Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes

Abstract

Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP–TGFβ, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.

Key points

  • Shear stress regulates atherosclerosis by altering endothelial cell physiology.

  • Systems biology approaches have identified multiple shear stress-regulated pathways in the endothelium, including several pathways classically known to be involved in embryogenesis.

  • Blood flow-mediated regulation of developmental pathways orchestrates valve formation and angiogenesis to optimize tissue perfusion.

  • By contrast, in arteries in adults, these blood flow-regulated pathways lead to inflammation, vascular dysfunction and atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo manipulation of shear stress.
Fig. 2: Systems biology approach to identify mechanosensitive pathways in vascular endothelium.
Fig. 3: Flow regulation of vascular development.
Fig. 4: Flow regulation of valve development.
Fig. 5: Low shear stress activation of a network that drives angiogenesis and atherosclerosis.

Similar content being viewed by others

References

  1. Kwak, B. R. et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35, 3013–3020 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheng, C. et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113, 2744–2753 (2006).

    PubMed  Google Scholar 

  3. Sorescu, G. P. et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res. 95, 773–779 (2004).

    CAS  PubMed  Google Scholar 

  4. Passerini, A. G. et al. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl Acad. Sci. USA 101, 2482–2487 (2004).

    CAS  PubMed  Google Scholar 

  5. Dai, G. et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. USA 101, 14871–14876 (2004).

    CAS  PubMed  Google Scholar 

  6. Iiyama, K. et al. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ. Res. 85, 199–207 (1999).

    CAS  PubMed  Google Scholar 

  7. Cuhlmann, S. et al. Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1: a novel mode of NF-kappa B regulation that promotes arterial inflammation. Circ. Res. 108, 950–959 (2011).

    CAS  PubMed  Google Scholar 

  8. Zakkar, M. et al. Increased endothelial mitogen-activated protein kinase phosphatase-1 expression suppresses proinflammatory activation at sites that are resistant to atherosclerosis. Circ. Res. 103, 726–732 (2008).

    CAS  PubMed  Google Scholar 

  9. Zakkar, M. et al. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler. Thromb. Vasc. Biol. 29, 1851–1857 (2009).

    CAS  PubMed  Google Scholar 

  10. Mahmoud, M. M. et al. TWIST1 integrates endothelial responses to flow in vascular dysfunction and atherosclerosis. Circ. Res. 119, 450–462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Caplan, B. A. & Schwartz, C. J. Increased endothelial cell turnover in areas of in-vivo Evans Blue uptake in pig aorta. Atherosclerosis 17, 401–417 (1973).

    CAS  PubMed  Google Scholar 

  12. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. & Gimbrone, M. A. Turbulent fluid shear-stress induces vascular endothelial-cell turnover invitro. Proc. Natl Acad. Sci. USA 83, 2114–2117 (1986).

    CAS  PubMed  Google Scholar 

  13. Zeng, L. F. et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc. Natl Acad. Sci. USA 106, 8326–8331 (2009).

    CAS  PubMed  Google Scholar 

  14. Cancel, L. M. & Tarbell, J. M. The role of mitosis in LDL transport through cultured endothelial cell monolayers. Am. J. Physiol. Heart Circ. Physiol. 300, H769–H776 (2011).

    CAS  PubMed  Google Scholar 

  15. Chaudhury, H. et al. c-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis. Arterioscler. Thromb. Vasc. Biol. 30, 546–553 (2010).

    CAS  PubMed  Google Scholar 

  16. Pedrigi, R. M. et al. Influence of shear stress magnitude and direction on atherosclerotic plaque composition. R. Soc. Open Sci. 3, 160588 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Nam, D. et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 297, H1535–H1543 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunn, J. et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J. Clin. Invest. 124, 3187–3199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitra, R. et al. The comparative effects of high fat diet or disturbed blood flow on glycocalyx integrity and vascular inflammation. Transl Med. Commun. 3, 10 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Stone, P. H. et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation 126, 172–181 (2012).

    PubMed  Google Scholar 

  21. Samady, H. et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124, 779–788 (2011).

    CAS  PubMed  Google Scholar 

  22. Gijsen, F., van der Giessen, A., van der Steen, A. & Wentzel, J. Shear stress and advanced atherosclerosis in human coronary arteries. J. Biomech. 46, 240–247 (2013).

    PubMed  Google Scholar 

  23. Timmins, L. H. et al. Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease. J. R. Soc. Interface 14, https://doi.org/10.1098/rsif.2016.0972 (2017).

    PubMed Central  Google Scholar 

  24. Chatzizisis, Y. S. et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress - an intravascular ultrasound and histopathology natural history study. Circulation 117, 993–1002 (2008).

    PubMed  Google Scholar 

  25. Koskinas, K. C. et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler. Thromb. Vasc. Biol. 33, 1494–1504 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pedrigi, R. M. et al. Inducing persistent flow disturbances accelerates atherogenesis and promotes thin cap fibroatheroma development in D374Y-PCSK9 hypercholesterolemic minipigs. Circulation 132, 1003–1012 (2015).

    PubMed  Google Scholar 

  27. White, S. J. et al. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J. Cell. Physiol. 226, 2841–2848 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bryan, M. T. et al. Mechanoresponsive networks controlling vascular inflammation. Arterioscler. Thromb. Vasc. Biol. 34, 2199–2205 (2014).

    CAS  PubMed  Google Scholar 

  29. Feng, S. et al. Mechanical activation of hypoxia-inducible factor 1alpha drives endothelial dysfunction at atheroprone sites. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/atvbaha.117.309249 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu, D. et al. HIF-1alpha is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. eLife 6, https://doi.org/10.7554/eLife.25217 (2017).

  31. Cheng, C. et al. Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood 106, 3691–3698 (2005).

    CAS  PubMed  Google Scholar 

  32. Fledderus, J. O. et al. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 109, 4249–4257 (2007).

    CAS  PubMed  Google Scholar 

  33. Yamawaki, H., Pan, S., Lee, R. T. & Berk, B. C. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J. Clin. Invest. 115, 733–738 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang, Y., Shi, C., Manduchi, E., Civelek, M. & Davies, P. F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl Acad. Sci. USA 107, 13450–13455 (2010).

    CAS  PubMed  Google Scholar 

  35. Guo, D., Chien, S. & Shyy, J. Y. Regulation of endothelial cell cycle by laminar versus oscillatory flow - distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ. Res. 100, 564–571 (2007).

    CAS  PubMed  Google Scholar 

  36. Ajami, N. E. et al. Systems biology analysis of longitudinal functional response of endothelial cells to shear stress. Proc. Natl Acad. Sci. USA 114, 10990–10995 (2017).

    CAS  PubMed  Google Scholar 

  37. Zeng, L. F., Zhang, Y. K., Chien, S., Liu, X. & Shyy, J. Y. J. The role of p53 deacetylation in p21(Waf1) regulation by laminar flow. J. Biol. Chem. 278, 24594–24599 (2003).

    CAS  PubMed  Google Scholar 

  38. Frueh, J. et al. Systems biology of the functional and dysfunctional endothelium. Cardiovasc. Res. 99, 334–341 (2013).

    CAS  PubMed  Google Scholar 

  39. Simmons, R. D., Kumar, S., Thabet, S. R., Sur, S. & Jo, H. Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 378–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang, Y. Z., Manduchi, E., Jimenez, J. M. & Davies, P. F. Endothelial epigenetics in biomechanical stress: disturbed flow-mediated epigenomic plasticity in vivo and in vitro. Arterioscler Thromb Vasc Biol 35, 1317–1326 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Firasat, S., Hecker, M., Binder, L. & Asif, A. R. Advances in endothelial shear stress proteomics. Expert Rev. Proteomics 11, 611–619 (2014).

    CAS  PubMed  Google Scholar 

  42. Kumar, S., Kim, C. W., Simmons, R. D. & Jo, H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler. Thromb. Vasc. Biol. 34, 2206–2216 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ni, C.-W. et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 116, E66–E73 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, B. P. et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol. Genomics 7, 55–63 (2001).

    CAS  PubMed  Google Scholar 

  45. Serbanovic-Canic, J. et al. Zebrafish model for functional screening of flow-responsive genes. Arterioscler. Thromb. Vasc. Biol. 37, 130–143 (2017).

    CAS  PubMed  Google Scholar 

  46. Bjorck, H. M. et al. Characterization of shear-sensitive genes in the normal rat aorta identifies Hand2 as a major flow-responsive transcription factor. PLoS ONE 7, e52227 (2012).

    PubMed  PubMed Central  Google Scholar 

  47. Garcia-Cardena, G., Comander, J., Anderson, K. R., Blackman, B. R. & Gimbrone, M. A. Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl Acad. Sci. USA 98, 4478–4485 (2001).

    CAS  PubMed  Google Scholar 

  48. Holliday, C. J., Ankeny, R. F., Jo, H. & Nerem, R. M. Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 301, H856–867 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Butcher, J. T. et al. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler. Thromb. Vasc. Biol. 26, 69–77 (2006).

    CAS  PubMed  Google Scholar 

  50. Civelek, M., Manduchi, E., Riley, R. J., Stoeckert, C. J. & Davies, P. F. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ. Res. 105, 453–461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Civelek, M., Manduchi, E., Riley, R. J., Stoeckert, C. J., Jr. & Davies, P. F. Coronary artery endothelial transcriptome in vivo: identification of endoplasmic reticulum stress and enhanced reactive oxygen species by gene connectivity network analysis. Circ. Cardiovasc. Genet. 4, 243–252 (2011).

    PubMed  PubMed Central  Google Scholar 

  52. Jiang, Y. Z., Manduchi, E., Stoeckert, C. J., Jr. & Davies, P. F. Arterial endothelial methylome: differential DNA methylation in athero-susceptible disturbed flow regions in vivo. BMC Genomics 16, 506 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Bondareva, O. et al. Identification of atheroprone shear stress responsive regulatory elements in endothelial cells. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvz027 (2019).

    PubMed  Google Scholar 

  54. Wang, X. L., Fu, A., Raghavakaimal, S. & Lee, H. C. Proteomic analysis of vascular endothelial cells in response to laminar shear stress. Proteomics 7, 588–596 (2007).

    CAS  PubMed  Google Scholar 

  55. Wang, X. L., Fu, A., Spiro, C. & Lee, H. C. Proteomic analysis of vascular endothelial cells-effects of laminar shear stress and high glucose. J. Proteomics Bioinform. 2, 445–454 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Burghoff, S. & Schrader, J. Secretome of human endothelial cells under shear stress. J. Proteome Res. 10, 1160–1169 (2011).

    CAS  PubMed  Google Scholar 

  57. Sun, X. et al. Activation of integrin alpha5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells. Proc. Natl Acad. Sci. USA 113, 769–774 (2016).

    CAS  PubMed  Google Scholar 

  58. Maleszewska, M., Vanchin, B., Harmsen, M. C. & Krenning, G. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence. Angiogenesis 19, 9–24 (2016).

    CAS  PubMed  Google Scholar 

  59. White, M. P. et al. NOTCH1 regulates matrix gla protein and calcification gene networks in human valve endothelium. J. Mol. Cell Cardiol. 84, 13–23 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Qiao, C. et al. Deep transcriptomic profiling reveals the similarity between endothelial cells cultured under static and oscillatory shear stress conditions. Physiol. Genomics 48, 660–666 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kumar, S. et al. Functional screening of mammalian mechanosensitive genes using Drosophila RNAi library- Smarcd3/Bap60 is a mechanosensitive pro-inflammatory gene. Sci. Rep. 6, 36461 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu, J. et al. GPR68 senses flow and is essential for vascular physiology. Cell 173, 762–775 e716 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dunn, J. et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J. Clin. Invest. 124, 3187–3199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Maimari, N., Pedrigi, R. M., Russo, A., Broda, K. & Krams, R. Integration of flow studies for robust selection of mechanoresponsive genes. Thromb. Haemost. 115, 474–483 (2016).

    PubMed  Google Scholar 

  65. Hitzel, J. et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat. Commun. 9, 2292 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Sorescu, G. P. et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J. Biol. Chem. 278, 31128–31135 (2003).

    CAS  PubMed  Google Scholar 

  67. Chang, K. et al. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Circulation 116, 1258–1266 (2007).

    CAS  PubMed  Google Scholar 

  68. Zhou, J. et al. Force-specific activation of Smad1/5 regulates vascular endothelial cell cycle progression in response to disturbed flow. Proc. Natl Acad. Sci. USA 109, 7770–7775 (2012).

    CAS  PubMed  Google Scholar 

  69. Baeyens, N. et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J. Cell Biol. 214, 807–816 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin, Y. et al. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat. Cell Biol. 19, 639–652 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Vion, A. C. et al. Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J. Cell Biol. 217, 1651–1665 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Corti, P. et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138, 1573–1582 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Laux, D. W. et al. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development 140, 3403–3412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rochon, E. R., Menon, P. G. & Roman, B. L. Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 143, 2593–2602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mitrofan, C. G. et al. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-alpha-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2. J. Biol. Chem. 292, 13714–13726 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou, J. et al. BMP receptor-integrin interaction mediates responses of vascular endothelial Smad1/5 and proliferation to disturbed flow. J. Thromb. Haemost. 11, 741–755 (2013).

    CAS  PubMed  Google Scholar 

  77. Kim, C. W. et al. Anti-inflammatory and antiatherogenic role of BMP receptor II in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 1350–1359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yao, Y. et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ. Res. 107, 485–494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Derwall, M. et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 613–622 (2012).

    CAS  PubMed  Google Scholar 

  80. Anderson, K. P., Kern, C. B., Crable, S. C. & Lingrel, J. B. Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Kruppel-like factor: identification of a new multigene family. Mol. Cell. Biol. 15, 5957–5965 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dekker, R. J. et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100, 1689–1698 (2002).

    CAS  PubMed  Google Scholar 

  82. Senbanerjee, S. et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199, 1305–1315 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin, Z. et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ. Res. 96, e48–e57 (2005).

    CAS  PubMed  Google Scholar 

  84. Groenendijk, B. C., Hierck, B. P., Gittenberger-De Groot, A. C. & Poelmann, R. E. Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos. Dev. Dyn. 230, 57–68 (2004).

    CAS  PubMed  Google Scholar 

  85. Groenendijk, B. C. et al. Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo. Circ. Res. 96, 1291–1298 (2005).

    CAS  PubMed  Google Scholar 

  86. Lee, J. S. et al. KIf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev. Cell 11, 845–857 (2006).

    CAS  PubMed  Google Scholar 

  87. Kuo, C. T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Esmerats, J. F. et al. Disturbed flow increases UBE2C (ubiquitin E2 ligase C) via loss of miR-483-3p, inducing aortic valve calcification by the HIF-1alpha (hypoxia-inducible factor-1alpha) pathway in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 39, 467-481, (2019).

  89. Evans, P. C. et al. A novel type of deubiquitinating enzyme. J. Biol. Chem. 278, 23180–23186 (2003).

    CAS  PubMed  Google Scholar 

  90. Akhtar, S. et al. Endothelial hypoxia-inducible factor-1 alpha promotes atherosclerosis and monocyte recruitment by upregulating microRNA-19a. Hypertension 66, 1220–1226 (2015).

    CAS  PubMed  Google Scholar 

  91. de Vries, M. R. & Quax, P. H. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr. Opin. Lipidol. 27, 499–506 (2016).

    PubMed  Google Scholar 

  92. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lawson, N. D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001).

    CAS  PubMed  Google Scholar 

  94. You, L. R. et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435, 98–104 (2005).

    CAS  PubMed  Google Scholar 

  95. Mack, J. J. & Iruela-Arispe, M. L. NOTCH regulation of the endothelial cell phenotype. Curr. Opin. Hematol. 25, 212–218 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Robert-Moreno, A., Espinosa, L., de la Pompa, J. L. & Bigas, A. RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132, 1117–1126 (2005).

    CAS  PubMed  Google Scholar 

  98. Qin, W. D. et al. Notch1 inhibition reduces low shear stress-induced plaque formation. Int. J. Biochem. Cell Biol. 72, 63–72 (2016).

    CAS  PubMed  Google Scholar 

  99. Jahnsen, E. D. et al. Notch1 is pan-endothelial at the onset of flow and regulated by flow. PLOS ONE 10, e0122622 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Mack, J. J. et al. NOTCH1 is a mechanosensor in adult arteries. Nat. Commun. 8, 1620 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Fang, J. S. et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat. Commun. 8, 2149 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Polacheck, W. J. et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552, 258–262 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Watson, O. et al. Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovasc. Res. 100, 252–261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Neto, F. et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. eLife 7, e31037 (2018).

  105. Wang, L. et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579–582 (2016).

    CAS  PubMed  Google Scholar 

  106. Wang, K. C. et al. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc. Natl Acad. Sci. USA 113, 11525–11530 (2016).

    CAS  PubMed  Google Scholar 

  107. Xu, S., Koroleva, M., Yin, M. & Jin, Z. G. Atheroprotective laminar flow inhibits Hippo pathway effector YAP in endothelial cells. Transl Res. 176, 18–28.e2 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, B. et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J. Clin. Invest. 129, 1167–1179 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Gelfand, B. D. et al. Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression. Arterioscler. Thromb. Vasc. Biol. 31, 1625–1633 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, R. et al. Shear stress-activated wnt-angiopoietin-2 signaling recapitulates vascular repair in zebrafish embryos. Arterioscler. Thromb. Vasc. Biol. 34, 2268–2275 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Biswas, P. et al. PECAM-1 affects GSK-3beta-mediated beta-catenin phosphorylation and degradation. Am. J. Pathol. 169, 314–324 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nat. Rev. Genet. 6, 893–904 (2005).

    CAS  PubMed  Google Scholar 

  113. Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O. & Chang, H. Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLOS Genet. 2, e119 (2006).

    PubMed  PubMed Central  Google Scholar 

  114. Cooley, B. C. et al. TGF-beta signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl Med. 6, 227ra34, (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Chen, P. Y. et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 125, 4514–4528 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. Gonzalez, D. M. & Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 7, re8, (2014).

  117. Camenisch, T. D. et al. Temporal and distinct TGF beta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev. Biol. 248, 170–181 (2002).

    CAS  PubMed  Google Scholar 

  118. Maddaluno, L. et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492–496 (2013).

    CAS  PubMed  Google Scholar 

  119. Ranchoux, B. et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131, 1006–1018 (2015).

    CAS  PubMed  Google Scholar 

  120. Moonen, J.-R. A. J. et al. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc. Res. 108, 377–386 (2015).

    CAS  PubMed  Google Scholar 

  121. Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853, (2016).

  122. Mahmoud, M. M. et al. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci. Rep. 7, 3375, (2017).

  123. Welch-Reardon, K. M., Wu, N. & Hughes, C. C. W. A role for partial endothelial-mesenchymal transitions in angiogenesis? Arterioscler. Thromb. Vasc. Biol. 35, 303–308 (2015).

    CAS  PubMed  Google Scholar 

  124. Kinsella, M. G. & Fitzharris, T. P. Origin of cushion tissue in the developing chick heart: cinematographic recordings of in situ formation. Science 207, 1359–1360 (1980).

    CAS  PubMed  Google Scholar 

  125. Thisse, B., Elmessal, M. & Perrinschmitt, F. The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res. 15, 3439–3453 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gitelman, I. Twist protein in mouse embryogenesis. Dev. Biol. 189, 205–214 (1997).

    CAS  PubMed  Google Scholar 

  127. el Ghouzzi, V. et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat. Genet. 15, 42–46 (1997).

    CAS  PubMed  Google Scholar 

  128. Howard, T. D. et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat. Genet. 15, 36–41 (1997).

    PubMed  Google Scholar 

  129. Chakraborty, S. et al. Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Dev. Biol. 347, 167–179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rodrigues, C. O., Nerlick, S. T., White, E. L., Cleveland, J. L. & King, M. L. A Myc-Slug (Snail2)/Twist regulatory circuit directs vascular development. Development 135, 1903–1911 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    CAS  PubMed  Google Scholar 

  132. Chen, H. F. et al. Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat. Commun. 5, 4697 (2014).

    CAS  PubMed  Google Scholar 

  133. Zhao, Z., Rahman, M. A., Chen, Z. G. & Shin, D. M. Multiple biological functions of Twist1 in various cancers. Oncotarget 8, 20380–20393 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Mammoto, T., Jiang, A., Jiang, E. & Mammoto, A. Role of Twist1 phosphorylation in angiogenesis and pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 55, 633–644 (2016).

    CAS  PubMed  Google Scholar 

  135. Li, J. et al. Endothelial TWIST1 promotes pathological ocular angiogenesis. Invest. Ophthalmol. Visual Sci. 55, 8267–8277 (2014).

    CAS  Google Scholar 

  136. Dichgans, M. et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke 45, 24–36 (2014).

    CAS  PubMed  Google Scholar 

  137. Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017).

    CAS  PubMed  Google Scholar 

  138. Nikpay, M. et al. A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rosand, J. et al. Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol. 15, 174–184 (2016).

    Google Scholar 

  142. Traylor, M. et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 11, 951–962 (2012).

    PubMed  PubMed Central  Google Scholar 

  143. Chapman, W. B. The effect of the heart-beat upon the development of the vascular system in the chick. Am. J. Anat. 23, 175–203 (1918).

    Google Scholar 

  144. Tanaka, M., Chen, Z., Bartunkova, S., Yamasaki, N. & Izumo, S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126, 1269–1280 (1999).

    CAS  PubMed  Google Scholar 

  145. May, S. R., Stewart, N. J., Chang, W. & Peterson, A. S. A Titin mutation defines roles for circulation in endothelial morphogenesis. Dev. Biol. 270, 31–46 (2004).

    CAS  PubMed  Google Scholar 

  146. Lucitti, J. L. et al. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134, 3317–3326 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Chouinard-Pelletier, G., Jahnsen, E. D. & Jones, E. A. Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development. Angiogenesis 16, 71–83 (2013).

    PubMed  Google Scholar 

  148. Song, J. W. & Munn, L. L. Fluid forces control endothelial sprouting. Proc. Natl Acad. Sci. USA 108, 15342–15347 (2011).

    CAS  PubMed  Google Scholar 

  149. Nicoli, S. et al. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464, 1196–1200 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bussmann, J., Wolfe, S. A. & Siekmann, A. F. Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development 138, 1717–1726 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Packham, I. M. et al. Microarray profiling reveals CXCR4a is downregulated by blood flow in vivo and mediates collateral formation in zebrafish embryos. Physiol. Genomics 38, 319–327 (2009).

    CAS  PubMed  Google Scholar 

  152. Lenard, A. et al. Endothelial cell self-fusion during vascular pruning. PLoS Biol. 13, e1002126 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Djonov, V., Schmid, M., Tschanz, S. A. & Burri, P. H. Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ. Res. 86, 286–292 (2000).

    CAS  PubMed  Google Scholar 

  154. Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S. & Schwartz, M. A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Invest. 126, 821–828 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Diaz, M. F. et al. Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis. J. Exp. Med. 212, 665–680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, X., Gays, D., Milia, C. & Santoro, M. M. Cilia control vascular mural cell recruitment in vertebrates. Cell Rep. 18, 1033–1047 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sakabe, M. et al. YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc. Natl Acad. Sci. USA 114, 10918–10923 (2017).

    CAS  PubMed  Google Scholar 

  158. Nakajima, H. et al. Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev. Cell 40, 523–536.e6 (2017).

    CAS  PubMed  Google Scholar 

  159. Franco, C. A. et al. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. elife 5, e07727 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. Chen, Q. et al. Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLOS Biol. 10, e1001374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kochhan, E. et al. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos. PlOS ONE 8, e75060 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Udan, R. S., Vadakkan, T. J. & Dickinson, M. E. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 140, 4041–4050 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Franco, C. A. et al. Dynamic endothelial cell rearrangements drive developmental vessel regression. PLOS Biol. 13, e1002125 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Meeson, A., Palmer, M., Calfon, M. & Lang, R. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development 122, 3929–3938 (1996).

    CAS  PubMed  Google Scholar 

  165. Meeson, A. P., Argilla, M., Ko, K., Witte, L. & Lang, R. A. VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development 126, 1407–1415 (1999).

    CAS  PubMed  Google Scholar 

  166. Yashiro, K., Shiratori, H. & Hamada, H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450, 285–288 (2007).

    CAS  PubMed  Google Scholar 

  167. Tricot, O. et al. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101, 2450–2453 (2000).

    CAS  PubMed  Google Scholar 

  168. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    CAS  PubMed  Google Scholar 

  169. le Noble, F. et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131, 361–375 (2004).

    PubMed  Google Scholar 

  170. Buschmann, I. et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137, 2187–2196 (2010).

    CAS  PubMed  Google Scholar 

  171. Hwa, J. J. et al. Abnormal arterial-venous fusions and fate specification in mouse embryos lacking blood flow. Sci. Rep. 7, 11965 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Chong, D. C., Koo, Y., Xu, K., Fu, S. & Cleaver, O. Stepwise arteriovenous fate acquisition during mammalian vasculogenesis. Dev. Dyn. 240, 2153–2165 (2011).

    PubMed  PubMed Central  Google Scholar 

  173. North, T. E. et al. Hematopoietic stem cell development is dependent on blood flow. Cell 137, 736–748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang, L. et al. A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood 118, 4102–4110 (2011).

    CAS  PubMed  Google Scholar 

  175. Isogai, S., Lawson, N. D., Torrealday, S., Horiguchi, M. & Weinstein, B. M. Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281–5290 (2003).

    CAS  PubMed  Google Scholar 

  176. Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature 459, 1131–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Heckel, E. et al. Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr. Biol. 25, 1354–1361 (2015).

    CAS  PubMed  Google Scholar 

  178. Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).

    CAS  PubMed  Google Scholar 

  179. Shelton, E. L. & Yutzey, K. E. Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev. Biol. 317, 282–295 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are funded by the British Heart Foundation, Medical Research Council and the National Centre for the Replacement, Refinement and Reduction of Animals in Research.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Paul C. Evans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks P. F. Davies, H. Jo, P. H. Stone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

DNA methylome

A set of DNA methylation modifications that vary between cell types and according to physiological context.

Endothelial-to-mesenchymal transition

A process of endothelial cell plasticity that leads to a mesenchymal state.

Differentially methylated regions

Regions of the genome that exhibit differences in DNA methylation status across different biological samples.

Reduced-representation bisulfite sequencing

Method for mapping whole-genome DNA methylation that is based on sequencing CpG-rich regions and involves methylation-sensitive conversion of cytosines to uracils (methylcytosines are not converted) with the use of sodium bisulfate followed by next-generation sequencing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souilhol, C., Serbanovic-Canic, J., Fragiadaki, M. et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 17, 52–63 (2020). https://doi.org/10.1038/s41569-019-0239-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0239-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing