988–8998 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Razavet, M., Artero, V. & Fontecave, M. Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases. Inorg. Chem. 44, 4786–4795 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Hu, X., Cossairt, B. M., Brunschwig, B. S., Lewis, N. S. & Peters, J. C. Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chem. Commun. 4723–4725 (2005).

  72. Baffert, C., Artero, V. & Fontecave, M. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 46, 1817–1824 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Kaim, W. & Fiedler, J. Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 38, 3373–3382 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Solis, B. H., Maher, A. G., Dogutan, D. K., Nocera, D. G. & Hammes-Schiffer, S. Nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism. Proc. Natl Acad. Sci. USA 113, 485–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Zavarine, I. S. & Kubiak, C. P. A versatile variable temperature thin layer reflectance spectroelectrochemical cell. J. Electroanal. Chem. 495, 106–109 (2001).

    Article  CAS  Google Scholar 

  76. Kondrachova, L. et al. Electrochemical investigations of platinum phenylethynyl complexes. J. Electroanal. Chem. 576, 287–294 (2005).

    Article  CAS  Google Scholar 

  77. Flowers, P. A. & Strickland, J. C. Easily constructed microscale spectroelectrochemical cell. Spectrosc. Lett. 43, 528–533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Leblanc, N. et al. A fascinating multifaceted redox-active chelating ligand: introducing the N, N′-dimethyl-3,3′-biquinoxalinium “methylbiquinoxen” platform. Chem. Sci. 7, 3820–3828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Quinton, C. et al. Redox-controlled fluorescence modulation (electrofluorochromism) in triphenylamine derivatives. RSC Adv. 4, 34332–34342 (2014).

    Article  CAS  Google Scholar 

  80. Ibañez, D., Garoz-Ruiz, J., Heras, A. & Colina, A. Simultaneous UV-visible absorption and Raman spectroelectrochemistry. Anal. Chem. 88, 8210–8217 (2016).

    Article  PubMed  CAS  Google Scholar 

  81. Dias, M. et al. Electrochemistry coupled to fluorescence spectroscopy: a new versatile approach. Electrochem. Commun. 6, 325–330 (2004).

    Article  CAS  Google Scholar 

  82. Gora, M. et al. EPR and UV-vis spectroelectrochemical studies of diketopyrrolopyrroles disubstituted with alkylated thiophenes. Synth. Met. 216, 75–82 (2016).

    Article  CAS  Google Scholar 

  83. Pluczyk, S. et al. UV-vis and EPR spectroelectrochemical investigations of triarylamine functionalized arylene bisimides. RSC Adv. 5, 7401–7412 (2015).

    Article  CAS  Google Scholar 

  84. Machan, C. W., Sampson, M. D., Chabolla, S. A., Dang, T. & Kubiak, C. P. Developing a mechanistic understanding of molecular electrocatalysts for CO2 reduction using infrared spectroelectrochemistry. Organometallics 33, 4550–4559 (2014).

    Article  CAS  Google Scholar 

  85. Agnew, D. W. et al. Electrochemical properties and CO2-reduction ability of m-terphenyl isocyanide supported manganese tricarbonyl complexes. Inorg. Chem. 55, 12400–12408 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Cheung, P. L., Machan, C. W., Malkhasian, A. Y. S., Agarwal, J. & Kubiak, C. P. Photocatalytic reduction of carbon dioxide to CO and HCO2H using fac-Mn(CN)(bpy)(CO)3 . Inorg. Chem. 55, 3192–3198 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Froehlich, J. D. & Kubiak, C. P. The homogeneous reduction of CO2 by [Ni(cyclam)]+: increased catalytic rates with the addition of a CO scavenger. J. Am. Chem. Soc. 137, 3565–3573 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Machan, C. W. et al. Electrocatalytic reduction of carbon dioxide by Mn(CN)(2,2′-bipyridine)(CO)3: CN coordination alters mechanism. Inorg. Chem. 54, 8849–8856 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Stanton, C. J. III et al. Re(I) NHC complexes for electrocatalytic conversion of CO2 . Inorg. Chem. 55, 3136–3144 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Huang, J. & Korzeniewski, C. Temperature controlled cell for in situ infrared spectroelectrochemical measurements and its use in the study of CO isothermal desorption. J. Electroanal. Chem. 471, 146–150 (1999).

    Article  CAS  Google Scholar 

  91. Liu, M., Zhang, Y., Chen, Y., Xie, Q. & Yao, S. EQCM and in situ FTIR spectroelectrochemistry study on the electrochemical oxidation of TMB and the effect of large-sized anions. J. Electroanal. Chem. 622, 184–192 (2008).

    Article  CAS  Google Scholar 

  92. Shaffer, D. W. et al. Reactivity of a series of isostructural cobalt pincer complexes with CO2, CO, and H+. Inorg. Chem. 53, 13031–13041 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Grice, K. A., Gu, N. X., Sampson, M. D. & Kubiak, C. P. Carbon monoxide release catalysed by electron transfer: electrochemical and spectroscopic investigations of [Re(bpy-R)(CO)4](OTf) complexes relevant to CO2 reduction. Dalton Trans. 42, 8498–8503 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Smieja, J. M. et al. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg. Chem. 52, 2484–2491 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Smieja, J. M. & Kubiak, C. P. Re(bipy- tBu)(CO)3Cl–improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. Inorg. Chem. 49, 9283–9289 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Lei, C., Hu, D. & Ackerman, E. J. Single-molecule fluorescence spectroelectrochemistry of cresyl violet. Chem. Commun. 5490–5492 (2008).

  97. Audebert, P. & Miomandre, F. Electrofluorochromism: from molecular systems to set-up and display. Chem. Sci. 4, 575–584 (2013).

    Article  CAS  Google Scholar 

  98. Miomandre, F., Pansu, R. B., Audibert, J. F., Guerlin, A. & Mayer, C. R. Electrofluorochromism of a ruthenium complex investigated by time resolved TIRF microscopy coupled to an electrochemical cell. Electrochem. Commun. 20, 83–87 (2012).

    Article  CAS  Google Scholar 

  99. Miomandre, F. et al. Coupling thin layer electrochemistry with epifluorescence microscopy: an expedient way of investigating electrofluorochromism of organic dyes. Electrochem. Commun. 13, 574–577 (2011).

    Article  CAS  Google Scholar 

  100. Zhang, X. & Zwanziger, J. W. Design and applications of an in situ electrochemical NMR cell. J. Magn. Reson. 208, 136–147 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Klod, S., Ziegs, F. & Dunsch, L. In situ NMR spectroelectrochemistry of higher sensitivity by large scale electrodes. Anal. Chem. 81, 10262–10267 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Falck, D. & Niessen, W. M. A. Solution-phase electrochemistry-nuclear magnetic resonance of small organic molecules. Trends Anal. Chem. 70, 31–39 (2015).

    Article  CAS  Google Scholar 

  103. Bussy, U. & Boujtita, M. Review of advances in coupling electrochemistry and liquid state NMR. Talanta 136, 155–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Boisseau, R., Bussy, U., Giraudeau, P. & Boujtita, M. In situ ultrafast 2D NMR spectroelectrochemistry for real-time monitoring of redox reactions. Anal. Chem. 87, 372–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Wiltshire, R. J. K. et al. Channel-flow cell for X-ray absorption spectroelectrochemistry. J. Phys. Chem. C 113, 308–315 (2009).

    Article  CAS  Google Scholar 

  106. Murray, P. R. et al. An in situ electrochemical cell for Q- and W-band EPR spectroscopy. J. Magn. Reson. 213, 206–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Tamski, M. A. et al. Quantitative measurements in electrochemical electron paramagnetic resonance. Electrochim. Acta 213, 802–810 (2016).

    Article  CAS  Google Scholar 

  108. Christensen, P., Hamnett, A., Muir, A. V. G. & Timney, J. A. An in situ infrared study of CO2 reduction catalysed by rhenium tricarbonyl bipyridyl derivatives. J. Chem. Soc. Dalton Trans. 1455–1463 (1992).

  109. Vollmer, M. V. et al. Synthesis, spectroscopy, and electrochemistry of (α-diimine)M(CO)3Br, M = Mn, Re, complexes: ligands isoelectronic to bipyridyl show differences in CO2 reduction. Organometallics 34, 3–12 (2015).

    Article  CAS  Google Scholar 

  110. Machan, C. W. & Kubiak, C. P. Electrocatalytic reduction of carbon dioxide with Mn(terpyridine) carbonyl complexes. Dalton Trans. 45, 17179–17186 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Jones, L. H. Vibrational spectrum of nickel carbonyl. J. Chem. Phys. 28, 1215–1219 (1958).

    Article  CAS  Google Scholar 

  112. Payne, J. D. & Murr, N. E. Pathways for reduction of nickelocene under CO. J. Chem. Soc. Chem. Commun. 1137–1138 (1984).

  113. Bourrez, M., Steinmetz, R., Ott, S., Gloaguen, F. & Hammarström, L. Concerted proton-coupled electron transfer from a metal-hydride complex. Nat. Chem. 7, 140–145 (2015).

    Article  CAS  Google Scholar 

  114. Gagliardi, C. J., Murphy, C. F., Binstead, R. A., Thorp, H. H. & Meyer, T. J. Concerted electron proton transfer (EPT) in the oxidation of cysteine. J. Phys. Chem. C 119, 7028–7038 (2015).

    Article  CAS  Google Scholar 

  115. Braten, M. N., Gamelin, D. R. & Mayer, J. M. Reaction dynamics of proton-coupled electron transfer from reduced ZnO nanocrystals. ACS Nano 9, 10258–10267 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Symes, M. D., Surendranath, Y., Lutterman, D. A. & Nocera, D. G. Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst. J. Am. Chem. Soc. 133, 5174–5177 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Petek, M., Neal, T. E., McNeely, R. L. & Murray, R. W. Comparative spectroelectrochemical, stopped-flow kinetic, and polarographic study of the titanium(III)-hydroxylamine reaction. Anal. Chem. 45, 32–38 (1973).

    Article  CAS  Google Scholar 

  118. Kilgore, U. J. et al. Studies of a series of [Ni(PR2NPh2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorus atom of the P2N2 ligand. Inorg. Chem. 50, 10908–10918 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Ho, M.-H. et al. Ab initio-based kinetic modeling for the design of molecular catalysts: the case of H2 production electrocatalysts. ACS Catal. 5, 5436–5452 (2015).

    Article  CAS  Google Scholar 

  120. Wiese, S., Kilgore, U. J., DuBois, D. L. & Bullock, R. M. [Ni(PMe2NPh2)2](BF4)2 as an electrocatalyst for H2 production. ACS Catal. 2, 720–727 (2012).

    Article  CAS  Google Scholar 

  121. Wiedner, E. S. & Helm, M. L. Comparison of [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ as electrocatalysts for H2 production. Organometallics 33, 4617–4620 (2014).

    Article  CAS  Google Scholar 

  122. Rodenberg, A. et al. Mechanism of photocatalytic hydrogen generation by a polypyridyl-based cobalt catalyst in aqueous solution. Inorg. Chem. 54, 646–657 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Mirmohades, M. et al. Direct observation of key catalytic intermediates in a photoinduced proton reduction cycle with a diiron carbonyl complex. J. Am. Chem. Soc. 136, 17366–17369 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Lewandowska-Andralojc, A. et al. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine–amine cobalt complex. Inorg. Chem. 54, 4310–4321 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Moonshiram, D. et al. Tracking the structural and electronic configurations of a cobalt proton reduction catalyst in water. J. Am. Chem. Soc. 138, 10586–10596 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Greene, B. L., Wu, C.-H., McTernan, P. M., Adams, M. W. W. & Dyer, R. B. Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase. J. Am. Chem. Soc. 137, 4558–4566 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Grills, D. C. et al. Electrocatalytic CO2 reduction with a homogeneous catalyst in ionic liquid: high catalytic activity at low overpotential. J. Phys. Chem. Lett. 5, 2033–2038 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Kardash, D., Huang, J. & Korzeniewski, C. A jacketed cell for infrared spectroelectrochemistry at constant above ambient temperatures. J. Electroanal. Chem. 476, 95–100 (1999).

    Article  CAS  Google Scholar 

  129. Geskes, C. & Heinze, J. A spectroelectrochemical cell for measurements in highly purified solvents. J. Electroanal. Chem. 418, 167–173 (1996).

    Article  CAS  Google Scholar 

  130. Salbeck, J. An electrochemical cell for simultaneous electrochemical and spectroelectrochemical measurements under semi-infinite diffusion conditions and thin-layer conditions. J. Electroanal. Chem. 340, 169–195 (1992).

    Article  CAS  Google Scholar 

  131. Shaw, M. J. et al. Fiber-optic infrared reflectance spectroelectrochemistry: isomerization of a manganese pyranyl complex. J. Electroanal. Chem. 534, 47–53 (2002).

    Article  CAS  Google Scholar 

  132. Paengnakorn, P. et al. Infrared spectroscopy of the nitrogenase MoFe protein under electrochemical control: potential-triggered CO binding. Chem. Sci. 8, 1500–1505 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0015303. J.L.D. acknowledges support from a Packard Fellowship for Science and Engineering and the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian L. Dempsey.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Elgrishi, N., Kandemir, B. et al. Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nat Rev Chem 1, 0039 (2017). https://doi.org/10.1038/s41570-017-0039

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing