Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Opinion: Quantum solutions for a sustainable energy future

Abstract

Humanity's technological, economic and societal progress since the onset of the industrial revolution has left us facing one of the greatest challenges in history, as well as the tools to solve it: how to power our world sustainably while minimizing environmental harm. In this Perspective, we highlight the important role that quantum chemistry has in sustainable energy research and our vision of its future impact. Important technical problems in the field of sustainable energy and their potential quantum solutions are covered. The development of advanced quantum mechanical methods, which can be combined with other simulation tools, affords insights that will help to secure our energy and environmental future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accuracy and size regimes of some quantum methods.
Figure 2: Timeline of sustainable energy technologies that can be targeted by quantum solutions.

Similar content being viewed by others

References

  1. Caine, M. et al. Our high-energy planet — a climate pragmatism project. Breakthrough Institutehttp://thebreakthrough.org/images/pdfs/Our-High-Energy-Planet.pdf (2014).

  2. Carter, E. A. Challenges in modeling materials properties without experimental input. Science 321, 800–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Schrödinger, E. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1928).

    Article  Google Scholar 

  4. Helgaker, T., Jørgensen, P. & Olsen, J. Molecular Electronic-Structure Theory (Wiley, 2002).

    Google Scholar 

  5. Saebo, S. & Pulay, P. Local treatment of electron correlation. Annu. Rev. Phys. Chem. 44, 213–236 (1993).

    Article  CAS  Google Scholar 

  6. Korona, T. et al. in Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications (eds Zalesny, R., Papadopoulos, M. G., Mezey, P. G. & Leszczynski, J. ) 345–407 (Springer Science+Business Media, 2011).

    Book  Google Scholar 

  7. Krisiloff, D. B., Dieterich, J. M., Libisch, F. & Carter, E. A. in Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts (ed. Melnick, R. ) 59–91 (Wiley, 2015).

    Book  Google Scholar 

  8. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  9. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  10. Jensen, F. Describing anions by density functional theory: fractional electron affinity. J. Chem. Theory Comput. 6, 2726–2735 (2010).

    Article  CAS  Google Scholar 

  11. Cohen, A. J., Mori-Sanchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Burke, K. Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Becke, A. D. Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Iikura, H., Tsuneda, T., Yanai, T. & Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 115, 3540–3544 (2001).

    Article  CAS  Google Scholar 

  15. Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    Article  CAS  Google Scholar 

  16. Lee, K., Murray, E. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Article  CAS  Google Scholar 

  17. Grimme, S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1, 211–228 (2011).

    Article  CAS  Google Scholar 

  18. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  19. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functional based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  20. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    CAS  Google Scholar 

  21. Medvedev, M. G., Bushmarinov, I. S., Sun, J., Perdew, J. P. & Lyssenki, K. A. Density functional theory is straying from the path toward the exact functional. Science 355, 49–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Jones, R. O. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–924 (2015).

    Article  Google Scholar 

  23. Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, 1415 (2016).

    Article  CAS  Google Scholar 

  24. Jacquemin, D., Perpete, E. A., Scuseria, G. E., Ciofini, I. & Adamo, C. Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chem. Phys. Lett. 465, 226–229 (2008).

    Article  CAS  Google Scholar 

  25. Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V. & Scuseria, G. E. Accurate solid-state band gaps via screened hybrid electronic structure calculations. J. Chem. Phys. 129, 011102 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Neese, F. Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev. 253, 526–563 (2009).

    Article  CAS  Google Scholar 

  27. Aarons, J., Sarwar, M., Thompsett, D. & Skylaris, C.-K. Perspective: methods for large-scale density functional calculations on metallic systems. J. Chem. Phys. 145, 220901 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. A. & Carter, E. A. in Theoretical Methods in Condensed Phase Chemistry Vol. 5 (ed. Schwartz, S. D. ) 117–184 (Springer, 2002).

    Book  Google Scholar 

  29. Hung, L. & Carter, E. A. Accurate simulations of metals at the mesoscale: explicit treatment of 1 million atoms with quantum mechanics. Chem. Phys. Lett. 475, 163–170 (2009).

    Article  CAS  Google Scholar 

  30. Chen, M. et al. Introducing PROFESS 3.0: an advanced program for orbital-free density functional theory molecular dynamics simulations. Comp. Phys. Comm. 190, 228–230 (2015).

    Article  CAS  Google Scholar 

  31. Chen, M., Jiang, X., Zhuang, H., Wang, L. & Carter, E. A. Petascale orbital-free density functional theory enabled by small-box algorithms. J. Chem. Theory Comput. 12, 2950–2963 (2016).

    Article  CAS  Google Scholar 

  32. Wang, Y. A., Govind, N. & Carter, E. A. Orbital-free kinetic energy density functionals with a density-dependent kernel. Phys. Rev. B 60, 16350 (1999).

    Article  CAS  Google Scholar 

  33. Wang, Y. A., Govind, N. & Carter, E. A. Erratum: orbital-free kinetic-energy density functionals with a density-dependent kernel [Phys. Rev. B 60 16350 (1999)]. Phys. Rev. B 64, 089903 (2001).

    Article  CAS  Google Scholar 

  34. Huang, C. & Carter, E. A. Nonlocal orbital-free kinetic energy density functional for semiconductors. Phys. Rev. B 81, 045206 (2010).

    Article  CAS  Google Scholar 

  35. Xia, J. & Carter, E. A. Density-decomposed orbital-free density functional theory for covalently bonded molecules and materials. Phys. Rev. B 86, 235109 (2012).

    Article  CAS  Google Scholar 

  36. García-Aldea, D. & Alvarellos, J. E. in Theoretical and Computational Developments in Modern Density Functional Theory (ed. Roy, A. K. ) 255–280 (Nova Science, 2012).

    Google Scholar 

  37. Wesolowski, T. A. & Wang, Y. A. (eds) Recent Progress in Orbital-free Density Functional Theory (World Scientific, 2013).

    Book  Google Scholar 

  38. Shin, I. & Carter, E. A. Enhanced von Weizsäcker Wang–Govind–Carter kinetic energy density functional for semiconductors. J. Chem. Phys 104, 18A531 (2014).

    Article  CAS  Google Scholar 

  39. Ke, Y., Libisch, F., Xia, J., Wang, L.-W. & Carter, E. A. Angular momentum dependent orbital free density functional theory. Phys. Rev. Lett. 111, 066402 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Ke, Y., Libisch, F., Xia, J. & Carter, E. A. Angular momentum dependent orbital free density functional theory: formulation and implementation. Phys. Rev. B 89, 155112 (2014).

    Article  CAS  Google Scholar 

  41. Stewart, J. J. P. Optimization of parameters for semiempirical methods. I. Method. J. Comput. Chem. 10, 209–220 (1989).

    Article  CAS  Google Scholar 

  42. Wahiduzzaman, M. et al. DFTB Parameters for the periodic table: part 1, electronic structure. J. Chem. Theory Comput. 9, 4006–4017 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Thiel, W. Semiempirical quantum-chemical methods. WIREs Comput. Mol. Sci. 4, 145–157 (2013).

    Article  CAS  Google Scholar 

  44. Stewart, J. J. P. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. Int. J. Quantum Chem. 58, 133–146 (1996).

    Article  CAS  Google Scholar 

  45. Gordon, M. S., Fedorov, D. G., Pruitt, S. R. & Slipchenko, L. V. Fragmentation methods: a route to accurate calculations on large systems. Chem. Rev. 112, 632–672 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Libisch, F., Huang, C. & Carter, E. A. Embedded correlated wavefunction schemes: theory and applications. Acc. Chem. Res. 47, 2768–2775 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Senn, H. M. & Thiel, W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 48, 1198–1229 (2009).

    Article  CAS  Google Scholar 

  48. Wales, D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  49. Sutto, L., Marsili, S. & Gervasio, F. L. New advances in metadynamics. WIREs Comput. Mol. Sci. 2, 771–779 (2012).

    Article  CAS  Google Scholar 

  50. Oyeyemi, V. B., Dieterich, J. M., Krisiloff, D. B., Tan, T. & Carter, E. A. Bond dissociation energies of C10 and C18 methyl esters from local multireference averaged-coupled pair functional theory. J. Phys. Chem. A 119, 3429–3439 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Frequently Asked Questions: What Is U.S. Electricity Generation by Energy Source?. EIA https://www.eia.gov/tools/faqs/faq.cfm?id=427&t3 (US Energy Information Administration, 2016).

  52. Fusion Energy via Magnetic Confinement. http://acee.princeton.edu/distillates/fusion-energy-via-magnetic-confinement/ (Andlinger Center for Energy and the Environment, 2016).

  53. Johnson, D. F. & Carter, E. A. Hydrogen in tungsten: absorption, diffusion, vacancy trapping, and decohesion. J. Mater. Res. 25, 315–327 (2010).

    Article  CAS  Google Scholar 

  54. Christofilos, N. C. Design for a high power-density Astron reactor. J. Fusion Energy 8, 97–105 (1989).

    Article  CAS  Google Scholar 

  55. Abdou, M. A. et al. On the exploration of innovative concepts for fusion chamber technology. Fusion Eng. Des. 54, 181–247 (2001).

    Article  CAS  Google Scholar 

  56. Majeski, R. et al. Performance projections for the lithium tokamak experiment (LTX). Nucl. Fusion 49, 055014 (2009).

    Article  CAS  Google Scholar 

  57. Chen, M., Abrams, T., Jaworski, M. & Carter, E. A. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study. Nucl. Fusion 56, 016020 (2016).

    Article  CAS  Google Scholar 

  58. Abrams, T. et al. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation. Nucl. Fusion 56, 016022 (2016).

    Article  CAS  Google Scholar 

  59. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, G., Larson, E. D., Williams, R. H. & Guo, X. Gasoline from coal and/or biomass with CO2 capture and storage. 1. Process designs and performance analysis. Energy Fuels 29, 1830–1844 (2015).

    Article  CAS  Google Scholar 

  61. Liu, G., Larson, E. D., Williams, R. H. & Guo, X. Gasoline from coal and/or biomass with CO2 capture and storage. 2. Economic analysis and strategic context. Energy Fuels 29, 1845–1859 (2015).

    Article  CAS  Google Scholar 

  62. Barton, E., Rampulla, D. M. & Bocarsly, A. B. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable Earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015).

    Article  CAS  Google Scholar 

  64. Agrafiotis, C., Roeb, M. & Sattler, C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renewable Sustainable Energy Rev. 42, 254–285 (2015).

    Article  CAS  Google Scholar 

  65. Felsmann, D. et al. Contributions to improving small ester combustion chemistry: theory, model and experiments. Proc. Comb. Inst. 36, 543–551 (2017).

    Article  CAS  Google Scholar 

  66. Hoeinghaus-Kohse, K. et al. Biofuel combustion chemistry: from ethanol to biodiesel. Angew. Chem. Int. Ed. 49, 3572–3597 (2010).

    Article  CAS  Google Scholar 

  67. D'Allessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).

    Article  CAS  Google Scholar 

  68. Liao, P. & Carter, E. A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42, 2401–2422 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, M., Hung, L., Huang, C., Xia, J. & Carter, E. A. The melting point of lithium: an orbital-free first-principles molecular dynamics study. Mol. Phys. 111, 3448–3456 (2013).

    Article  CAS  Google Scholar 

  70. Chen, M. et al. Liquid Li structure and dynamics: a comparison between OFDFT and second nearest-neighbor embedded-atom method. AlChE J. 6, 2841–2853 (2015).

    Article  CAS  Google Scholar 

  71. Chen, M. et al. Effect of temperature on the desorption of lithium from molybdenum (110) surfaces: implications for fusion reactor first wall materials. J. Phys. Chem. B 120, 6110–6119 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Shu, H. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  CAS  Google Scholar 

  73. Alidoust, N., Toroker, M. C. & Carter, E. A. Revisiting photoemission and inverse photoemission spectra of nickel oxide from first principles: implications for solar energy conversion. J. Phys. Chem. B 118, 7963–7971 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alidoust, N., Toroker, M. C., Keith, J. A. & Carter, E. A. Significant reduction in nickel(ii) oxide band gap upon alloying with lithium oxide: applications to solar energy conversion. ChemSusChem 7, 195–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Alidoust, N. & Carter, E. A. First-principles assessment of hole transport in pure and Li-doped NiO. Phys. Chem. Chem. Phys. 17, 18098–18110 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Alidoust, N. & Carter, E. A. Three-dimensional hole transport in nickel oxide by alloying with MgO or ZnO. J. Appl. Phys. 118, 185102 (2015).

    Article  CAS  Google Scholar 

  77. Lessio, M., Senftle, T. P. & Carter, E. A. Is the surface playing a role during pyridine-catalyzed CO2 reduction on p-GaP photoelectrodes? ACS Energy Lett. 1, 464–468 (2016).

    Article  CAS  Google Scholar 

  78. Calle-Vallejo, F. & Koper, M. T. M. First-principles computational electrochemistry: achievements and challenges. Electrochim. Acta 84, 3–11 (2012).

    Article  CAS  Google Scholar 

  79. Lessio, M., Riplinger, C. & Carter, E. A. Stability of surface protons in pyridine-catalyzed CO2 reduction at p-GaP photoelectrodes. Phys. Chem. Chem. Phys. 18, 26434–26443 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, M. S. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Fujitani, T., Nakamura, I., Akita, T., Okamura, M. & Haruta, M. Hydrogen dissociation by gold clusters. Angew. Chem. Int. Ed. 48, 9515–9518 (2009).

    Article  CAS  Google Scholar 

  82. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. DeSantis, C. J., McClain, M. J. & Halas, N. J. Walking the walk: a giant step toward sustainable plasmonics. ACS Nano 10, 9772–9775 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Zhuo, L. et al. Aluminium nanocrystal as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett. 16, 1478–1484 (2016).

    Article  CAS  Google Scholar 

  87. Oyeyemi, V. B., Keith, J. A. & Carter, E. A. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations. J. Phys. Chem. A 118, 7392 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Tan, T., Yang, X., Krauter, C. M., Ju, Y. & Carter, E. A. Ab initio kinetics of hydrogen abstraction from methyl acetate by hydrogen, methyl, oxygen, hydroxyl and hydroperoxy radicals. J. Phys. Chem. A 119, 6377–6390 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Tan, T., Yang, X., Ju, Y. & Carter, E. A. Ab initio unimolecular reaction kinetics of CH2C(=O)OCH3 and CH3C(=O)OCH2 radicals. J. Phys. Chem. A 119, 10553–10562 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Tan, T., Yang, X., Ju, Y. & Carter, E. A. Ab initio pressure-dependent reaction kinetics of methyl propanoate radicals. Phys. Chem. Chem. Phys. 17, 31061– 31072 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Tan, T., Yang, X., Yu, Y. & Carter, E. A. Ab initio reaction kinetics of CH3OC(=O) and CH2OC(=O)H radicals. J. Phys. Chem. B 120, 1590–1600 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Tan, T., Yang, X., Yu, Y. & Carter, E. A. Ab initio kinetics studies of hydrogen atom abstraction from methyl propanoate. Phys. Chem. Chem. Phys. 18, 4594–4607 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank N. Baughman for assistance with the manuscript and G. Turk, W. C. Witt and E. Dieterich for reviews. E.A.C. thanks the US Air Force Office of Scientific Research, the US National Science Foundation, the US Office of Naval Research, the US Army Research Office, and the US Department of Energy, Basic Energy Sciences and Fusion Energy Sciences, for their support of her sustainable energy and quantum mechanics research programmes over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily A. Carter.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Complexity scaling

The time that a given algorithm takes to produce a solution as a function of input data size (N). Marked as O(Nx), where O is order, x = 1 denotes linear complexity scaling, x = 2 is quadratic and so on.

Excited states

All allowed energy states of a quantum mechanical system that are not the ground state.

Quasi-linear

Complexity scaling of O(N log(N)) difficulty, where O is order and N is some measure of system size (for example, number of electrons, number of atoms or number of orbitals).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieterich, J., Carter, E. Opinion: Quantum solutions for a sustainable energy future. Nat Rev Chem 1, 0032 (2017). https://doi.org/10.1038/s41570-017-0032

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing