Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthesis and chemistry of elemental 2D materials

Abstract

2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer–substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elements predicted to form synthetic elemental 2D materials and their known synthesis methods.
Figure 2: Borophene.
Figure 3: Silicene, germanene and stanene.
Figure 4: Black phosphorus and phosphorene.
Figure 5: Bismuth.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Vogt, P. et al. Silicene: compelling experimental evidence for graphene-like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

    Article  PubMed  CAS  Google Scholar 

  4. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  6. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  7. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mannix, A. J., Kiraly, B., Fisher, B. L., Hersam, M. C. & Guisinger, N. P. Silicon growth at the two-dimensional limit on Ag(111). ACS Nano 8, 7538–7547 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Shirai, T. et al. Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface. Phys. Rev. B 89, 241403 (2014).

    Article  CAS  Google Scholar 

  11. Satta, M., Colonna, S., Flammini, R., Cricenti, A. & Ronci, F. Silicon reactivity at the Ag(111) surface. Phys. Rev. Lett. 115, 026102 (2015).

    Article  PubMed  Google Scholar 

  12. Rockett, A. The Materials Science for Semiconductors (Springer, 2008).

    Book  Google Scholar 

  13. Ogitsu, T., Schwegler, E. & Galli, G. β-Rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Sergeeva, A. P. et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Douglas, B. & Ho, S.-M. Structure and Chemistry of Crystalline Solids (Springer, 2007).

    Google Scholar 

  16. Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Zhai, H.-J., Kiran, B., Li, J. & Wang, L.-S. Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Alexandrova, A. N., Boldyrev, A. I., Zhai, H.-J. & Wang, L.-S. Electronic structure, isomerism, and chemical bonding in B7 and B7 . J. Phys. Chem. A 108, 3509–3517 (2004).

    Article  CAS  Google Scholar 

  19. Boustani, I. Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n = 2–14). Phys. Rev. B 55, 16426 (1997).

    Article  CAS  Google Scholar 

  20. Zhai, H.-J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Lau, K. C. & Pandey, R. Stability and electronic properties of atomistically-engineered 2D boron sheets. J. Phys. Chem. C 111, 2906–2912 (2007).

    Article  CAS  Google Scholar 

  22. Tang, H. & Ismail-Beigi, S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Zhou, X.-F. et al. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).

    Article  CAS  Google Scholar 

  24. Ma, F. et al. Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition. Nano Lett. 16, 3022–3028 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Lau, K. C., Pati, R., Pandey, R. & Pineda, A. C. First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chem. Phys. Lett. 418, 549–554 (2006).

    Article  CAS  Google Scholar 

  26. Bezugly, V. et al. Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities. ACS Nano 5, 4997–5005 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, X., Li, L., Xu, X.-W. & Tang, C.-C. Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 116, 20075–20079 (2012).

    Article  CAS  Google Scholar 

  28. Wu, X. et al. Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, W. et al. A concentric planar doubly π-aromatic B19− cluster. Nat. Chem. 2, 202–206 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. Piazza, Z. A., Hu, H. S., Li, W. L., Zhao, Y. F. & Li, J. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Yang, X., Ding, Y. & Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B 77, 041402(R) (2008).

    Article  CAS  Google Scholar 

  32. Kunstmann, J., Bezugly, V., Rabbel, H., Rümmeli, M. H. & Cuniberti, G. Unveiling the atomic structure of single-wall boron nanotubes. Adv. Funct. Mater. 24, 4127–4134 (2014).

    Article  CAS  Google Scholar 

  33. Penev, E. S., Bhowmick, S., Sadrzadeh, A. & Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, L. Z., Yan, Q. B., Du, S. X., Su, G. & Gao, H. J. Boron sheet adsorbed on metal surfaces: structures and electronic properties. J. Phys. Chem. A 116, 18202–18206 (2012).

    CAS  Google Scholar 

  35. Liu, H., Gao, J. & Zhao, J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y., Penev, E. S. & Yakobson, B. I. Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. Int. Ed. 52, 3156–3159 (2013).

    Article  CAS  Google Scholar 

  37. Zhang, Z., Yang, Y., Gao, G. & Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 127, 13214–13218 (2015).

    Article  Google Scholar 

  38. Boustani, I., Quandt, A., Hernández, E. & Rubio, A. New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3111 (1999).

    Article  CAS  Google Scholar 

  39. Tian, J. et al. One-dimensional boron nanostructures: prediction, synthesis, characterizations, and applications. Nanoscale 2, 1375–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y., Fan, J. & Trenary, M. Surface chemistry of boron oxidation. 1. Reactions of oxygen and water with boron films grown on tantalum(110). Chem. Mater. 5, 192–198 (1993).

    Article  CAS  Google Scholar 

  41. Ciuparu, D., Klie, R. F., Zhu, Y. & Pfefferle, L. Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967–3969 (2004).

    Article  CAS  Google Scholar 

  42. Liu, F. et al. Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010).

    Article  CAS  Google Scholar 

  43. Tai, G. et al. Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 127, 15693–15697 (2015).

    Article  Google Scholar 

  44. Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng, B. et al. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Z. et al. Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16, 6622–6627 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Feng, B. et al. Direct evidence of metallic bands in a monolayer boron sheet. Phys. Rev. B 94, 041408(R) (2016).

    Article  CAS  Google Scholar 

  48. Zhao, Y., Zeng, S. & Ni, J. Phonon-mediated superconductivity in borophenes. Appl. Phys. Lett. 108, 242601–242606 (2016).

    Article  CAS  Google Scholar 

  49. Penev, E. S., Kutana, A. & Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, Y., Zeng, S. & Ni, J. Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93, 014502 (2016).

    Article  CAS  Google Scholar 

  51. Eremets, M. I. Superconductivity in boron. Science 293, 272–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Sun, L. et al. Pressure-induced superconducting state in crystalline boron nanowires. Phys. Rev. B 79, 140505 (2009).

    Article  CAS  Google Scholar 

  53. Jiao, Y., Ma, F., Bell, J., Bilic, A. & Du, A. Two-dimensional boron hydride sheets: high stability, massless dirac fermions, and excellent mechanical properties. Angew. Chem. Int. Ed. 55, 10292–10295 (2016).

    Article  CAS  Google Scholar 

  54. Li, W.-L. et al. The planar CoB18− cluster as a motif for metallo-borophenes. Angew. Chem. Int. Ed. 55, 7358–7363 (2016).

    Article  CAS  Google Scholar 

  55. Corey, J. Y. in Organic Silicon Compounds Volume 1 and Volume 2 (eds Patai, A. & Rappoport, Z. ) 1–56 (Wiley, 1989). [Au: citation OK?]

    Book  Google Scholar 

  56. Takeda, K. & Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916 (1994).

    Article  CAS  Google Scholar 

  57. Cahangirov, S., Topsakal, M., Aktürk, E., S¸ahin, H. & Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Xu, Y. et al. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013).

    Article  PubMed  CAS  Google Scholar 

  59. Bansil, A., Lin, H. & Das, T. Colloquium: topological band theory. Rev. Mod. Phys. 88, 021004–021037 (2016).

    Article  Google Scholar 

  60. Manoharan, H. C. Topological insulators: a romance with many dimensions. Nat. Nanotechnol. 5, 477–479 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  62. Bock, H. Fundamentals of silicon chemistry: molecular states of silicon-containing compounds. Angew. Chem. Int. Ed. 28, 1627–1650 (1989).

    Article  Google Scholar 

  63. Ho, K.-M., Shvartsburg, A. A., Pan, B., Lu, Z. Y. & Wang, C.-Z. Structures of medium-sized silicon clusters. Nature 392, 582–585 (1998).

    Article  CAS  Google Scholar 

  64. Jose, D. & Datta, A. Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 47, 593–602 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Guzmán-Verri, G. & Lew Yan Voon, L. Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007).

    Article  CAS  Google Scholar 

  66. Cahangirov, S. et al. Atomic structure of the 3 × 3 phase of silicene on Ag(111). Phys. Rev. B 90, 035448 (2014).

    Article  CAS  Google Scholar 

  67. Enriquez, H., Vizzini, S., Kara, A., Lalmi, B. & Oughaddou, H. Silicene structures on silver surfaces. J. Phys. Condens. Matter 24, 314211 (2012).

    Google Scholar 

  68. Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 033003 (2012).

    Article  CAS  Google Scholar 

  69. Kikutake, K., Ezawa, M. & Nagaosa, N. Edge states in silicene nanodisks. Phys. Rev. B 88, 115432 (2013).

    Article  CAS  Google Scholar 

  70. Tahir, M., Manchon, A., Sabeeh, K. & Schwingenschlögl, U. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene. Appl. Phys. Lett. 102, 162412 (2013).

    Article  CAS  Google Scholar 

  71. Kim, Y., Choi, K., Ihm, J. & Jin, H. Topological domain walls and quantum valley Hall effects in silicene. Phys. Rev. B 89, 085429 (2014).

    Article  CAS  Google Scholar 

  72. O'Hare, A., Kusmartsev, F. V. & Kugel, K. I. A. Stable “flat” form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? Nano Lett. 12, 1045–1052 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Tsai, W. F. et al. Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat. Commun. 4, 1500 (2013).

    Article  PubMed  CAS  Google Scholar 

  74. Erwin, S. C. & Himpsel, F. J. Intrinsic magnetism at silicon surfaces. Nat. Commun. 1, 58 (2010).

    Article  PubMed  CAS  Google Scholar 

  75. Drummond, N., Zólyomi, V. & Fal'ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012).

    Article  CAS  Google Scholar 

  76. Ni, Z. et al. Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Kara, A. et al. Physics of silicene stripes. J. Supercond. Nov. Magn. 22, 259–263 (2009).

    Article  CAS  Google Scholar 

  78. Aufray, B. et al. Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010).

    Article  CAS  Google Scholar 

  79. Speiser, E. et al. Raman spectroscopy study of silicon nanoribbons on Ag(110). Appl. Phys. Lett. 104, 161612 (2014).

    Article  CAS  Google Scholar 

  80. Takagi, N. et al. Silicene on Ag(111): geometric and electronic structures of a new honeycomb material of Si. Progress Surface Sci. 90, 1–20 (2015).

    Article  CAS  Google Scholar 

  81. Feng, B. et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Jamgotchian, H. et al. Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J. Phys. Condens. Matter 24, 172001 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Meng, L. et al. Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Chiappe, D. et al. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 26, 2096–2101 (2013).

    Article  PubMed  CAS  Google Scholar 

  85. Fleurence, A. et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012).

    Article  PubMed  CAS  Google Scholar 

  86. Chen, M. X. & Weinert, M. Revealing the substrate origin of the linear dispersion of silicene/Ag(111). Nano Lett. 14, 5189–5193 (2014).

    Article  PubMed  CAS  Google Scholar 

  87. Chen, L. et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 109, 056804 (2012).

    Article  PubMed  CAS  Google Scholar 

  88. Arafune, R., Lin, C. L., Nagao, R., Kawai, M. & Takagi, N. Comment on “Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon”. Phys. Rev. Lett. 110, 229701 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Feng, B. et al. Observation of Dirac cone warping and chirality effects in silicene. ACS Nano 7, 9049–9054 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Lin, C.-L. et al. Substrate-induced symmetry breaking in silicene. Phys. Rev. Lett. 110, 076801 (2013).

    Article  PubMed  CAS  Google Scholar 

  91. Cahangirov, S. et al. Electronic structure of silicene on Ag(111): strong hybridization effects. Phys. Rev. B 88, 035432 (2013).

    Article  CAS  Google Scholar 

  92. Zhuang, J. et al. Investigation of electron-phonon coupling in epitaxial silicene by in situ Raman spectroscopy. Phys. Rev. B 91, 161409 (2015).

    Article  CAS  Google Scholar 

  93. De Padova, P. et al. Multilayer silicene: clear evidence. 2D Mater. 3, 1–7 (2016).

    Google Scholar 

  94. Acun, A., Poelsema, B., Zandvliet, H. J. W. & van Gastel, R. The instability of silicene on Ag(111). Appl. Phys. Lett. 103, 263119 (2013).

    Article  CAS  Google Scholar 

  95. Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Molle, A. et al. Hindering the oxidation of silicene with non-reactive encapsulation. Adv. Funct. Mater. 23, 4340–4344 (2013).

    Article  CAS  Google Scholar 

  97. Huang, B., Xiang, H. J. & Wei, S.-H. Chemical functionalization of silicene: spontaneous structural transition and exotic electronic properties. Phys. Rev. Lett. 111, 145502 (2013).

    Article  PubMed  CAS  Google Scholar 

  98. Qiu, J. et al. Ordered and reversible hydrogenation of silicene. Phys. Rev. Lett. 114, 126101 (2015).

    Article  PubMed  CAS  Google Scholar 

  99. Qiu, J. et al. From silicene to half-silicane by hydrogenation. ACS Nano 9, 11192–11199 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Du, Y. et al. Tuning the band gap in silicene by oxidation. ACS Nano 8, 10019–10025 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Li, W. et al. Ordered chlorinated monolayer silicene structures. Phys. Rev. B 93, 155410 (2016).

    Article  CAS  Google Scholar 

  102. Du, Y. et al. Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation. Sci. Adv. 2, e1600067 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hersam, M. C., Guisinger, N. P., Lee, J., Cheng, K. & Lyding, J. W. Variable temperature study of the passivation of dangling bonds at Si(100)-2 × 1 reconstructed surfaces with H and D. Appl. Phys. Lett. 80, 201 (2002).

    Article  CAS  Google Scholar 

  104. Jiang, S., Arguilla, M. Q., Cultrara, N. D. & Goldberger, J. E. Covalently-controlled properties by design in group IV graphane analogues. Acc. Chem. Res. 48, 144–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Si, C. et al. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 89, 115429 (2014).

    Article  CAS  Google Scholar 

  106. Li, L. et al. Buckled germanene formation on Pt(111). Adv. Mater. 26, 4820–4824 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A. & Le Lay, G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014).

    Article  CAS  Google Scholar 

  108. Derivaz, M. et al. Continuous germanene layer on Al(111). Nano Lett. 15, 2510–2516 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Bampoulis, P. et al. Germanene termination of Ge2Pt crystals on Ge(110). J. Phys. Condens. Matter 26, 442001 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, L. et al. Structural and electronic properties of germanene on MoS2 . Phys. Rev. Lett. 116, 256804 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Švec, M. et al. Silicene versus two-dimensional ordered silicide: atomic and electronic structure of Si-(√19 × √19) R23.4°/Pt(111). Phys. Rev. B 89, 201412 (2014).

    Article  CAS  Google Scholar 

  112. Jiang, S. et al. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 5, 3389 (2014).

    Article  PubMed  CAS  Google Scholar 

  113. Liu, C.-C., Jiang, H. & Yao, Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011).

    Article  CAS  Google Scholar 

  114. Broek, B. V. D. et al. Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization. 2D Mater. 1, 021004 (2014).

    Article  CAS  Google Scholar 

  115. Møller, P. J. & Dittmar-Wituski, A. On the growth of epitaxial ultrathin films of α-Sn on CdTe(110). Mater. Sci. Eng. B 17, 112–117 (1993).

    Article  Google Scholar 

  116. Osaka, T., Omi, H., Yamamoto, K. & Ohtake, A. Surface phase transition and interface interaction in the α-Sn/InSb{111} system. Phys. Rev. B 50, 7567–7572 (1994).

    Article  CAS  Google Scholar 

  117. Zhu, F.-F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Chou, B.-H. et al. Hydrogenated ultra-thin tin films predicted as two- dimensional topological insulators. New J. Phys. 16, 115008 (2014).

    Article  CAS  Google Scholar 

  119. Wu, S.-C., Shan, G. & Yan, B. Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials. Phys. Rev. Lett. 113, 256401 (2014).

    Article  PubMed  CAS  Google Scholar 

  120. Zhang, G.-F., Li, Y. & Wu, C. Honeycomb lattice with multiorbital structure: topological and quantum anomalous Hall insulators with large gaps. Phys. Rev. B 90, 075114 (2014).

    Article  CAS  Google Scholar 

  121. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu, B. et al. Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  126. Toy, A. D. F. in The Chemistry of Phosphorus 389–406 (Elsevier, 1973).

    Book  Google Scholar 

  127. Zhu, Z. & Tománek, D. Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014).

    Article  PubMed  CAS  Google Scholar 

  128. Guan, J., Zhu, Z. & Tománek, D. Tiling phosphorene. ACS Nano 8, 12763–12768 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Köpf, M. et al. Access and in situ growth of phosphorene-precursor black phosphorus. J. Crystal Growth 405, 6–10 (2014).

    Article  CAS  Google Scholar 

  130. Nilges, T., Kersting, M. & Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 181, 1707–1711 (2008).

    Article  CAS  Google Scholar 

  131. Lange, S., Schmidt, P. & Nilges, T. Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem. 46, 4028–4035 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Hanlon, D. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Kang, J. et al. Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl Acad. Sci. USA 113, 11688–11693 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kang, J. et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596–3604 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Smith, J. B., Hagaman, D. & Ji, H.-F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 1–8 (2016).

    Article  CAS  Google Scholar 

  137. Li, X. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 1–6 (2015).

    Google Scholar 

  138. Zhang, J. L. et al. Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett. 16, 4903–4908 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Ryder, C. R., Wood, J. D., Wells, S. A. & Hersam, M. C. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10, 3900–3917 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Tayari, V. et al. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 6, 7702 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Doganov, R. A. et al. Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl. Phys. Lett. 106, 083505 (2015).

    Article  CAS  Google Scholar 

  143. Xiang, D. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Ryder, C. R. et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597–602 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Hofmann, P. The surfaces of bismuth: structural and electronic properties. Progress Surface Sci. 81, 191–245 (2006).

    Article  CAS  Google Scholar 

  146. Lu, Y. et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett. 15, 80–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).

    Article  PubMed  CAS  Google Scholar 

  148. Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    Article  CAS  Google Scholar 

  149. De Renzi, V., Betti, M. G. & Mariani, C. Quantum size effects and temperature dependence of low-energy electronic excitations in thin Bi crystals. Phys. Rev. B 48, 4767–4776 (1993).

    Article  CAS  Google Scholar 

  150. Cho, S. et al. Growth-mode modification of Bi on CdTe(111)A using Te monolayer deposition. Phys. Rev. B 58, 2324–2328 (1998).

    Article  CAS  Google Scholar 

  151. Nagao, T. et al. Nanofilm allotrope and phase transformation of ultrathin bi film on si(111)-7 × 7. Phys. Rev. Lett. 93, 105501 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Yaginuma, S. et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films. Surf. Sci. 601, 3593–3600 (2007).

    Article  CAS  Google Scholar 

  153. Scott, S., Kral, M. & Brown, S. Bi on graphite: morphology and growth characteristics of star-shaped dendrites. Phys. Rev. B 73, 205424 (2006).

    Article  CAS  Google Scholar 

  154. Chen, M. et al. Molecular beam epitaxy of bilayer Bi(111) films on topological insulator Bi2Te3: a scanning tunneling microscopy study. Appl. Phys. Lett. 101, 081603 (2012).

    Article  CAS  Google Scholar 

  155. Hattab, H. et al. Epitaxial Bi(111) films on Si(001): strain state, surface morphology, and defect structure. Thin Solid Films 516, 8227–8231 (2008).

    Article  CAS  Google Scholar 

  156. Koitzsch, C. et al. Growth of thin Bi films on W(110). Surf. Sci. 527, 51–56 (2003).

    Article  CAS  Google Scholar 

  157. Hirahara, T. et al. Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3 . Phys. Rev. Lett. 107, 166801 (2011).

    Article  PubMed  CAS  Google Scholar 

  158. Hirahara, T. et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys. Rev. Lett. 97, 146803 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Walker, E. S., Na, S. R., Jung, D., March, S. D. & Kim, J. S. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett. 16, 6931–6938 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Kokubo, I., Yoshiike, Y., Nakatsuji, K. & Hirayama, H. Ultrathin Bi(110) films on Si(111)√3 × √3-B substrates. Phys. Rev. B 91, 075429 (2015).

    Article  CAS  Google Scholar 

  161. Kowalczyk, P. J. et al. Surface science. Surf. Sci. 605, 659–667 (2011).

    Article  CAS  Google Scholar 

  162. Sun, J.-T. et al. Energy-gap opening in a Bi(110) nanoribbon induced by edge reconstruction. Phys. Rev. Lett. 109, 246804 (2012).

    Article  PubMed  CAS  Google Scholar 

  163. Ast, C. & Höchst, H. Electronic structure of a bismuth bilayer. Phys. Rev. B 67, 113102 (2003).

    Article  CAS  Google Scholar 

  164. Ma, Y., Dai, Y., Kou, L., Frauenheim, T. & Heine, T. Robust two-dimensional topological insulators in methyl-functionalized bismuth, antimony, and lead bilayer films. Nano Lett. 15, 1083–1089 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Holdren, J. P. Materials genome initiative for global competitiveness. (National Science and Technology Council and Office of Science and Technology Policy, 2011).

    Google Scholar 

  166. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. http://dx.doi.org/10.1038/nmat4703 (2016).

  168. Zhang, S., Yan, Z., Li, Y., Chen, Z. & Zeng, H. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. 54, 3112–3115 (2015).

    Article  CAS  Google Scholar 

  169. Kamal, C. & Ezawa, M. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015).

    Article  CAS  Google Scholar 

  170. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Kang, J. et al. Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation. Nat. Commun. 5, 5478 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Zheng, H. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1309–1312 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Rodríguez-Manzo, J. A., Pham-Huu, C. & Banhart, F. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 5, 1529–1534 (2011).

    Article  PubMed  CAS  Google Scholar 

  176. Edwards, R. S. & Coleman, K. S. Graphene film growth on polycrystalline metals. Acc. Chem. Res. 46, 23–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Koma, A. Van der Waals epitaxy — a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992).

    Article  CAS  Google Scholar 

  178. Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 1–5 (2010).

    Article  CAS  Google Scholar 

  180. Xue, J. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Yaginuma, S. et al. Electronic structure of ultrathin bismuth films with A7 and black-phosphorus-like structures. J. Phys. Soc. Jpn 77, 014701 (2008).

    Article  CAS  Google Scholar 

  182. Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed at the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357. The authors gratefully acknowledge funding from the Office of Naval Research (Grant No. N00014-14-1-0669) and the National Science Foundation Graduate Fellowship Program (DGE-1324585).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark C. Hersam or Nathan P. Guisinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Ultrahigh vacuum

Pressures less than 10−7 Pa (that is, 10−9 mbar or 10−9 torr), at which the rate of atomic impingement is low enough to preserve atomically clean surfaces for highly reactive samples.

n-Fold symmetry

A term to denote the degree of rotational symmetry of a 2D material with respect to the normal direction of the substrate or material basal plane. The number of equivalent rotational configurations is denoted by n (for example, triangles, squares and hexagons have 3, 4 and 6-fold symmetry, respectively).

Topologically non-trivial electronic states

Materials in which the electronic structure is modified by strong spin—orbit coupling effects to exhibit topologically protected electronic states. These states are localized to the surfaces of 3D materials or the edges of 2D materials. Electronic charge carriers in these states are intrinsically protected from scattering.

Epitaxial

A growth mode of materials, in which the overlayer material exhibits a well-defined crystallographic relationship with the substrate.

Functionalizations

Intentional chemical modifications of a material to selectively alter its properties.

Spintronics

Proposed methodology for devices based on the manipulation of electron spin (as opposed to the manipulation of charge in conventional electronics).

Dopants

Atomic or molecular species added to a material to controllably tune its properties. These may include species that modify the carrier concentration, magnetic properties, or chemical reactivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannix, A., Kiraly, B., Hersam, M. et al. Synthesis and chemistry of elemental 2D materials. Nat Rev Chem 1, 0014 (2017). https://doi.org/10.1038/s41570-016-0014

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-016-0014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing