Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Examining the relationship between coordination mode and reactivity of dinitrogen

Abstract

Molecular nitrogen (N2) is the most abundant gas in Earth's atmosphere, but its low reactivity has hampered its use as a precursor to higher value nitrogen-containing compounds. Coordination of N2 to metal centres offers a way to overcome this intrinsic inertness and allows the discovery of new transformations. The expanding family of isolable N2 coordination complexes exhibits various bonding modes that, in particular cases, facilitate catalytic or stoichiometric transformations of the N2 unit. In this Review, we survey metal complexes of N2 in order to correlate bonding mode with functionalization propensity. Although many factors influence the functionalization of N2, we propose that coordination mode could be more important than previously recognized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N2 coordinated in a terminal end-on manner is reactive towards acids and electrophiles.
Figure 2: Terminal end-on N2 complexes supported by N- and/or P-donor ligands as catalyst precursors for N2 reductions.
Figure 3: Reduction of bridging end-on N2 complexes to metal nitride species.
Figure 4: Catalytic ammonia production facilitated by a dimolybdenum complex bearing end-on bridging and terminal N2 ligands.
Figure 5: Complexes of bridging side-on N2 can afford various organic and organometallic products.
Figure 6: Dinuclear group 4 metal complexes of bridging side-on N2 undergo electrophilic attack to afford various N-containing products.
Figure 7: Complexes of side-on end-on N2 can be prepared through different routes and react with Lewis acids and unsaturates.

Similar content being viewed by others

References

  1. Andino, J. G., Mazumder, S., Pal, K. & Caulton, K. G. New approaches to functionalizing metal-coordinated N2 . Angew. Chem. Int. Ed. 52, 4726–4732 (2013).

    Article  CAS  Google Scholar 

  2. Hidai, M. Chemical nitrogen fixation by molybdenum and tungsten complexes. Coord. Chem. Rev. 185186, 99–108 (1999).

    Article  Google Scholar 

  3. Appl, M. Ammonia (Wiley-VCH, 1999).

    Book  Google Scholar 

  4. Khoenkhoen, N., de Bruin, B., Reek, J. N. H. & Dzik, W. I. Reactivity of dinitrogen bound to mid- and late-transition-metal centers. Eur. J. Inorg. Chem. 2015, 567–598 (2015).

    Article  CAS  Google Scholar 

  5. Fryzuk, M. D. N2 coordination. Chem. Commun. 49, 4866–4868 (2013).

    Article  CAS  Google Scholar 

  6. Tanabe, Y. & Nishibayashi, Y. Catalytic dinitrogen fixation to form ammonia at ambient reaction conditions using transition metal–dinitrogen complexes. Chem. Rec. 16, 1549–1577 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Nishibayashi, Y. Molybdenum-catalyzed reduction of molecular dinitrogen into ammonia under ambient reaction conditions. C. R. Chim. 18, 776–784 (2015).

    Article  CAS  Google Scholar 

  8. Nishibayashi, Y. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. Inorg. Chem. 54, 9234–9247 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment. Angew. Chem. Int. Ed. 47, 5512–5522 (2008).

    Article  CAS  Google Scholar 

  10. Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Einsle, O. Nitrogenase FeMo cofactor: an atomic structure in three simple steps. J. Biol. Inorg. Chem. 19, 737–745 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Lancaster, K. M. et al. X-Ray emission spectroscopy evidences a central carbon in the nitrogenase iron–molybdenum cofactor. Science 334, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siegbahn, P. E. M. Model calculations suggest that the central carbon in the FeMo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation. J. Am. Chem. Soc. 138, 10485–10495 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Gambarotta, S. & Scott, J. Multimetallic cooperative activation of N2 . Angew. Chem. Int. Ed. 43, 5298–5308 (2004).

    Article  CAS  Google Scholar 

  16. MacKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. Rev. 104, 385–402 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Studt, F. & Tuczek, F. Theoretical, spectroscopic, and mechanistic studies on transition-metal dinitrogen complexes: implications to reactivity and relevance to the nitrogenase problem. J. Comput. Chem. 27, 1278–1291 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Chirik, P. J. Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Trans. 2007, 16–25 (2007).

    Article  Google Scholar 

  19. Jia, H.-P. & Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Semproni, S. P. & Chirik, P. J. Dinitrogen borylation with group 4 metallocene complexes. Eur. J. Inorg. Chem. 2013, 3907–3915 (2013).

    Article  CAS  Google Scholar 

  21. Figg, T. M., Holland, P. L. & Cundari, T. R. Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation. Inorg. Chem. 51, 7546–7550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fryzuk, M. D. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res. 42, 127–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Allen, A. D. & Senoff, C. V. Nitrogenopentammineruthenium(II) complexes. Chem. Commun. 621–622 (1965).

  24. Leigh, G. J. Protonation of coordinated dinitrogen. Acc. Chem. Res. 25, 177–181 (1992).

    Article  CAS  Google Scholar 

  25. Harrison, D. F., Weissberger, E. & Taube, H. Binuclear ion containing nitrogen as a bridging group. Science 159, 320–322 (1968).

    Article  CAS  PubMed  Google Scholar 

  26. Chatt, J., Dilworth, J. R., Leigh, G. J. & Richards, R. L. Polynuclear dinitrogen complexes. J. Chem. Soc. D 1970, 955–956 (1970).

    Article  Google Scholar 

  27. Fryzuk, M. D., Haddad, T. S., Mylvaganam, M., McConville, D. H. & Rettig, S. J. End-on versus side-on bonding of dinitrogen to dinuclear early transition-metal complexes. J. Am. Chem. Soc. 115, 2782–2792 (1993).

    Article  CAS  Google Scholar 

  28. MacLachlan, E. A. & Fryzuk, M. D. Synthesis and reactivity of side-on-bound dinitrogen metal complexes. Organometallics 25, 1530–1543 (2006).

    Article  CAS  Google Scholar 

  29. Evans, W. J., Ulibarri, T. A. & Ziller, J. W. Isolation and X-ray crystal structure of the first dinitrogen complex of an f-element metal, [(C5Me5)2Sm]2N2 . J. Am. Chem. Soc. 110, 6877–6879 (1988).

    Article  CAS  Google Scholar 

  30. Fomitchev, D. V., Bagley, K. A. & Coppens, P. The first crystallographic evidence for side-on coordination of N2 to a single metal center in a photoinduced metastable state. J. Am. Chem. Soc. 122, 532–533 (2000).

    Article  CAS  Google Scholar 

  31. Murray, L. J., Weare, W. W., Shearer, J., Mitchell, A. D. & Abboud, K. A. Isolation of a (dinitrogen)tricopper(I) complex. J. Am. Chem. Soc. 136, 13502–13505 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Pun, D., Lobkovsky, E. & Chirik, P. J. Indenyl zirconium dinitrogen chemistry: N2 coordination to an isolated zirconium sandwich and synthesis of side-on, end-on dinitrogen compounds. J. Am. Chem. Soc. 130, 6047–6054 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Bernskoetter, W. H., Lobkovsky, E. & Chirik, P. J. Kinetics and mechanism of N2 hydrogenation in bis(cyclopentadienyl) zirconium complexes and dinitrogen functionalization by 1,2-addition of a saturated C–H bond. J. Am. Chem. Soc. 127, 14051–14061 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Pun, D., Bradley, C. A., Lobkovsky, E., Keresztes, I. & Chirik, P. J. N2 hydrogenation from activated end-on bis(indenyl) zirconium dinitrogen complexes. J. Am. Chem. Soc. 130, 14046–14047 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Semproni, S. P., Knobloch, D. J., Milsmann, C. & Chirik, P. J. Redox-induced N2 hapticity switching in zirconocene dinitrogen complexes. Angew. Chem. Int. Ed. 52, 5372–5376 (2013).

    Article  CAS  Google Scholar 

  36. Fontaine, P. P., Yonke, B. L., Zavalij, P. Y. & Sita, L. R. Dinitrogen complexation and extent of N≡N activation within the group 6 “end-on-bridged” dinuclear complexes, {(η5-C5Me5)M[N(i-Pr)C(Me)N(i-Pr)]}2(μ-η11-N2) (M = Mo and W). J. Am. Chem. Soc. 132, 12273–12285 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Keane, A. J., Yonke, B. L., Hirotsu, M., Zavalij, P. Y. & Sita, L. R. Fine-tuning the energy barrier for metal-mediated dinitrogen N≡N bond cleavage. J. Am. Chem. Soc. 136, 9906–9909 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi, T., Mizobe, Y., Sato, M., Uchida, Y. & Hidai, M. Protonation reactions of molybdenum and tungsten dinitrogen complexes with halogen acids. Hydride hydrazido(2−) and diazenido complexes as intermediate stages of reduction. J. Am. Chem. Soc. 102, 7461–7467 (1980).

    Article  CAS  Google Scholar 

  39. Oshita, H., Mizobe, Y. & Hidai, M. Preparation and properties of molybdenum and tungsten dinitrogen complexes: XLI. Silylation and germylation of a coordinated dinitrogen in cis-[M(N2)2(PMe2Ph)4](M = Mo, W) using R3ECl/NaI and R3ECl/Na mixtures (E = Si, Ge). X-Ray structure of trans-[WI(NNGePh3)(PMe2Ph)4]·C6H6 . J. Organomet. Chem. 456, 213–220 (1993).

    Article  CAS  Google Scholar 

  40. Hidai, M. & Mizobe, Y. Recent advances in the chemistry of dinitrogen complexes. Chem. Rev. 95, 1115–1133 (1995).

    Article  CAS  Google Scholar 

  41. Diamantis, A. A., Chatt, J., Leigh, G. J. & Heath, G. A. The alkylation of ligating dinitrogen to form alkylazo and related complexes. J. Organomet. Chem. 84, C11–C12 (1975).

    Article  CAS  Google Scholar 

  42. Chatt, J., Heath, G. A. & Richards, R. L. Diazene-N (di-imide) and hydrazido-(2)N(aminoimido) complexes: the addition of acids to dinitrogen complexes. J. Chem. Soc. Dalton Trans. 1974, 2074–2082 (1974).

    Article  Google Scholar 

  43. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. MacBeth, C. E., Harkins, S. B. & Peters, J. C. Synthesis and characterization of cationic iron complexes supported by the neutral ligands NPi - Pr3, NArPi - Pr3, and NSt - Bu3 . Can. J. Chem. 83, 332–340 (2005).

    Article  CAS  Google Scholar 

  45. Moret, M.-E. & Peters, J. C. N2 functionalization at iron metallaboratranes. J. Am. Chem. Soc. 133, 18118–18121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moret, M.-E. & Peters, J. C. Terminal iron dinitrogen and iron imide complexes supported by a tris(phosphino)borane ligand. Angew. Chem. Int. Ed. 50, 2063–2067 (2011).

    Article  CAS  Google Scholar 

  47. Mankad, N. P., Whited, M. T. & Peters, J. C. Terminal Fe(I)–N2 and Fe(II)···H–C interactions supported by tris(phosphino)silyl ligands. Angew. Chem. Int. Ed. 46, 5768–5771 (2007).

    Article  CAS  Google Scholar 

  48. Creutz, S. E. & Peters, J. C. Catalytic reduction of N2 to NH3 by an Fe–N2 complex featuring a C-atom anchor. J. Am. Chem. Soc. 136, 1105–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Margulieux, G. W., Turner, Z. R. & Chirik, P. J. Synthesis and ligand modification chemistry of a molybdenum dinitrogen complex: redox and chemical activity of a bis(imino)pyridine ligand. Angew. Chem. Int. Ed. 53, 14211–14215 (2014).

    Article  CAS  Google Scholar 

  50. Zhang, Y., Williard, P. G. & Bernskoetter, W. H. Synthesis and characterization of pincer-molybdenum precatalysts for CO2 hydrogenation. Organometallics 35, 860–865 (2016).

    Article  CAS  Google Scholar 

  51. Jiménez-Tenorio, M., Puerta, M. C. & Valerga, P. Activation of propargyl alcohols by TpRu complexes bearing a bidentate NHC ligand. Organometallics 35, 388–399 (2016).

    Article  CAS  Google Scholar 

  52. Ung, G. & Peters, J. C. Low-temperature N2 binding to two-coordinate L2Fe0 enables reductive trapping of L2FeN2− and NH3 generation. Angew. Chem. Int. Ed. 54, 532–535 (2015).

    CAS  Google Scholar 

  53. Betley, T. A. & Peters, J. C. Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. J. Am. Chem. Soc. 125, 10782–10783 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Doyle, L. R., Hill, P. J., Wildgoose, G. G. & Ashley, A. E. Teaching old compounds new tricks: efficient N2 fixation by simple Fe(N2)(diphosphine)2 complexes. Dalton Trans. 45, 7550–7554 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Kuriyama, S. et al. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nat. Commun. 7, 12181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rittle, J. & Peters, J. C. An Fe–N2 complex that generates hydrazine and ammonia via Fe=NNH2: demonstrating a hybrid distal-to-alternating pathway for N2 reduction. J. Am. Chem. Soc. 138, 4243–4248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hill, P. J., Doyle, L. R., Crawford, A. D., Myers, W. K. & Ashley, A. E. Selective catalytic reduction of N2 to N2H4 by a simple Fe complex. J. Am. Chem. Soc. 138, 13521–13524 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Arashiba, K. et al. Catalytic reduction of dinitrogen to ammonia by use of molybdenum–nitride complexes bearing a tridentate triphosphine as catalysts. J. Am. Chem. Soc. 137, 5666–5669 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Komori, K., Oshita, H., Mizobe, Y. & Hidai, M. Catalytic conversion of molecular nitrogen into silylamines using molybdenum and tungsten dinitrogen complexes. J. Am. Chem. Soc. 111, 1939–1940 (1989).

    Article  CAS  Google Scholar 

  62. Yuki, M. et al. Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions. Nat. Commun. 3, 1254 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Del Castillo, T. J., Thompson, N. B. & Peters, J. C. A synthetic single-site Fe Nitrogenase: high turnover, freeze-quench 57Fe Mössbauer data, and a hydride resting state. J. Am. Chem. Soc. 138, 5341–5350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuriyama, S. et al. Direct transformation of molecular dinitrogen into ammonia catalyzed by cobalt dinitrogen complexes bearing anionic PNP pincer ligands. Angew. Chem. Int. Ed. 55, 14291–14295 (2016).

    Article  CAS  Google Scholar 

  65. Chatt, J., Dilworth, J. R. & Richards, R. L. Recent advances in the chemistry of nitrogen fixation. Chem. Rev. 78, 589–625 (1978).

    Article  CAS  Google Scholar 

  66. McNaughton, R. L. et al. Experimental and theoretical EPR study of Jahn–Teller-active [HIPTN3N]MoL complexes (L = N2, CO, NH3). J. Am. Chem. Soc. 132, 8645–8656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kinney, R. A., McNaughton, R. L., Chin, J. M., Schrock, R. R. & Hoffman, B. M. Protonation of the dinitrogen-reduction catalyst [HIPTN3N]MoIII investigated by ENDOR spectroscopy. Inorg. Chem. 50, 418–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Schenk, S., Le Guennic, B., Kirchner, B. & Reiher, M. First-principles investigation of the Schrock mechanism of dinitrogen reduction employing the full HIPTN3N ligand. Inorg. Chem. 47, 3634–3650 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Tuczek, F., Horn, K. H. & Lehnert, N. Vibrational spectroscopic properties of molybdenum and tungsten N2 and N2Hx complexes with depe coligands: comparison to dppe systems and influence of H-bridges. Coord. Chem. Rev. 245, 107–120 (2003).

    Article  CAS  Google Scholar 

  70. Shiina, K. Reductive silylation of molecular nitrogen viafixation to tris(trialkylsilyl)amine. J. Am. Chem. Soc. 94, 9266–9267 (1972).

    Article  CAS  Google Scholar 

  71. Tanaka, H. et al. Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands. J. Am. Chem. Soc. 133, 3498–3506 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Siedschlag, R. B. et al. Catalytic silylation of dinitrogen with a dicobalt complex. J. Am. Chem. Soc. 137, 4638–4641 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Cammarota, R. C., Clouston, L. J. & Lu, C. C. Leveraging molecular metal–support interactions for H2 and N2 activation. Coord. Chem. Rev. 334, 100–111 (2017).

    Article  CAS  Google Scholar 

  74. Clouston, L. J., Bernales, V., Carlson, R. K., Gagliardi, L. & Lu, C. C. Bimetallic cobalt–dinitrogen complexes: impact of the supporting metal on N2 activation. Inorg. Chem. 54, 9263–9270 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Liao, Q., Saffon-Merceron, N. & Mézailles, N. N2 reduction into silylamine at tridentate phosphine/Mo center: catalysis and mechanistic study. ACS Catal. 5, 6902–6906 (2015).

    Article  CAS  Google Scholar 

  76. Imayoshi, R. et al. Cobalt-catalyzed transformation of molecular dinitrogen into silylamine under ambient reaction conditions. Chem. Eur. J. 21, 8905–8909 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Bazhenova, T. A. & Shilov, A. E. Nitrogen fixation in solution. Coord. Chem. Rev. 144, 69–145 (1995).

    Article  CAS  Google Scholar 

  78. Hall, D. A. & Leigh, G. J. Reduction of dinitrogen bound at an iron(0) centre. J. Chem. Soc. Dalton Trans. 1996, 3539–3541 (1996).

    Article  Google Scholar 

  79. Bezdek, M. J., Guo, S. & Chirik, P. J. Terpyridine molybdenum dinitrogen chemistry: synthesis of dinitrogen complexes that vary by five oxidation states. Inorg. Chem. 55, 3117–3127 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Manriquez, J. M. & Bercaw, J. E. Preparation of a dinitrogen complex of bis(pentamethylcyclopentadienyl)zirconium(II). Isolation and protonation leading to stoichiometric reduction of dinitrogen to hydrazine. J. Am. Chem. Soc. 96, 6229–6230 (1974).

    Article  CAS  Google Scholar 

  81. Manriquez, J. M., Sanner, R. D., Marsh, R. E. & Bercaw, J. E. Reduction of molecular nitrogen to hydrazine. Structure of a dinitrogen complex of bis(pentamethylcyclopentadienyl)zirconium(II) and an 15N labeling study of its reaction with hydrogen chloride. J. Am. Chem. Soc. 98, 3042–3044 (1976).

    Article  CAS  Google Scholar 

  82. Dilworth, J. R. et al. The chemistry of niobium and tantalum dithiocarbamato-complexes. Part 1. Synthesis, structure, and protonation of dinitrogen-bridged complexes. J. Chem. Soc. Dalton Trans. 1990, 1077–1085 (1990).

    Article  Google Scholar 

  83. Henderson, R. A., Morgan, S. H. & Stephens, A. N. The chemistry of niobium and tantalum dithiocarbamato-complexes. Part 5. The kinetics and mechanism of the hydrazine-forming reactions between [{M(S2CNEt2)3}2(μ-N2)](M = Nb or Ta) and acid: rate-limiting protonation. J. Chem. Soc. Dalton Trans. 1990, 1101–1106 (1990).

    Article  Google Scholar 

  84. Henderson, R. A. & Morgan, S. H. The chemistry of niobium and tantalum dithiocarbamato-complexes. Part 6. The kinetics and mechanism of the hydrazine-forming reactions between [{Ta(S2CNEt2)3}2(μ-N2)] and HBr: cleavage of the binuclear unit. J. Chem. Soc. Dalton Trans. 1990, 1107–1109 (1990).

    Article  Google Scholar 

  85. Laplaza, C. E. & Cummins, C. C. Dinitrogen cleavage by a three-coordinate molybdenum(III) complex. Science 268, 861–863 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Laplaza, C. E. et al. Dinitrogen cleavage by three-coordinate molybdenum(III) complexes: mechanistic and structural data. J. Am. Chem. Soc. 118, 8623–8638 (1996).

    Article  CAS  Google Scholar 

  87. Fryzuk, M. D., Love, J. B. & Rettig, S. J. Facile P2N2 macrocycle formation promoted by lithium templating. The X-ray crystal structures of syn-Li2(thf)(P2N2) and anti-Li2(thf)2(P2N2)[P2N2 = PhP(CH2SiMe2NSiMe2CH2)2PPh]. Chem. Commun. 2783–2784 (1996).

  88. Fryzuk, M. D., Kozak, C. M., Bowdridge, M. R., Patrick, B. O. & Rettig, S. J. Nitride formation by thermolysis of a kinetically stable niobium dinitrogen complex. J. Am. Chem. Soc. 124, 8389–8397 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Hirotsu, M., Fontaine, P. P., Epshteyn, A. & Sita, L. R. Dinitrogen activation at ambient temperatures: new modes of H2 and PhSiH3 additions for an “end-on-bridged” [Ta(IV)]2(μ-η:η1-N2) complex and for the bis(μ-nitrido) [Ta(V)(μ-N)]2 product derived from facile N≡N bond cleavage. J. Am. Chem. Soc. 129, 9284–9285 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Keane, A. J., Farrell, W. S., Yonke, B. L., Zavalij, P. Y. & Sita, L. R. Metal-mediated production of isocyanates, R3EN=C=O from dinitrogen, carbon dioxide, and R3ECl. Angew. Chem. Int. Ed. 54, 10220–10224 (2015).

    Article  CAS  Google Scholar 

  91. Duman, L. M., Farrell, W. S., Zavalij, P. Y. & Sita, L. R. Steric switching from photochemical to thermal reaction pathways for enhanced efficiency in metal-mediated nitrogen fixation. J. Am. Chem. Soc. 138, 14856–14859 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. McWilliams, S. F. & Holland, P. L. Dinitrogen binding and cleavage by multinuclear iron complexes. Acc. Chem. Res. 48, 2059–2065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Smith, J. M. et al. Studies of low-coordinate iron dinitrogen complexes. J. Am. Chem. Soc. 128, 756–769 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Smith, J. M. et al. Stepwise reduction of dinitrogen bond order by a low-coordinate iron complex. J. Am. Chem. Soc. 123, 9222–9223 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. Reduction and hydrogenation to ammonia by a molecular iron–potassium complex. Science 334, 780–783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Connor, G. P. & Holland, P. L. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catal. Today http://dx.doi.org/10.1016/j.cattod.2016.08.014 (2016).

  97. Klopsch, I. et al. Dinitrogen splitting and functionalization in the coordination sphere of rhenium. J. Am. Chem. Soc. 136, 6881–6883 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Klopsch, I., Kinauer, M., Finger, M., Würtele, C. & Schneider, S. Conversion of dinitrogen into acetonitrile under ambient conditions. Angew. Chem. Int. Ed. 55, 4786–4789 (2016).

    Article  CAS  Google Scholar 

  99. Tanaka, H. et al. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. Nat. Commun. 5, 3737 (2014).

    Article  PubMed  Google Scholar 

  100. Tanaka, H., Nishibayashi, Y. & Yoshizawa, K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 49, 987–995 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 3, 120–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Kuriyama, S. et al. Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum-dinitrogen complexes: unique behavior of ferrocene moiety as redox active site. Chem. Sci. 6, 3940–3951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hebden, T. J., Schrock, R. R., Takase, M. K. & Muller, P. Cleavage of dinitrogen to yield a (t-BuPOCOP)molybdenum(IV) nitride. Chem. Commun. 48, 1851–1853 (2012).

    Article  CAS  Google Scholar 

  104. Mindiola, D. J., Meyer, K., Cherry, J.-P. F., Baker, T. A. & Cummins, C. C. Dinitrogen cleavage stemming from a heterodinuclear niobium/molybdenum N2 complex: new nitridoniobium systems including a niobazene cyclic trimer. Organometallics 19, 1622–1624 (2000).

    Article  CAS  Google Scholar 

  105. Fryzuk, M. D., Haddad, T. S. & Rettig, S. J. Reduction of dinitrogen by a zirconium phosphine complex to form a side-on-bridging N2 ligand. Crystal structure of {[iPr2PCH2SiMe2)2N]ZrCl}2(μ-η22-N2). J. Am. Chem. Soc. 112, 8185–8186 (1990).

    Article  CAS  Google Scholar 

  106. Hirotsu, M., Fontaine, P. P., Zavalij, P. Y. & Sita, L. R. Extreme N≡N bond elongation and facile N-atom functionalization reactions within two structurally versatile new families of group 4 bimetallic “side-on-bridged” dinitrogen complexes for zirconium and hafnium. J. Am. Chem. Soc. 129, 12690–12692 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Fryzuk, M. D., Love, J. B., Rettig, S. J. & Young, V. G. Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 275, 1445–1447 (1997).

    Article  CAS  Google Scholar 

  108. Morello, L., Love, J. B., Patrick, B. O. & Fryzuk, M. D. Carbon–nitrogen bond formation via the reaction of terminal alkynes with a dinuclear side-on dinitrogen complex. J. Am. Chem. Soc. 126, 9480–9481 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Pool, J. A., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Bernskoetter, W. H., Lobkovsky, E. & Chirik, P. J. Nitrogen–carbon bond formation from N2 and CO2 promoted by a hafnocene dinitrogen complex yields a substituted hydrazine. Angew. Chem. Int. Ed. 46, 2858–2861 (2007).

    Article  CAS  Google Scholar 

  111. Benito-Garagorri, D., Bernskoetter, W. H., Lobkovsky, E. & Chirik, P. J. 1,4-Addition of alkyl halides to a side-on bound hafnocene dinitrogen complex. Organometallics 28, 4807–4813 (2009).

    Article  CAS  Google Scholar 

  112. Knobloch, D. J. et al. Addition of methyl triflate to a hafnocene dinitrogen complex: stepwise N2 methylation and conversion to a hafnocene hydrazonato compound. J. Am. Chem. Soc. 131, 14903–14912 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Semproni, S. P., Lobkovsky, E. & Chirik, P. J. Dinitrogen silylation and cleavage with a hafnocene complex. J. Am. Chem. Soc. 133, 10406–10409 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Semproni, S. P., Milsmann, C. & Chirik, P. J. Structure and reactivity of a hafnocene μ-nitrido prepared from dinitrogen cleavage. Angew. Chem. Int. Ed. 51, 5213–5216 (2012).

    Article  CAS  Google Scholar 

  115. Semproni, S. P. & Chirik, P. J. Synthesis of a base-free hafnium nitride from N2 cleavage: a versatile platform for dinitrogen functionalization. J. Am. Chem. Soc. 135, 11373–11383 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Semproni, S. P. & Chirik, P. J. N–H and N–C bond formation with an N2-derived dihafnium μ-nitrido complex. Organometallics 33, 3727–3737 (2014).

    Article  CAS  Google Scholar 

  117. Semproni, S. P. & Chirik, P. J. Activation of dinitrogen-derived hafnium nitrides for nucleophilic N–C bond formation with a terminal isocyanate. Angew. Chem. Int. Ed. 52, 12965–12969 (2013).

    Article  CAS  Google Scholar 

  118. Hanna, T. E., Lobkovsky, E. & Chirik, P. J. Dinitrogen complexes of bis(cyclopentadienyl) titanium derivatives: structural diversity arising from substituent manipulation. Organometallics 28, 4079–4088 (2009).

    Article  CAS  Google Scholar 

  119. Knobloch, D. J., Toomey, H. E. & Chirik, P. J. Carboxylation of an ansa-zirconocene dinitrogen complex: regiospecific hydrazine synthesis from N2 and CO2 . J. Am. Chem. Soc. 130, 4248–4249 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Knobloch, D. J., Lobkovsky, E. & Chirik, P. J. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. Nat. Chem. 2, 30–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Knobloch, D. J., Lobkovsky, E. & Chirik, P. J. Carbon monoxide-induced dinitrogen cleavage with group 4 metallocenes: reaction scope and coupling to N–H bond formation and CO deoxygenation. J. Am. Chem. Soc. 132, 10553–10564 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Semproni, S. P., Margulieux, G. W. & Chirik, P. J. Di- and tetrametallic hafnocene oxamidides prepared from CO-induced N2 bond cleavage and thermal rearrangement to hafnocene cyanide derivatives. Organometallics 31, 6278–6287 (2012).

    Article  CAS  Google Scholar 

  123. Knobloch, D. J., Semproni, S. P., Lobkovsky, E. & Chirik, P. J. Studies into the mechanism of CO-induced N2 cleavage promoted by an ansa-hafnocene complex and C–C bond formation from an observed intermediate. J. Am. Chem. Soc. 134, 3377–3386 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Fryzuk, M. D., Johnson, S. A. & Rettig, S. J. New mode of coordination for the dinitrogen ligand: a dinuclear tantalum complex with a bridging N2 unit that is both side-on and end-on. J. Am. Chem. Soc. 120, 11024–11025 (1998).

    Article  CAS  Google Scholar 

  125. Fryzuk, M. D. et al. New mode of coordination for the dinitrogen ligand: formation, bonding, and reactivity of a tantalum complex with a bridging N2 unit that is both side-on and end-on. J. Am. Chem. Soc. 123, 3960–3973 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Ballmann, J., Munha, R. F. & Fryzuk, M. D. The hydride route to the preparation of dinitrogen complexes. Chem. Commun. 46, 1013–1025 (2010).

    Article  CAS  Google Scholar 

  127. Fryzuk, M. D., MacKay, B. A., Johnson, S. A. & Patrick, B. O. Hydroboration of coordinated dinitrogen: a new reaction for the N2 ligand that results in its functionalization and cleavage. Angew. Chem. Int. Ed. 41, 3709–3712 (2002).

    Article  CAS  Google Scholar 

  128. Fryzuk, M. D., MacKay, B. A. & Patrick, B. O. Hydrosilylation of a dinuclear tantalum dinitrogen complex: cleavage of N2 and functionalization of both nitrogen atoms. J. Am. Chem. Soc. 125, 3234–3235 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. MacKay, B. A., Patrick, B. O. & Fryzuk, M. D. Hydroalumination of a dinuclear tantalum dinitrogen complex: N–N bond cleavage and ancillary ligand rearrangement. Organometallics 24, 3836–3841 (2005).

    Article  CAS  Google Scholar 

  130. Ballmann, J., Yeo, A., Patrick, B. O. & Fryzuk, M. D. Carbon–nitrogen bond formation by the reaction of 1,2-cumulenes with a ditantalum complex containing side-on- and end-on-bound dinitrogen. Angew. Chem. Int. Ed. 50, 507–510 (2011).

    Article  CAS  Google Scholar 

  131. Burford, R. J., Yeo, A. & Fryzuk, M. D. Dinitrogen activation by group 4 and group 5 metal complexes supported by phosphine-amido containing ligand manifolds. Coord. Chem. Rev. 334, 84–99 (2016).

    Article  CAS  Google Scholar 

  132. Ermert, D. M. & Murray, L. J. Insights into small molecule activation by multinuclear first-row transition metal cyclophanates. Dalton Trans. 45, 14499–14507 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Semproni, S. P., Milsmann, C. & Chirik, P. J. Side-on dinitrogen complexes of titanocenes with disubstituted cyclopentadienyl ligands: synthesis, structure, and spectroscopic characterization. Organometallics 31, 3672–3682 (2012).

    Article  CAS  Google Scholar 

  134. Shima, T. et al. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340, 1549–1552 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for continued financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Fryzuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burford, R., Fryzuk, M. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat Rev Chem 1, 0026 (2017). https://doi.org/10.1038/s41570-017-0026

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing