Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ins and outs of microorganism–electrode electron transfer reactions

Abstract

Electron transfer between microorganisms and an electrode — even across long distances — enables the former to live by coupling to an electronic circuit. Such a system integrates biological metabolism with artificial electronics; studying these systems adds to our knowledge of charge transport in the chemical species involved, as well as, perhaps most importantly, to our knowledge of charge transport and chemistry at the cell–electrode interfaces. This understanding may lead to microbial electrochemical systems finding widespread application, particularly in the energy sector. Bioelectrochemical systems have already shown promise for electricity generation, as well as for the production of biochemical and chemical feedstocks, and with improvement are likely to give rise to viable applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline showing recent major achievements in anodic and cathodic microbial electrosynthesis and electrocatalysis research.
Figure 2: The distinct EET mechanisms operative in Geobacter spp. and Shewanella spp.
Figure 3: Probing EET on the microscale.
Figure 4: Microfabricated wells and nanoelectrodes enable in situ EET current measurement of single Geobacter sulfurreducens DL-1 microorganisms.
Figure 5: A schematic image of a fuel cell incorporating a conventional anode (here performing H2O oxidation) coupled to a microbial biocathode.
Figure 6: Three proposed electron transfer pathways by which microorganisms perform extracellular electron uptake.
Figure 7: Functional groups are grafted onto electrode surfaces to give ‘engineered electrodes’.

Similar content being viewed by others

References

  1. Rabaey, K. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application (IWA Publishing, 2009).

    Google Scholar 

  2. Logan, B. E. et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenbaum, M. A. & Franks, A. E. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl. Microbiol. Biotechnol. 98, 509–518 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H. & Ren, Z. J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796–1807 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Bajracharya, S. et al. An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew. Energy 98, 153–170 (2016).

    Article  CAS  Google Scholar 

  6. Schröder, U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9, 2619–2629 (2007).

    Article  PubMed  Google Scholar 

  7. Mathuriya, A. S. & Yakhmi, J. V. Microbial fuel cells — applications for generation of electrical power and beyond. Crit. Rev. Microbiol. 7828, 1–17 (2014).

    Google Scholar 

  8. Leech, D., Kavanagh, P. & Schuhmann, W. Enzymatic fuel cells: recent progress. Electrochim. Acta 84, 223–234 (2012).

    Article  CAS  Google Scholar 

  9. Habermüller, K., Mosbach, M. & Schuhmann, W. Electron-transfer mechanisms in amperometric biosensors. Fresenius. J. Anal. Chem. 366, 560–568 (2000).

    Article  PubMed  Google Scholar 

  10. Falk, M., Blum, Z. & Shleev, S. Direct electron transfer based enzymatic fuel cells. Electrochim. Acta 82, 191–202 (2012).

    Article  CAS  Google Scholar 

  11. Ghindilis, A. L., Atanasov, P. & Wilkins, E. Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9, 661–674 (1997).

    Article  CAS  Google Scholar 

  12. Osman, M. H., Shah, A. A. & Walsh, F. C. Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells. Biosens. Bioelectron. 26, 3087–3102 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Schröder, U., Harnisch, F. & Angenent, L. T. Microbial electrochemistry and technology: terminology and classification. Energy Environ. Sci. 8, 513–519 (2015).

    Article  CAS  Google Scholar 

  14. Willner, I. & Katz, E. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. 39, 1180–1218 (2000).

    Article  CAS  Google Scholar 

  15. Moehlenbrock, M. J. & Minteer, S. D. Extended lifetime biofuel cells. Chem. Soc. Rev. 37, 1188–1196 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, J., Jia, H. & Wang, P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 24, 296–308 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Potter, M. C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B. 84, 260–276 (1911).

    Article  Google Scholar 

  18. Cohen, B. The bacterial culture as an electrical half-cell. J. Bacteriol. 21, 18–19 (1931).

    CAS  Google Scholar 

  19. Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358–11363 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newman, D. K. & Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 405, 94–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Shi, L., Squier, T. C., Zachara, J. M. & Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12–20 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nealson, K. H. & Rowe, A. R. Electromicrobiology: realities, grand challenges, goals and predictions. Microb. Biotechnol. 9, 595–600 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wei, J., Liang, P. & Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102, 9335–9344 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Torres, C. I. et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34, 3–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Y., Xu, M., Guo, J. & Sun, G. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem. 47, 1707–1714 (2012).

    Article  CAS  Google Scholar 

  28. Patil, S. A., Hägerhäll, C. & Gorton, L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal. Rev. 4, 159–192 (2012).

    Article  Google Scholar 

  29. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996).

    Article  CAS  Google Scholar 

  30. Roden, E. E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417–421 (2010).

    Article  CAS  Google Scholar 

  31. Ordonez, M. V., Schrott, G. D., Massazza, D. A. & Busalmen, J. P. The relay network of Geobacter biofilms. Energy Environ. Sci. 9, 2677–2681 (2016).

    Article  CAS  Google Scholar 

  32. Mowat, C. G. & Chapman, S. K. Multi-heme cytochromes—new structures, new chemistry. Dalton Trans. 3381–3389 (2005).

  33. Mehta, T., Coppi, M. V., Childers, S. E. & Lovley, D. R. Outer membrane c-type cytochromes required for Fe(iii) and Mn(iv) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71, 8634–8641 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holmes, D. E. et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8, 1805–1815 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Nevin, K. P. et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4, e5628 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Richter, H. et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ. Sci. 2, 506–516 (2009).

    Article  CAS  Google Scholar 

  37. Coursolle, D., Baron, D. B., Bond, D. R. & Gralnick, J. A. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 192, 467–474 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Breuer, M., Rosso, K. M., Blumberger, J. & Butt, J. N. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J. R. Soc. Interface 12, 20141117 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bond, D. R., Strycharz-Glaven, S. M., Tender, L. M. & Torres, C. I. On electron transport through Geobacter biofilms. ChemSusChem 5, 1099–1105 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Malvankar, N. S. & Lovley, D. R. in Biofilms in Bioelectrochemical Systems: From Laboratory Practice to Data Interpretation (eds Beyenal, H. & Babauta, J. ) 220–222 (Wiley, 2015).

    Google Scholar 

  42. Xu, S., Jangir, Y. & El-Naggar, M. Y. Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochim. Acta 198, 49–55 (2016).

    Article  CAS  Google Scholar 

  43. Rabaey, K., Boon, N., Siciliano, S. D., Verstraete, W. & Verhaege, M. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shrestha, P. M. & Rotaru, A. E. Plugging in or going wireless: strategies for interspecies electron transfer. Front. Microbiol. 5, 237 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Malvankar, N. S. et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573–579 (2011).

    Article  PubMed  Google Scholar 

  46. Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl Acad. Sci. USA 111, 12883–12888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malvankar, N. S., Rotello, V. M., Tuominen, M. T. & Lovley, D. R. Reply to ‘Measuring conductivity of living Geobacter sulfurreducens biofilms’. Nat. Nanotechnol. 11, 913–914 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Yates, M. D. et al. Measuring conductivity of living Geobacter sulfurreducens biofilms. Nat. Nanotechnol. 11, 910–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Malvankar, N. S. & Lovley, D. R. Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5, 1039–1046 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Malvankar, N. S., Tuominen, M. T. & Lovley, D. R. Comment on “On electrical conductivity of microbial nanowires & biofilms” by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender. Energy Environ. Sci., 2011, 4, 4366. Energy Environ. Sci. 5, 6247–6249 (2012).

    Google Scholar 

  51. Strycharz-Glaven, S. M. & Tender, L. M. Reply to the ‘Comment on “On electrical conductivity of microbial nanowires & biofilms”’ by N. S. Malvankar, M. T. Tuominen and D. R. Lovley. Energy Environ. Sci., 2012, 5, DOI:10.1039/c2ee02613a. Energy Environ. Sci. 5, 6250–6255 (2012).

    Article  CAS  Google Scholar 

  52. Strycharz-Glaven, S. M., Snider, R. M., Guiseppi-Elie, A. & Tender, L. M. On the electrical conductivity of microbial nanowires and biofilms. Energy Environ. Sci. 4, 4366–4379 (2011).

    Article  CAS  Google Scholar 

  53. Torres, C. I., Marcus, A. K., Parameswaran, P. & Rittmann, B. E. Kinetic experiments for evaluating the Nernst–Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol. 42, 6593–6597 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Yoho, R. A., Popat, S. C., Rago, L., Guisasola, A. & Torres, C. I. Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways. Langmuir 31, 12552–12559 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Katuri, K. P., Kavanagh, P., Rengaraj, S. & Leech, D. Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry. Chem. Commun. 46, 4758–4760 (2010).

    Article  CAS  Google Scholar 

  56. Strycharz, S. M. et al. Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400. Energy Environ. Sci. 4, 896–913 (2011).

    Article  CAS  Google Scholar 

  57. Yates, M. D. et al. Thermally activated long range electron transport in living biofilms. Phys. Chem. Chem. Phys. 17, 32564–32570 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Snider, R. M., Strycharz-Glaven, S. M., Tsoi, S. D., Erickson, J. S. & Tender, L. M. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl Acad. Sci. USA 109, 15467–15472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schrott, G. D., Bonanni, P. S., Robuschi, L., Esteve-Nuñez, A. & Busalmen, J. P. Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens. Electrochim. Acta 56, 10791–10795 (2011).

    Article  CAS  Google Scholar 

  60. El-Naggar, M. Y., Gorby, Y., Xia, W. & Nealson, K. H. The molecular density of states in bacterial nanowires. Biophys. J. 95, L10–L12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pirbadian, S. & El-Naggar, M. Y. Multistep hopping and extracellular charge transfer in microbial redox chains. Phys. Chem. Chem. Phys. 14, 13802–13808 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Yang, Y. et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4, 815–823 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Tao, L. et al. Improving mediated electron transport in anodic bioelectrocatalysis. Chem. Commun. 51, 12170–12173 (2015).

    Article  CAS  Google Scholar 

  64. Yong, X. Y. et al. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour. Technol. 152, 220–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Kirchhofer, N. D. et al. The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1 — a mechanistic study. Phys. Chem. Chem. Phys. 16, 20436–20443 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Hou, H. et al. Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 25, 1593–1597 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, V. B. et al. Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1. Electrochem. Commun. 41, 55–58 (2014).

    Article  CAS  Google Scholar 

  68. Xie, X. et al. Three-dimensional carbon nanotube−textile anode for high-performance microbial fuel cells. Nano Lett. 11, 291–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Xie, X. et al. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 5, 6862–6866 (2012).

    Article  CAS  Google Scholar 

  70. Ji, J. et al. A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell. Colloids Surf. A 390, 56–61 (2011).

    Article  CAS  Google Scholar 

  71. Jiang, X. et al. Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 14, 6737–6742 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Harnisch, F. & Rabaey, K. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization. ChemSusChem 5, 1027–1038 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Millo, D. et al. In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance Raman spectroscopy. Angew. Chem. Int. Ed. 50, 2625–2627 (2011).

    Article  CAS  Google Scholar 

  74. Liu, Y., Kim, H., Franklin, R. R. & Bond, D. R. Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. ChemPhysChem 12, 2235–2241 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Lower, B. H. et al. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J. Bacteriol. 189, 4944–4952 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Z., Venkataraman, A., Rosenbaum, M. A. & Angenent, L. T. A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity. ChemSusChem 5, 1119–1123 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Choi, S. Microscale microbial fuel cells: advances and challenges. Biosens. Bioelectron. 69, 8–25 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Gross, B. J. & El-Naggar, M. Y. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces. Rev. Sci. Instrum. 86, 064301 (2015).

    Article  PubMed  CAS  Google Scholar 

  79. Jiang, X. et al. Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nat. Commun. 4, 2751 (2013).

    Article  PubMed  CAS  Google Scholar 

  80. Jiang, X. et al. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl Acad. Sci. USA 107, 16806–16810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hol, F. J. H. & Dekker, C. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 346, 1251821 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Weber, K. A., Achenbach, L. A. & Coates, J. D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Enning, D. & Garrelfs, J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl. Environ. Microbiol. 80, 1226–1236 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Dinh, H. T. et al. Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Gregory, K. B., Bond, D. R. & Lovley, D. R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596–604 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A. & Bond, D. R. Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 6, e16649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Strycharz, S. M. et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80, 142–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Tremblay, P. L. & Zhang, T. Electrifying microbes for the production of chemicals. Front. Microbiol. 6, 201 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Strycharz, S. M. et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 74, 5943–5947 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hsu, L., Masuda, S. A., Nealson, K. H. & Pirbazari, M. Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination. RSC Adv. 2, 5844–5855 (2012).

    Article  CAS  Google Scholar 

  91. Gregory, K. B. & Lovley, D. R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943–8947 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Williams, K. H., Bargar, J. R., Lloyd, J. R. & Lovley, D. R. Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry. Curr. Opin. Biotechnol. 24, 489–497 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, e00103-10 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Nevin, K. P. et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882–2886 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Choi, O., Kim, T., Woo, H. M. & Um, Y. Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci. Rep. 4, 6961 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng, S., Xing, D., Call, D. F. & Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Deutzmann, J. S., Sahin, M. & Spormann, A. M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6, e00496-15 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bose, A., Gardel, E. J., Vidoudez, C., Parra, E. A. & Girguis, P. R. Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun. 5, 3391 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Deng, X., Nakamura, R., Hashimoto, K. & Okamoto, A. Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier. Electrochemistry 83, 529–531 (2015).

    Article  CAS  Google Scholar 

  101. Claassens, N. J., Sousa, D. Z., Martins dos Santos, V. A. P., de Vos, W. M. & van der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Kavanagh, P. & Leech, D. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives. Phys. Chem. Chem. Phys. 15, 4859–4869 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Gallaway, J. W. & Calabrese Barton, S. A. Kinetics of redox polymer-mediated enzyme electrodes. J. Am. Chem. Soc. 130, 8527–8536 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, J. L., Lowy, D. A., Baumann, R. G. & Tender, L. M. Influence of anode pretreatment on its microbial colonization. J. Appl. Microbiol. 102, 177–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Saito, T. et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresour. Technol. 102, 395–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Guo, K. et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 47, 7563–7570 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Kumar, A., Conghaile, P. O., Katuri, K., Lens, P. & Leech, D. Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. RSC Adv. 3, 18759–18761 (2013).

    Article  CAS  Google Scholar 

  108. Guo, K. et al. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environ. Sci. Technol. 48, 7151–7156 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, X. W., Li, W.-W. & Yu, H. Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem. Soc. Rev. 43, 7718–7745 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Jourdin, L. et al. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2, 13093–13102 (2014).

    Article  CAS  Google Scholar 

  111. Marsili, E., Sun, J. & Bond, D. R. Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential. Electroanalysis 22, 865–874 (2010).

    Article  CAS  Google Scholar 

  112. Dumas, C., Basseguy, R. & Bergel, A. Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta 53, 5235–5241 (2008).

    Article  CAS  Google Scholar 

  113. Erable, B. et al. Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry 78, 51–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Finkelstein, D. A., Tender, L. M. & Zeikus, J. G. Effect of electrode potential on electrode-reducing microbiota. Environ. Sci. Technol. 40, 6990–6995 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Picot, M., Lapinsonnière, L., Rothballer, M. & Barrière, F. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosens. Bioelectron. 28, 181–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Smith, R. A. J., Porteous, C. M., Gane, A. M. & Murphy, M. P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA 100, 5407–5412 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lapinsonnière, L., Picot, M., Poriel, C. & Barrière, F. Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances. Electroanalysis 25, 601–605 (2013).

    Article  CAS  Google Scholar 

  118. Ding, C., Lv, M., Zhu, Y., Jiang, L. & Liu, H. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew. Chem. Int. Ed. 54, 1446–1451 (2015).

    Article  CAS  Google Scholar 

  119. Parameswaran, P., Torres, C. I., Lee, H. S., Krajmalnik-Brown, R. & Rittmann, B. E. Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnol. Bioeng. 103, 513–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Cracknell, J. A., Vincent, K. A. & Armstrong, F. A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439–2461 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. El Kasmi, A., Wallace, J. M., Bowden, E. F., Binet, S. M. & Linderman, R. J. Controlling interfacial electron-transfer kinetics of cytochrome c with mixed self-assembled monolayers. J. Am. Chem. Soc. 120, 225–226 (1998).

    Article  Google Scholar 

  122. Wang, G. X., Bao, W. J., Wang, M. & Xia, X. H. Heme plane orientation dependent direct electron transfer of cytochrome c at SAMs/Au electrodes with different wettability. Chem. Commun. 48, 10859–10861 (2012).

    Article  CAS  Google Scholar 

  123. Song, S., Clark, R. A., Bowden, E. F. & Tarlov, M. J. Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on gold. J. Phys. Chem. 97, 6564–6572 (1993).

    Article  CAS  Google Scholar 

  124. Hasan, K., Patil, S., Leech, D., Hägerhäll, C. & Gorton, L. Electrochemical communication between microbial cells and electrodes via osmium redox systems. Biochem. Soc. Trans. 40, 1330–1335 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Ghach, W., Etienne, M., Urbanova, V., Jorand, F. P. A. & Walcarius, A. Sol–gel based ‘artificial’ biofilm from Pseudomonas fluorescens using bovine heart cytochrome c as electron mediator. Electrochem. Commun. 38, 71–74 (2014).

    Article  CAS  Google Scholar 

  126. Heller, A. Electrical wiring of redox enzymes. Acc. Chem. Res. 23, 128–134 (1990).

    Article  CAS  Google Scholar 

  127. Hamidi, H. et al. Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes. ChemSusChem 8, 990–993 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Hasan, K. et al. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 16, 24676–24680 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Nie, H. et al. Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys. 15, 14290–14294 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, T. et al. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6, 217–224 (2013).

    Article  CAS  Google Scholar 

  131. Popat, S. C., Ki, D., Rittmann, B. E. & Torres, C. I. Importance of OH transport from cathodes in microbial fuel cells. ChemSusChem 5, 1071–1079 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Lebedev, N., Strycharz-Glaven, S. M. & Tender, L. M. High resolution AFM and single-cell resonance Raman spectroscopy of Geobacter sulfurreducens biofilms early in growth. Front. Energy Res. 2, 34 (2014).

    Article  Google Scholar 

  133. Kumar, A. et al. Catalytic response of microbial biofilms grown under fixed anode potentials depends on electrochemical cell configuration. Chem. Eng. J. 230, 532–536 (2013).

    Article  CAS  Google Scholar 

  134. Jana, P. S., Katuri, K., Kavanagh, P., Kumar, A. & Leech, D. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness. Phys. Chem. Chem. Phys. 16, 9039–9046 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Kumar, A., Katuri, K., Lens, P. & Leech, D. Does bioelectrochemical cell configuration and anode potential affect biofilm response? Biochem. Soc. Trans. 40, 1308–1314 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Tender, L. M. et al. The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J. Power Sources 179, 571–575 (2008).

    Article  CAS  Google Scholar 

  137. Chaudhuri, S. K. & Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21, 1229–1232 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Kim, H. J. et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30, 145–152 (2002).

    Article  CAS  Google Scholar 

  139. Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Myers, C. R. & Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321 (1988).

    Article  CAS  PubMed  Google Scholar 

  141. Yates, M. D. et al. Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community. Energy Environ. Sci. 9, 3544–3588 (2016).

    Article  CAS  Google Scholar 

  142. Ueki, T., Nevin, K. P., Woodard, T. L. & Lovley, D. R. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5, e01636-14 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kane, A. L., Bond, D. R. & Gralnick, J. A. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synth. Biol. 2, 93–101 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank their national and international granting agencies, in particular the ESBCO2 project (PIOF-GA-2011-302964). The work of A.K. is supported by an EU Marie Curie International Outgoing Fellowship for Career Development and D.L., P.K., L.L. and F.B are supported by the Ulysses France–Ireland programme. The authors thank G. Stephanopoulos, S. Glaven and L. Tender for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Bioelectrochemical system (BES).

A microbial reactor — a fuel cell or electrolysis cell — that uses a microbial electrocatalyst.

Microbial electrosynthesis (MES).

An electrode reaction that results in the intentional generation of a useful chemical product (for example, hydrogen or butanol).

Microbial electrocatalyst

A microorganism that catalyses an electrode reaction.

Extracellular electron transfer

(EET). The process by which electrons are transferred outside the cell by shuttles or wires (for example, redox proteins, biopolymers and protein filaments) secreted by microorganisms. Transport can occur across distances exceeding 100 μm, such that intracellular metabolic processes (for example, acetate oxidation or O2 reduction) can be interfaced with insoluble extracellular electron acceptors or donors (for example, minerals and electrodes).

Electrogenic microorganism

A microorganism able to catalyse an anodic electrode reaction.

Microbial bioanode

An electrode colonized by microorganisms that catalyse an anodic reaction (for example, acetate oxidation).

Electrotrophic microorganism

A microorganism able to catalyse a cathodic electrode reaction.

Microbial biocathode

An electrode colonized by microorganisms that catalyse a cathodic reaction (for example, nitrate reduction).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Hsu, LH., Kavanagh, P. et al. The ins and outs of microorganism–electrode electron transfer reactions. Nat Rev Chem 1, 0024 (2017). https://doi.org/10.1038/s41570-017-0024

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing