Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dietary fats and cardiometabolic disease: mechanisms and effects on risk factors and outcomes

Abstract

The effect of dietary fats on cardiometabolic diseases, including cardiovascular diseases and type 2 diabetes mellitus, has generated tremendous interest. Many earlier investigations focused on total fat and conventional fat classes (such as saturated and unsaturated fats) and their influence on a limited number of risk factors. However, dietary fats comprise heterogeneous molecules with diverse structures, and growing research in the past two decades supports correspondingly complex health effects of individual dietary fats. Moreover, health effects of dietary fats might be modified by additional factors, such as accompanying nutrients and food-processing methods, emphasizing the importance of the food sources. Accordingly, the rapidly increasing scientific findings on dietary fats and cardiometabolic diseases have generated debate among scientists, caused confusion for the general public and present challenges for translation into dietary advice and policies. This Review summarizes the evidence on the effects of different dietary fats and their food sources on cell function and on risk factors and clinical events of cardiometabolic diseases. The aim is not to provide an exhaustive review but rather to focus on the most important evidence from randomized controlled trials and prospective cohort studies and to highlight current areas of controversy and the most relevant future research directions for understanding how to improve the prevention and management of cardiometabolic diseases through optimization of dietary fat intake.

Key points

  • In addition to their role as metabolic fuel, fatty acids modulate diverse cell processes including transcription regulation, cellular and organelle membrane structure and function, ion channel activity and electrophysiology.

  • Dietary fats comprise a wide range of fatty acids, and growing evidence demonstrates heterogeneity in the health effects of specific fatty acids as well as their food sources.

  • Robust evidence from multiple research studies demonstrates no health benefits of lowering total dietary fat in foods or overall diets.

  • For both saturated fatty acids and monounsaturated fatty acids, which have highly diverse dietary sources, considering the food sources and types separately might be most meaningful for understanding their health effects.

  • The overall evidence strongly supports cardiometabolic benefits of total polyunsaturated fatty acid (PUFA), n-6 PUFA and seafood-derived n-3 PUFA consumption.

  • People consume complex foods, not individual fatty acids; therefore, guidance and policies to improve general population diets should place greater emphasis on specific food sources of dietary fats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of dietary fats on cell processes.
Fig. 2: Effects of high-fat versus low-fat diets on cardiometabolic risk factors.
Fig. 3: Effects of replacing dietary saturated fatty acids on cardiometabolic lipid risk factors.
Fig. 4: Effects of replacing dietary saturated fatty acids and carbohydrates on glycaemic markers.
Fig. 5: Effect of replacing dietary saturated fatty acids on the risk of coronary heart disease.
Fig. 6: Effects of specific types of saturated fatty acid on cardiometabolic lipid risk factors.
Fig. 7: Food source of saturated fat and risk of cardiometabolic disease.

Similar content being viewed by others

References

  1. Mozaffarian, D., Rosenberg, I. & Uauy, R. History of modern nutrition science-implications for current research, dietary guidelines, and food policy. BMJ 361, k2392 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Mozaffarian, D. & Forouhi, N. G. Dietary guidelines and health-is nutrition science up to the task? BMJ 360, k822 (2018).

    PubMed  Google Scholar 

  3. Micha, R. & Mozaffarian, D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids 45, 893–905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133, 187–225 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mozaffarian, D. & Wu, J. H. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 58, 2047–2067 (2011).

    CAS  PubMed  Google Scholar 

  6. Downs, S. M., Loeh, S. & Wu, J. H. in Preventive Nutrition: The Comprehensive Guide for Health Professionals 5th edn (eds Bendich, A. & Deckelbaum, R.) (Springer, 2016).

  7. Harris, W. S. et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 119, 902–907 (2009).

    PubMed  Google Scholar 

  8. Joris, P. J. & Mensink, R. P. Role of cis-monounsaturated fatty acids in the prevention of coronary heart disease. Curr. Atheroscler. Rep. 18, 38 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Stark, A. H., Reifen, R. & Crawford, M. A. Past and present insights on alpha-linolenic acid and the omega-3 fatty acid family. Crit. Rev. Food Sci. Nutr. 56, 2261–2267 (2016).

    CAS  PubMed  Google Scholar 

  10. Kihara, A. Very long-chain fatty acids: elongation, physiology and related disorders. J. Biochem. 152, 387–395 (2012).

    CAS  PubMed  Google Scholar 

  11. Lemaire-Ewing, S., Lagrost, L. & Neel, D. Lipid rafts: a signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis 221, 303–310 (2012).

    CAS  PubMed  Google Scholar 

  12. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    CAS  PubMed  Google Scholar 

  13. Niu, S. L., Mitchell, D. C. & Litman, B. J. Trans fatty acid derived phospholipids show increased membrane cholesterol and reduced receptor activation as compared to their cis analogs. Biochemistry 44, 4458–4465 (2005).

    CAS  PubMed  Google Scholar 

  14. Cheng, A. M. et al. Apolipoprotein A-I attenuates palmitate-mediated NF-kappaB activation by reducing Toll-like receptor-4 recruitment into lipid rafts. PLOS ONE 7, e33917 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong, S. W. et al. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem. 284, 27384–27392 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, K. et al. Dietary omega-3 polyunsaturated fatty acids attenuate hepatic ischemia/reperfusion injury in rats by modulating toll-like receptor recruitment into lipid rafts. Clin. Nutr. 32, 855–862 (2013).

    CAS  PubMed  Google Scholar 

  17. Mitchell, D. C., Niu, S. L. & Litman, B. J. Quantifying the differential effects of DHA and DPA on the early events in visual signal transduction. Chem. Phys. Lipids 165, 393–400 (2012).

    CAS  PubMed  Google Scholar 

  18. Shaikh, S. R., Kinnun, J. J., Leng, X., Williams, J. A. & Wassall, S. R. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim. Biophys. Acta 1848, 211–219 (2015).

    CAS  PubMed  Google Scholar 

  19. Takashima, A. et al. Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-deficient mice by inhibiting macrophage activation. Atherosclerosis 254, 142–150 (2016).

    CAS  PubMed  Google Scholar 

  20. Turk, H. F. & Chapkin, R. S. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 88, 43–47 (2013).

    CAS  PubMed  Google Scholar 

  21. Shaikh, S. R. & Teague, H. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function. Prostaglandins Leukot. Essent. Fatty Acids 87, 205–208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aires, V., Hichami, A., Boulay, G. & Khan, N. A. Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: a comparative study with DAG-containing docosahexaenoic acid. Biochimie 89, 926–937 (2007).

    CAS  PubMed  Google Scholar 

  23. Singh, T. U., Choudhury, S., Parida, S., Maruti, B. S. & Mishra, S. K. Arachidonic acid inhibits Na(+)-K(+)-ATPase via cytochrome P-450, lipoxygenase and protein kinase C-dependent pathways in sheep pulmonary artery. Vascul. Pharmacol. 56, 84–90 (2012).

    CAS  PubMed  Google Scholar 

  24. Watanabe, H. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438 (2003).

    CAS  PubMed  Google Scholar 

  25. Antollini, S. S. & Barrantes, F. J. Fatty acid regulation of voltage- and ligand-gated ion channel function. Front. Physiol. 7, 573 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Borjesson, S. I. & Elinder, F. An electrostatic potassium channel opener targeting the final voltage sensor transition. J. Gen. Physiol. 137, 563–577 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoshi, T., Tian, Y., Xu, R., Heinemann, S. H. & Hou, S. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA. Proc. Natl Acad. Sci. USA 110, 4822–4827 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoshi, T., Xu, R., Hou, S., Heinemann, S. H. & Tian, Y. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid. J. Gen. Physiol. 142, 507–522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jump, D. B., Tripathy, S. & Depner, C. M. Fatty acid-regulated transcription factors in the liver. Annu. Rev. Nutr. 33, 249–269 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McIntosh, A. L., Petrescu, A. D., Hostetler, H. A., Kier, A. B. & Schroeder, F. Liver-type fatty acid binding protein interacts with hepatocyte nuclear factor 4alpha. FEBS Lett. 587, 3787–3791 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Petrescu, A. D. et al. Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARalpha-regulated beta-oxidative enzymes. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G241–G256 (2013).

    CAS  PubMed  Google Scholar 

  32. Schroeder, F. et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 43, 1–17 (2008).

    CAS  PubMed  Google Scholar 

  33. Nakamura, M. T., Yudell, B. E. & Loor, J. J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 53, 124–144 (2014).

    CAS  PubMed  Google Scholar 

  34. Trombetta, A. et al. Increase of palmitic acid concentration impairs endothelial progenitor cell and bone marrow-derived progenitor cell bioavailability: role of the STAT5/PPARgamma transcriptional complex. Diabetes 62, 1245–1257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cintra, D. E. et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLOS ONE 7, e30571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Oliveira, V. et al. Diets containing alpha-linolenic (omega3) or oleic (omega9) fatty acids rescues obese mice from insulin resistance. Endocrinology 156, 4033–4046 (2015).

    CAS  PubMed  Google Scholar 

  37. Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shearer, G. C., Savinova, O. V. & Harris, W. S. Fish oil — how does it reduce plasma triglycerides? Biochim. Biophys. Acta 1821, 843–851 (2012).

    CAS  PubMed  Google Scholar 

  39. Mitchell, J. A. & Kirkby, N. S. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br. J. Pharmacol. 176, 1038–1050 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Inceoglu, B., Bettaieb, A., Haj, F. G., Gomes, A. V. & Hammock, B. D. Modulation of mitochondrial dysfunction and endoplasmic reticulum stress are key mechanisms for the wide-ranging actions of epoxy fatty acids and soluble epoxide hydrolase inhibitors. Prostaglandins Other Lipid Mediat. 133, 68–78 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Romashko, M., Schragenheim, J., Abraham, N. G. & McClung, J. A. Epoxyeicosatrienoic acid as therapy for diabetic and ischemic cardiomyopathy. Trends Pharmacol. Sci. 37, 945–962 (2016).

    CAS  PubMed  Google Scholar 

  42. Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Chen, W. et al. CYP2J2 and EETs protect against lung ischemia/reperfusion injury via anti-inflammatory effects in vivo and in vitro. Cell. Physiol. Biochem. 35, 2043–2054 (2015).

    CAS  PubMed  Google Scholar 

  44. Kim, J., Imig, J. D., Yang, J., Hammock, B. D. & Padanilam, B. J. Inhibition of soluble epoxide hydrolase prevents renal interstitial fibrosis and inflammation. Am. J. Physiol. Renal Physiol. 307, F971–F980 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, R. et al. CYP2J2 attenuates metabolic dysfunction in diabetic mice by reducing hepatic inflammation via the PPARgamma. Am. J. Physiol. Endocrinol. Metab. 308, E270–E282 (2015).

    CAS  PubMed  Google Scholar 

  46. Kain, V. et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J. Mol. Cell. Cardiol. 84, 24–35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, G. et al. Early treatment with Resolvin E1 facilitates myocardial recovery from ischaemia in mice. Br. J. Pharmacol. 175, 1205–1216 (2018).

    CAS  PubMed  Google Scholar 

  48. Spite, M., Claria, J. & Serhan, C. N. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 19, 21–36 (2014).

    CAS  PubMed  Google Scholar 

  49. Akintoye, E. et al. Effect of fish oil on monoepoxides derived from fatty acids during cardiac surgery. J. Lipid Res. 57, 492–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Barden, A. E., Mas, E. & Mori, T. A. n-3 Fatty acid supplementation and proresolving mediators of inflammation. Curr. Opin. Lipidol. 27, 26–32 (2016).

    CAS  PubMed  Google Scholar 

  51. Elajami, T. K. et al. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J. 30, 2792–2801 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gleim, S., Stitham, J., Tang, W. H., Martin, K. A. & Hwa, J. An eicosanoid-centric view of atherothrombotic risk factors. Cell. Mol. Life Sci. 69, 3361–3380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Keys, A. et al. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiol. 124, 903–915 (1986).

    CAS  PubMed  Google Scholar 

  54. Hegsted, D. M., McGandy, R. B., Myers, M. L. & Stare, F. J. Quantitative effects of dietary fat on serum cholesterol in man. Am. J. Clin. Nutr. 17, 281–295 (1965).

    CAS  PubMed  Google Scholar 

  55. Keys, A., Anderson, J. T. & Grande, F. Serum cholesterol response to changes in the diet: IV. Particular saturated fatty acids in the diet. Metabolism 14, 776–787 (1965).

    CAS  PubMed  Google Scholar 

  56. Mozaffarian, D. & Ludwig, D. S. The 2015 US dietary guidelines: lifting the ban on total dietary fat. JAMA 313, 2421–2422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, M., Wan, Y., Yang, B., Huggins, C. E. & Li, D. Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: a systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 119, 96–108 (2018).

    CAS  PubMed  Google Scholar 

  58. Schwingshackl, L. & Hoffmann, G. Comparison of effects of long-term low-fat versus high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J. Acad. Nutr. Diet. 113, 1640–1661 (2013).

    PubMed  Google Scholar 

  59. Huntriss, R., Campbell, M. & Bedwell, C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Nutr. 72, 311–325 (2018).

    CAS  PubMed  Google Scholar 

  60. Alhazmi, A., Stojanovski, E., McEvoy, M. & Garg, M. L. Macronutrient intakes and development of type 2 diabetes: a systematic review and meta-analysis of cohort studies. J. Am. Coll. Nutr. 31, 243–258 (2012).

    CAS  PubMed  Google Scholar 

  61. Dehghan, M. et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390, 2050–2062 (2017).

    CAS  PubMed  Google Scholar 

  62. Mente, A., de Koning, L., Shannon, H. S. & Anand, S. S. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch. Intern. Med. 169, 659–669 (2009).

    CAS  PubMed  Google Scholar 

  63. Howard, B. V. et al. Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295, 655–666 (2006).

    CAS  PubMed  Google Scholar 

  64. Tinker, L. F. et al. Low-fat dietary pattern and risk of treated diabetes mellitus in postmenopausal women: the Women’s Health Initiative randomized controlled dietary modification trial. Arch. Intern. Med. 168, 1500–1511 (2008).

    PubMed  Google Scholar 

  65. Dong, J. Y., Zhang, Y. H., Wang, P. & Qin, L. Q. Meta-analysis of dietary glycemic load and glycemic index in relation to risk of coronary heart disease. Am. J. Cardiol. 109, 1608–1613 (2012).

    CAS  PubMed  Google Scholar 

  66. Ma, X. Y., Liu, J. P. & Song, Z. Y. Glycemic load, glycemic index and risk of cardiovascular diseases: meta-analyses of prospective studies. Atherosclerosis 223, 491–496 (2012).

    CAS  PubMed  Google Scholar 

  67. Vaccarino, V. et al. Ischaemic heart disease in women: are there sex differences in pathophysiology and risk factors? Position paper from the working group on coronary pathophysiology and microcirculation of the European Society of Cardiology. Cardiovasc. Res. 90, 9–17 (2011).

    CAS  PubMed  Google Scholar 

  68. Estruch, R. et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    CAS  PubMed  Google Scholar 

  69. Salas-Salvado, J. et al. Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial. Ann. Intern. Med. 160, 1–10 (2014).

    PubMed  Google Scholar 

  70. 2015 US Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture (US Department of Agriculture, Agricultural Research Service, Washington, DC, 2015).

  71. Trumbo, P., Schlicker, S., Yates, A. A. & Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 102, 1621–1630 (2002).

    PubMed  Google Scholar 

  72. World Health Organization. Fact sheets: healthy diet. WHO http://www.who.int/news-room/fact-sheets/detail/healthy-diet (2018).

  73. The Nielsen Company. Nielsen global health & wellness report. Nielsen https://www.nielsen.com/content/dam/nielsenglobal/eu/nielseninsights/pdfs/Nielsen%20Global%20Health%20and%20Wellness%20Report%20-%20January%202015.pdf (2015).

  74. Hu, T. et al. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 176, S44–S54 (2012).

    PubMed  PubMed Central  Google Scholar 

  75. Tobias, D. K. et al. Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 3, 968–979 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Kodama, S. et al. Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: a meta-analysis. Diabetes Care 32, 959–965 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwingshackl, L. & Hoffmann, G. Comparison of the long-term effects of high-fat v. low-fat diet consumption on cardiometabolic risk factors in subjects with abnormal glucose metabolism: a systematic review and meta-analysis. Br. J. Nutr. 111, 2047–2058 (2014).

    CAS  PubMed  Google Scholar 

  78. Bazzano, L. A. et al. Effects of low-carbohydrate and low-fat diets: a randomized trial. Ann. Intern. Med. 161, 309–318 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Hooper, L. et al. Effect of reducing total fat intake on body weight: systematic review and meta-analysis of randomised controlled trials and cohort studies. BMJ 345, e7666 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. Estruch, R. et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 4, 666–676 (2016).

    CAS  PubMed  Google Scholar 

  81. Forouhi, N. G., Krauss, R. M., Taubes, G. & Willett, W. Dietary fat and cardiometabolic health: evidence, controversies, and consensus for guidance. BMJ 361, k2139 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Forouhi, N. G., Misra, A., Mohan, V., Taylor, R. & Yancy, W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 361, k2234 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Gardner, C. D. et al. Effect of low-fat versus low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS Randomized Clinical Trial. JAMA 319, 667–679 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Seidelmann, S. B. et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 3, e419–e428 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Ordovas, J. M., Ferguson, L. R., Tai, E. S. & Mathers, J. C. Personalised nutrition and health. BMJ 361, k2173 (2018).

    Google Scholar 

  86. de Toro-Martin, J., Arsenault, B. J., Despres, J. P. & Vohl, M. C. Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients 9, 913 (2017).

    PubMed Central  Google Scholar 

  87. Korem, T. et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 25, 1243–1253 (2017).

    CAS  PubMed  Google Scholar 

  88. Brown, S., Ordovas, J. M. & Campos, H. Interaction between the APOC3 gene promoter polymorphisms, saturated fat intake and plasma lipoproteins. Atherosclerosis 170, 307–313 (2003).

    CAS  PubMed  Google Scholar 

  89. Olivieri, O. et al. Apolipoprotein C-III, n-3 polyunsaturated fatty acids, and “insulin-resistant” T-455C APOC3 gene polymorphism in heart disease patients: example of gene-diet interaction. Clin. Chem. 51, 360–367 (2005).

    CAS  PubMed  Google Scholar 

  90. Pollin, T. I. & Quartuccio, M. What we know about diet, genes, and dyslipidemia: is there potential for translation? Curr. Nutr. Rep. 2, 236–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Salas, J. et al. The SstI polymorphism of the apolipoprotein C-III gene determines the insulin response to an oral-glucose-tolerance test after consumption of a diet rich in saturated fats. Am. J. Clin. Nutr. 68, 396–401 (1998).

    CAS  PubMed  Google Scholar 

  92. Carvalho-Wells, A. L., Jackson, K. G., Lockyer, S., Lovegrove, J. A. & Minihane, A. M. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am. J. Clin. Nutr. 96, 1447–1453 (2012).

    CAS  PubMed  Google Scholar 

  93. Garcia-Rios, A. et al. Genetic variations at the lipoprotein lipase gene influence plasma lipid concentrations and interact with plasma n-6 polyunsaturated fatty acids to modulate lipid metabolism. Atherosclerosis 218, 416–422 (2011).

    CAS  PubMed  Google Scholar 

  94. Celis-Morales, C. et al. Effect of personalized nutrition on health-related behaviour change: evidence from the Food4Me European randomized controlled trial. Int. J. Epidemiol. 46, 578–588 (2017).

    PubMed  Google Scholar 

  95. Lichtenstein, A. H. Dietary trans fatty acids and cardiovascular disease risk: past and present. Curr. Atheroscler. Rep. 16, 433 (2014).

    PubMed  Google Scholar 

  96. Mensink, R. P. Effects of saturated fatty acids on serum lipids and lipoproteins: a systematic review and regression analysis (WHO, Geneva, 2016).

  97. Gerber, P. A. & Berneis, K. Regulation of low-density lipoprotein subfractions by carbohydrates. Curr. Opin. Clin. Nutr. Metabol. Care 15, 381–385 (2012).

    CAS  Google Scholar 

  98. Siri, P. W. & Krauss, R. M. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr. Atheroscler. Rep. 7, 455–459 (2005).

    CAS  PubMed  Google Scholar 

  99. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    CAS  PubMed  Google Scholar 

  100. Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Nordestgaard, B. G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ. Res. 118, 547–563 (2016).

    CAS  PubMed  Google Scholar 

  102. Thomsen, M., Varbo, A., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study. Clin. Chem. 60, 737–746 (2014).

    CAS  PubMed  Google Scholar 

  103. Varbo, A. et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J. Am. Coll. Cardiol. 61, 427–436 (2013).

    CAS  PubMed  Google Scholar 

  104. Institute of Medicine. Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease (The National Academies Press, Washington, DC, 2010).

  105. Imamura, F. et al. Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials. PLOS Med. 13, e1002087 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Chowdhury, R. et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann. Intern. Med. 160, 398–406 (2014).

    PubMed  Google Scholar 

  107. de Souza, R. J. et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351, h3978 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Jakobsen, M. U. et al. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 89, 1425–1432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Farvid, M. S. et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation 130, 1568–1578 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Meyer, K. A., Kushi, L. H., Jacobs, D. R. Jr & Folsom, A. R. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 24, 1528–1535 (2001).

    CAS  PubMed  Google Scholar 

  111. Salmeron, J. et al. Dietary fat intake and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 73, 1019–1026 (2001).

    CAS  PubMed  Google Scholar 

  112. van Dam, R. M., Willett, W. C., Rimm, E. B., Stampfer, M. J. & Hu, F. B. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care 25, 417–424 (2002).

    PubMed  Google Scholar 

  113. McGee, D. et al. The relationship of dietary fat and cholesterol to mortality in 10 years: the Honolulu Heart Program. Int. J. Epidemiol. 14, 97–105 (1985).

    CAS  PubMed  Google Scholar 

  114. Takeya, Y. et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: incidence of stroke in Japan and Hawaii. Stroke 15, 15–23 (1984).

    Google Scholar 

  115. Iso, H. et al. Fat and protein intakes and risk of intraparenchymal hemorrhage among middle-aged Japanese. Am. J. Epidemiol. 157, 32–39 (2003).

    PubMed  Google Scholar 

  116. Miettinen, M., Turpeinen, O., Karvonen, M. J., Elosuo, R. & Paavilainen, E. Effect of cholesterol-lowering diet on mortality from coronary heart-disease and other causes. A twelve-year clinical trial in men and women. Lancet 2, 835–838 (1972).

    CAS  PubMed  Google Scholar 

  117. Turpeinen, O. et al. Dietary prevention of coronary heart disease: the Finnish Mental Hospital Study. Int. J. Epidemiol. 8, 99–118 (1979).

    CAS  PubMed  Google Scholar 

  118. Ramsden, C. E. et al. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 346, e8707 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Ramsden, C. E. et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968–1973). BMJ 353, i1246 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Mozaffarian, D., Micha, R. & Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLOS Med. 7, e1000252 (2010).

    PubMed  PubMed Central  Google Scholar 

  121. Jakobsen, M. U. et al. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. Am. J. Clin. Nutr. 91, 1764–1768 (2010).

    CAS  PubMed  Google Scholar 

  122. Li, Y. et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J. Am. Coll. Cardiol. 66, 1538–1548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bourdua-Roy, E. Low-carb, high-fat is what we physicians eat. You should, too. HuffPost https://www.huffingtonpost.ca/evelyne-bourdua-roy/low-carb-high-fat-is-what-we-physicians-eat-you-should-too_a_23232610/ (2017).

  124. Gunnars, K. A low-carb diet meal plan and menu that can save your life. Healthline https://www.healthline.com/nutrition/low-carb-diet-meal-plan-and-menu (2018).

  125. US Department of Health & Human Services & US Department of Agriculture. Dietary guidelines for americans — 2015–2020. 8th edition. Health https://health.gov/dietaryguidelines/2015/guidelines/ (2018).

  126. World Health Organization. Draft guidelines on saturated fatty acid and trans-fatty acid intake for adults and children. WHO https://extranet.who.int/dataform/upload/surveys/666752/files/Draft%20WHO%20SFA-TFA%20guidelines_04052018%20Public%20Consultation(1).pdf (2018).

  127. Sacks, F. M. et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 136, e1–e23 (2017).

    PubMed  Google Scholar 

  128. Mozaffarian, D. & Wu, J. H. Y. Flavonoids, dairy foods, and cardiovascular and metabolic health: a review of emerging biologic pathways. Circ. Res. 122, 369–384 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Heart and Stroke Foundation of Canada. Position statement on saturated fat, heart disease, and stroke. Heart & Stroke Foundation Canada https://www.heartandstroke.ca/-/media/pdf-files/canada/position-statement/saturatedfat-eng-final.ashx (2018).

  130. Nordestgaard, B. G. & Langsted, A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J. Lipid Res. 57, 1953–1975 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Berglund, L. et al. Comparison of monounsaturated fat with carbohydrates as a replacement for saturated fat in subjects with a high metabolic risk profile: studies in the fasting and postprandial states. Am. J. Clin. Nutr. 86, 1611–1620 (2007).

    CAS  PubMed  Google Scholar 

  132. Faghihnia, N., Tsimikas, S., Miller, E. R., Witztum, J. L. & Krauss, R. M. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J. Lipid Res. 51, 3324–3330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Shin, M. J., Blanche, P. J., Rawlings, R. S., Fernstrom, H. S. & Krauss, R. M. Increased plasma concentrations of lipoprotein(a) during a low-fat, high-carbohydrate diet are associated with increased plasma concentrations of apolipoprotein C-III bound to apolipoprotein B-containing lipoproteins. Am. J. Clin. Nutr. 85, 1527–1532 (2007).

    CAS  PubMed  Google Scholar 

  134. Ballantyne, C. M. et al. Icosapent ethyl (eicosapentaenoic acid ethyl ester): Effects on plasma apolipoprotein C-III levels in patients from the MARINE and ANCHOR studies. J. Clin. Lipidol. 10, 635–645 (2016).

    PubMed  Google Scholar 

  135. Morton, A. M. et al. The effect of omega-3 carboxylic acids on apolipoprotein CIII-containing lipoproteins in severe hypertriglyceridemia. J. Clin. Lipidol. 10, 1442–1451 (2016).

    PubMed  Google Scholar 

  136. Skulas-Ray, A. C., Alaupovic, P., Kris-Etherton, P. M. & West, S. G. Dose-response effects of marine omega-3 fatty acids on apolipoproteins, apolipoprotein-defined lipoprotein subclasses, and Lp-PLA2 in individuals with moderate hypertriglyceridemia. J. Clin. Lipidol. 9, 360–367 (2015).

    PubMed  Google Scholar 

  137. Jensen, M. K. et al. High-density lipoprotein subspecies defined by presence of apolipoprotein C-III and incident coronary heart disease in four cohorts. Circulation 137, 1364–1373 (2018).

    CAS  PubMed  Google Scholar 

  138. Mendivil, C. O., Rimm, E. B., Furtado, J. & Sacks, F. M. Apolipoprotein E in VLDL and LDL with apolipoprotein C-III is associated with a lower risk of coronary heart disease. J. Am. Heart Assoc. 2, e000130 (2013).

    PubMed  PubMed Central  Google Scholar 

  139. Archer, W. R. et al. Variations in plasma apolipoprotein C-III levels are strong correlates of the triglyceride response to a high-monounsaturated fatty acid diet and a high-carbohydrate diet. Metabolism 54, 1390–1397 (2005).

    CAS  PubMed  Google Scholar 

  140. Furtado, J. D. et al. Effect of protein, unsaturated fat, and carbohydrate intakes on plasma apolipoprotein B and VLDL and LDL containing apolipoprotein C-III: results from the OmniHeart Trial. Am. J. Clin. Nutr. 87, 1623–1630 (2008).

    CAS  PubMed  Google Scholar 

  141. Bohl, M., Bjornshave, A., Larsen, M. K., Gregersen, S. & Hermansen, K. The effects of proteins and medium-chain fatty acids from milk on body composition, insulin sensitivity and blood pressure in abdominally obese adults. Eur. J. Clin. Nutr. 71, 76–82 (2017).

    CAS  PubMed  Google Scholar 

  142. Matualatupauw, J. C., Bohl, M., Gregersen, S., Hermansen, K. & Afman, L. A. Dietary medium-chain saturated fatty acids induce gene expression of energy metabolism-related pathways in adipose tissue of abdominally obese subjects. Int. J. Obes. 41, 1348–1354 (2017).

    CAS  Google Scholar 

  143. Wang, M. E. et al. Increasing dietary medium-chain fatty acid ratio mitigates high-fat diet-induced non-alcoholic steatohepatitis by regulating autophagy. Sci. Rep. 7, 13999 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Wein, S. et al. Medium-chain fatty acids ameliorate insulin resistance caused by high-fat diets in rats. Diabetes Metab. Res. Rev. 25, 185–194 (2009).

    CAS  PubMed  Google Scholar 

  145. Hu, F. B. et al. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am. J. Clin. Nutr. 70, 1001–1008 (1999).

    CAS  PubMed  Google Scholar 

  146. Liu, S., van der Schouw, Y. T., Soedamah-Muthu, S. S., Spijkerman, A. M. W. & Sluijs, I. Intake of dietary saturated fatty acids and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort: associations by types, sources of fatty acids and substitution by macronutrients. Eur. J. Nutr. https://doi.org/10.1007/s00394-018-1630-4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Praagman, J. et al. The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. Am. J. Clin. Nutr. 103, 356–365 (2016).

    PubMed  Google Scholar 

  148. Praagman, J. et al. Dietary saturated fatty acids and coronary heart disease risk in a Dutch middle-aged and elderly population. Arterioscler. Thromb. Vasc. Biol. 36, 2011–2018 (2016).

    CAS  PubMed  Google Scholar 

  149. Zong, G. et al. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: two prospective longitudinal cohort studies. BMJ 355, i5796 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. Ma, W. et al. Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study. Am. J. Clin. Nutr. 101, 153–163 (2015).

    CAS  PubMed  Google Scholar 

  151. Kabagambe, E. K., Baylin, A., Siles, X. & Campos, H. Individual saturated fatty acids and nonfatal acute myocardial infarction in Costa Rica. Eur. J. Clin. Nutr. 57, 1447–1457 (2003).

    CAS  PubMed  Google Scholar 

  152. Kromhout, D. et al. Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev. Med. 24, 308–315 (1995).

    CAS  PubMed  Google Scholar 

  153. Volk, B. M. et al. Effects of step-wise increases in dietary carbohydrate on circulating saturated Fatty acids and palmitoleic acid in adults with metabolic syndrome. PLOS ONE 9, e113605 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Wu, J. H. et al. Fatty acids in the de novo lipogenesis pathway and risk of coronary heart disease: the Cardiovascular Health Study. Am. J. Clin. Nutr. 94, 431–438 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee, J. J. et al. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 101, 34–43 (2015).

    CAS  PubMed  Google Scholar 

  156. Imamura, F. et al. Fatty acid biomarkers of dairy fat consumption and incident diabetes: a pooled analysis of prospective cohort studies. PLOS Med. 15, e1002670 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Liang, J., Zhou, Q., Kwame Amakye, W., Su, Y. & Zhang, Z. Biomarkers of dairy fat intake and risk of cardiovascular disease: a systematic review and meta analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 58, 1122–1130 (2018).

    CAS  PubMed  Google Scholar 

  158. Huth, P. J., Fulgoni, V. L., Keast, D. R., Park, K. & Auestad, N. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: data from the National Health and Nutrition Examination Survey (2003–2006). Nutr. J. 12, 116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Li, K. et al. Dietary fat intakes in Irish adults in 2011: how much has changed in 10 years? Br. J. Nutr. 115, 1798–1809 (2016).

    CAS  PubMed  Google Scholar 

  160. O’Sullivan, T. A., Ambrosini, G., Beilin, L. J., Mori, T. A. & Oddy, W. H. Dietary intake and food sources of fatty acids in Australian adolescents. Nutrition 27, 153–159 (2011).

    PubMed  Google Scholar 

  161. Shen, X. et al. Trends in dietary fat and fatty acid intakes and related food sources among Chinese adults: a longitudinal study from the China Health and Nutrition Survey (1997–2011). Public Health Nutr. 20, 2927–2936 (2017).

    PubMed  Google Scholar 

  162. Abete, I., Romaguera, D., Vieira, A. R., Lopez de Munain, A. & Norat, T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br. J. Nutr. 112, 762–775 (2014).

    CAS  PubMed  Google Scholar 

  163. Aune, D., Norat, T., Romundstad, P. & Vatten, L. J. Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am. J. Clin. Nutr. 98, 1066–1083 (2013).

    CAS  PubMed  Google Scholar 

  164. Chen, G. C., Lv, D. B., Pang, Z. & Liu, Q. F. Red and processed meat consumption and risk of stroke: a meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 67, 91–95 (2013).

    PubMed  Google Scholar 

  165. Chen, M. et al. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 12, 215 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. Hu, D., Huang, J., Wang, Y., Zhang, D. & Qu, Y. Dairy foods and risk of stroke: a meta-analysis of prospective cohort studies. Nutr. Metab. Cardiovasc. Dis. 24, 460–469 (2014).

    CAS  PubMed  Google Scholar 

  167. Pan, A. et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 94, 1088–1096 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Qin, L. Q. et al. Dairy consumption and risk of cardiovascular disease: an updated meta-analysis of prospective cohort studies. Asia Pac. J. Clin. Nutr. 24, 90–100 (2015).

    PubMed  Google Scholar 

  169. Soedamah-Muthu, S. S. et al. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 93, 158–171 (2011).

    CAS  PubMed  Google Scholar 

  170. Yuan, S., Li, X., Jin, Y. & Lu, J. Chocolate consumption and risk of coronary heart disease, stroke, and diabetes: a meta-analysis of prospective studies. Nutrients 9, 688 (2017).

    PubMed Central  Google Scholar 

  171. de Oliveira Otto, M. C. et al. Dietary intake of saturated fat by food source and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Am. J. Clin. Nutr. 96, 397–404 (2012).

    PubMed  PubMed Central  Google Scholar 

  172. Micha, R., Wallace, S. K. & Mozaffarian, D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation 121, 2271–2283 (2010).

    PubMed  PubMed Central  Google Scholar 

  173. Wang, X. et al. Red and processed meat consumption and mortality: dose-response meta-analysis of prospective cohort studies. Public Health Nutr. 19, 893–905 (2016).

    PubMed  Google Scholar 

  174. Micha, R., Michas, G. & Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes—an updated review of the evidence. Curr. Atheroscler. Rep. 14, 515–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Fernandez-Real, J. M., McClain, D. & Manco, M. Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care 38, 2169–2176 (2015).

    CAS  PubMed  Google Scholar 

  176. Wang, X., Fang, X. & Wang, F. Pleiotropic actions of iron balance in diabetes mellitus. Rev. Endocr. Metab. Disord. 16, 15–23 (2015).

    CAS  PubMed  Google Scholar 

  177. Berkey, C. S., Rockett, H. R., Willett, W. C. & Colditz, G. A. Milk, dairy fat, dietary calcium, and weight gain: a longitudinal study of adolescents. Arch. Pediatr. Adolesc. Med. 159, 543–550 (2005).

    PubMed  Google Scholar 

  178. Gao, D. et al. Dairy products consumption and risk of type 2 diabetes: systematic review and dose-response meta-analysis. PLOS ONE 8, e73965 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Huh, S. Y., Rifas-Shiman, S. L., Rich-Edwards, J. W., Taveras, E. M. & Gillman, M. W. Prospective association between milk intake and adiposity in preschool-aged children. J. Am. Diet. Assoc. 110, 563–570 (2010).

    PubMed  PubMed Central  Google Scholar 

  180. Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C. & Hu, F. B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364, 2392–2404 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Noel, S. E., Ness, A. R., Northstone, K., Emmett, P. & Newby, P. K. Milk intakes are not associated with percent body fat in children from ages 10 to 13 years. J. Nutr. 141, 2035–2041 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Noel, S. E., Ness, A. R., Northstone, K., Emmett, P. & Newby, P. K. Associations between flavored milk consumption and changes in weight and body composition over time: differences among normal and overweight children. Eur. J. Clin. Nutr. 67, 295–300 (2013).

    CAS  PubMed  Google Scholar 

  183. Pimpin, L., Wu, J. H., Haskelberg, H., Del Gobbo, L. & Mozaffarian, D. Is butter back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLOS ONE 11, e0158118 (2016).

    PubMed  PubMed Central  Google Scholar 

  184. Scharf, R. J., Demmer, R. T. & DeBoer, M. D. Longitudinal evaluation of milk type consumed and weight status in preschoolers. Arch. Dis. Child. 98, 335–340 (2013).

    PubMed  Google Scholar 

  185. Smith, J. D. et al. Changes in intake of protein foods, carbohydrate amount and quality, and long-term weight change: results from 3 prospective cohorts. Am. J. Clin. Nutr. 101, 1216–1224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, H. et al. Longitudinal association between dairy consumption and changes of body weight and waist circumference: the Framingham Heart Study. Int. J. Obes. 38, 299–305 (2014).

    CAS  Google Scholar 

  187. de Goede, J., Geleijnse, J. M., Ding, E. L. & Soedamah-Muthu, S. S. Effect of cheese consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 73, 259–275 (2015).

    PubMed  Google Scholar 

  188. Drouin-Chartier, J. P. et al. Comprehensive review of the impact of dairy foods and dairy fat on cardiometabolic risk. Adv. Nutr. 7, 1041–1051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Fattore, E., Bosetti, C., Brighenti, F., Agostoni, C. & Fattore, G. Palm oil and blood lipid-related markers of cardiovascular disease: a systematic review and meta-analysis of dietary intervention trials. Am. J. Clin. Nutr. 99, 1331–1350 (2014).

    CAS  PubMed  Google Scholar 

  190. Pedersen, A., Marckmann, P. & Sandstrom, B. Postprandial lipoprotein, glucose and insulin responses after two consecutive meals containing rapeseed oil, sunflower oil or palm oil with or without glucose at the first meal. Br. J. Nutr. 82, 97–104 (1999).

    CAS  PubMed  Google Scholar 

  191. Stonehouse, W., Brinkworth, G. D. & Noakes, M. Palmolein and olive oil consumed within a high protein test meal have similar effects on postprandial endothelial function in overweight and obese men: a randomized controlled trial. Atherosclerosis 239, 178–185 (2015).

    CAS  PubMed  Google Scholar 

  192. Teng, K. T., Nagapan, G., Cheng, H. M. & Nesaretnam, K. Palm olein and olive oil cause a higher increase in postprandial lipemia compared with lard but had no effect on plasma glucose, insulin and adipocytokines. Lipids 46, 381–388 (2011).

    CAS  PubMed  Google Scholar 

  193. Vega-Lopez, S., Ausman, L. M., Jalbert, S. M., Erkkila, A. T. & Lichtenstein, A. H. Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. Am. J. Clin. Nutr. 84, 54–62 (2006).

    CAS  PubMed  Google Scholar 

  194. Tholstrup, T., Hjerpsted, J. & Raff, M. Palm olein increases plasma cholesterol moderately compared with olive oil in healthy individuals. Am. J. Clin. Nutr. 94, 1426–1432 (2011).

    CAS  PubMed  Google Scholar 

  195. Kabagambe, E. K., Baylin, A., Ascherio, A. & Campos, H. The type of oil used for cooking is associated with the risk of nonfatal acute myocardial infarction in costa rica. J. Nutr. 135, 2674–2679 (2005).

    CAS  PubMed  Google Scholar 

  196. Feskens, E. J., Sluik, D. & van Woudenbergh, G. J. Meat consumption, diabetes, and its complications. Curr. Diabetes Rep. 13, 298–306 (2013).

    CAS  Google Scholar 

  197. Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 281, 106–122 (2017).

    CAS  PubMed  Google Scholar 

  198. Micha, R., Michas, G., Lajous, M. & Mozaffarian, D. Processing of meats and cardiovascular risk: time to focus on preservatives. BMC Med. 11, 136 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Rohrmann, S. & Linseisen, J. Processed meat: the real villain? Proc. Nutr. Soc. 75, 233–241 (2016).

    CAS  PubMed  Google Scholar 

  200. Gunnars, K. Is red meat bad for you, or good? An objective look. Healthline https://www.healthline.com/nutrition/is-red-meat-bad-for-you-or-good (2018).

  201. Teicholz, N. The Big Fat Surprise: Why Butter, Meat and Cheese Belong in a Healthy Diet (Simon & Schuster Inc, 2014).

  202. Wang, Y. & Li, S. Worldwide trends in dairy production and consumption and calcium intake: is promoting consumption of dairy products a sustainable solution for inadequate calcium intake? Food Nutr. Bull. 29, 172–185 (2008).

    PubMed  Google Scholar 

  203. Rodale News. 6 foods that cause inflammation. Women’s Health https://www.womenshealthmag.com/food/a19983367/inflammatory-foods/ (2014).

  204. Campbell, T. C. & Campbell, T. M. The China Study (BenBella Books, 2006).

  205. Myers, A. The dangers of dairy. MindBodyGreen https://www.mindbodygreen.com/0-8646/the-dangers-of-dairy.html (2019).

  206. Chiu, S. et al. Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial. Am. J. Clin. Nutr. 103, 341–347 (2016).

    CAS  PubMed  Google Scholar 

  207. Renaud, S. C., Ruf, J. C. & Petithory, D. The positional distribution of fatty acids in palm oil and lard influences their biologic effects in rats. J. Nutr. 125, 229–237 (1995).

    CAS  PubMed  Google Scholar 

  208. Sun, G. et al. Effects of palm olein and olive oil on serum lipids in a Chinese population: a randomized, double-blind, cross-over trial. Asia Pac. J. Clin. Nutr. 27, 572–580 (2018).

    CAS  PubMed  Google Scholar 

  209. Lucci, P. et al. Palm oil and cardiovascular disease: a randomized trial of the effects of hybrid palm oil supplementation on human plasma lipid patterns. Food Funct. 7, 347–354 (2016).

    CAS  PubMed  Google Scholar 

  210. Odia, O. J., Ofori, S. & Maduka, O. Palm oil and the heart: a review. World J. Cardiol. 7, 144–149 (2015).

    PubMed  PubMed Central  Google Scholar 

  211. Quealy, K. & Sanger-Katz, M. Is sushi “healthy”? What about granola? Where Americans and nutritionists disagree. New York Times https://www.nytimes.com/interactive/2016/07/05/upshot/is-sushi-healthy-what-about-granola-where-americans-and-nutritionists-disagree.html (2016).

  212. Sankararaman, S. & Sferra, T. J. Are we going nuts on coconut oil? Curr. Nutr. Rep. 7, 107–115 (2018).

    CAS  PubMed  Google Scholar 

  213. Savilaakso, S. et al. Systematic review of effects on biodiversity from oil palm production. Environ. Evid. 3, 4 (2014).

    Google Scholar 

  214. Rosqvist, F. et al. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am. J. Clin. Nutr. 102, 20–30 (2015).

    CAS  PubMed  Google Scholar 

  215. Beulens, J. W. et al. The role of menaquinones (vitamin K(2)) in human health. Br. J. Nutr. 110, 1357–1368 (2013).

    CAS  PubMed  Google Scholar 

  216. Fretts, A. M. et al. Plasma phospholipid saturated fatty acids and incident atrial fibrillation: the Cardiovascular Health Study. J. Am. Heart Assoc. 3, e000889 (2014).

    PubMed  PubMed Central  Google Scholar 

  217. Lemaitre, R. N. et al. Plasma phospholipid very-long-chain saturated fatty acids and incident diabetes in older adults: the Cardiovascular Health Study. Am. J. Clin. Nutr 101, 1047–1054 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Malik, V. S. et al. Circulating very-long-chain saturated fatty acids and incident coronary heart disease in US Men and Women. Circulation 132, 260–268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Forouhi, N. G. et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2, 810–818 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Yakoob, M. Y. et al. Circulating biomarkers of dairy fat and risk of incident diabetes mellitus among men and women in the United States in two large prospective cohorts. Circulation 133, 1645–1654 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 510, 58–67 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Pewzner-Jung, Y. et al. A critical role for ceramide synthase 2 in liver homeostasis: II. insights into molecular changes leading to hepatopathy. J. Biol. Chem. 285, 10911–10923 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Grosch, S., Schiffmann, S. & Geisslinger, G. Chain length-specific properties of ceramides. Prog. Lipid Res. 51, 50–62 (2012).

    PubMed  Google Scholar 

  224. Huth, P. J., Fulgoni, V. L. 3rd & Larson, B. T. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils. Adv. Nutr. 6, 674–693 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Schwingshackl, L. et al. Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutr. Diabetes 7, e262 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Jones, P. J., Jew, S. & AbuMweis, S. The effect of dietary oleic, linoleic, and linolenic acids on fat oxidation and energy expenditure in healthy men. Metabolism 57, 1198–1203 (2008).

    CAS  PubMed  Google Scholar 

  227. Kien, C. L. & Bunn, J. Y. Gender alters the effects of palmitate and oleate on fat oxidation and energy expenditure. Obesity 16, 29–33 (2008).

    CAS  PubMed  Google Scholar 

  228. Kien, C. L. et al. Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans. Am. J. Clin. Nutr. 99, 436–445 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Schmidt, D. E., Allred, J. B. & Kien, C. L. Fractional oxidation of chylomicron-derived oleate is greater than that of palmitate in healthy adults fed frequent small meals. J. Lipid Res. 40, 2322–2332 (1999).

    CAS  PubMed  Google Scholar 

  230. Ros, E. Health benefits of nut consumption. Nutrients 2, 652–682 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Venkatachalam, M. & Sathe, S. K. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 54, 4705–4714 (2006).

    CAS  PubMed  Google Scholar 

  232. Del Gobbo, L. C., Falk, M. C., Feldman, R., Lewis, K. & Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 102, 1347–1356 (2015).

    PubMed  PubMed Central  Google Scholar 

  233. Mahmassani, H. A., Avendano, E. E., Raman, G. & Johnson, E. J. Avocado consumption and risk factors for heart disease: a systematic review and meta-analysis. Am. J. Clin. Nutr. 107, 523–536 (2018).

    PubMed  Google Scholar 

  234. Schwingshackl, L. & Hoffmann, G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 13, 154 (2014).

    PubMed  PubMed Central  Google Scholar 

  235. Zong, G. et al. Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. Am. J. Clin. Nutr. 107, 445–453 (2018).

    PubMed  PubMed Central  Google Scholar 

  236. Salas-Salvado, J. et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 34, 14–19 (2011).

    PubMed  Google Scholar 

  237. Lama, A. et al. Polyphenol-rich virgin olive oil reduces insulin resistance and liver inflammation and improves mitochondrial dysfunction in high-fat diet fed rats. Mol. Nutr. Food Res. 61, 1600418 (2017).

    Google Scholar 

  238. Loffredo, L., Perri, L., Nocella, C. & Violi, F. Antioxidant and antiplatelet activity by polyphenol-rich nutrients: focus on extra virgin olive oil and cocoa. Br. J. Clin. Pharmacol. 83, 96–102 (2017).

    CAS  PubMed  Google Scholar 

  239. Peyrol, J., Riva, C. & Amiot, M. J. Hydroxytyrosol in the prevention of the metabolic syndrome and related disorders. Nutrients 9, 306 (2017).

    PubMed Central  Google Scholar 

  240. Valenzuela, R. et al. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-alpha and Nrf2 activation, and NF-kappaB down-regulation. Food Funct. 8, 1526–1537 (2017).

    CAS  PubMed  Google Scholar 

  241. Degirolamo, C., Shelness, G. S. & Rudel, L. L. LDL cholesteryl oleate as a predictor for atherosclerosis: evidence from human and animal studies on dietary fat. J. Lipid Res. 50, S434–S439 (2009).

    PubMed  PubMed Central  Google Scholar 

  242. Jones, P. J. et al. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans. Atherosclerosis 238, 231–238 (2015).

    CAS  PubMed  Google Scholar 

  243. Bolling, B. W., Blumberg, J. B. & Chen, C. O. The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins. Food Chem. 123, 1040–1047 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Cicerale, S., Conlan, X. A., Barnett, N. W., Sinclair, A. J. & Keast, R. S. Influence of heat on biological activity and concentration of oleocanthal—a natural anti-inflammatory agent in virgin olive oil. J. Agric. Food Chem. 57, 1326–1330 (2009).

    CAS  PubMed  Google Scholar 

  245. Gomez-Alonso, S., Fregapane, G., Salvador, M. D. & Gordon, M. H. Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. J. Agric. Food Chem. 51, 667–672 (2003).

    CAS  PubMed  Google Scholar 

  246. Chandrasekara, N. & Shahidi, F. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J. Agric. Food Chem. 59, 5006–5014 (2011).

    CAS  PubMed  Google Scholar 

  247. Farina, E. K. et al. Dietary intakes of arachidonic acid and alpha-linolenic acid are associated with reduced risk of hip fracture in older adults. J. Nutr. 141, 1146–1153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Mann, N. J., Johnson, L. G., Warrick, G. E. & Sinclair, A. J. The arachidonic acid content of the Australian diet is lower than previously estimated. J. Nutr. 125, 2528–2535 (1995).

    CAS  PubMed  Google Scholar 

  249. Bjermo, H. et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr. 95, 1003–1012 (2012).

    CAS  PubMed  Google Scholar 

  250. Masson, C. J. & Mensink, R. P. Exchanging saturated fatty acids for (n-6) polyunsaturated fatty acids in a mixed meal may decrease postprandial lipemia and markers of inflammation and endothelial activity in overweight men. J. Nutr. 141, 816–821 (2011).

    CAS  PubMed  Google Scholar 

  251. Johnson, G. H. & Fritsche, K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials. J. Acad. Nutr. Diet. 112, 1029–1041 (2012).

    CAS  PubMed  Google Scholar 

  252. Kelley, D. S. et al. Effects of dietary arachidonic acid on human immune response. Lipids 32, 449–456 (1997).

    CAS  PubMed  Google Scholar 

  253. Kusumoto, A. et al. Effects of arachidonate-enriched triacylglycerol supplementation on serum fatty acids and platelet aggregation in healthy male subjects with a fish diet. Br. J. Nutr. 98, 626–635 (2007).

    CAS  PubMed  Google Scholar 

  254. Nelson, G. J. et al. The effect of dietary arachidonic acid on plasma lipoprotein distributions, apoproteins, blood lipid levels, and tissue fatty acid composition in humans. Lipids 32, 427–433 (1997).

    CAS  PubMed  Google Scholar 

  255. Hodson, L., Skeaff, C. M. & Fielding, B. A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47, 348–380 (2008).

    CAS  PubMed  Google Scholar 

  256. Wu, J. H. et al. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the Cardiovascular Health Study. Circulation 130, 1245–1253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Virtanen, J. K., Wu, J. H. Y., Voutilainen, S., Mursu, J. & Tuomainen, T. P. Serum n-6 polyunsaturated fatty acids and risk of death: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 107, 427–435 (2018).

    PubMed  Google Scholar 

  258. Wu, J. H. Y. et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol. 5, 965–974 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Marklund, M. et al. Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality: an individual-level pooled analysis of 30 cohort studies. Circulation. https://doi.org/10.17863/CAM.36839 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Marklund, M. et al. Biomarkers of n-6 polyunsaturated fatty acids and CVD risk: a global pooling project of 19 cohort studies. Circulation 133 (Suppl. 1), MP26 (2018).

    Google Scholar 

  261. Hooper, L., Martin, N., Abdelhamid, A. & Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 6, CD011737 (2015).

    Google Scholar 

  262. Skeaff, C. M. & Mann, J. I. Diet-heart disease hypothesis is unaffected by results of analysis of recovered data from Minnesota Coronary Experiment. Evid. Based Med. 21, 185 (2016).

    PubMed  Google Scholar 

  263. de Lorgeril, M. & Salen, P. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids. BMC Med. 10, 50 (2012).

    PubMed  PubMed Central  Google Scholar 

  264. Simopoulos, A. P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8, 128 (2016).

    PubMed  PubMed Central  Google Scholar 

  265. Harris, W. S. The omega-6:omega-3 ratio: a critical appraisal and possible successor. Prostaglandins Leukot. Essent. Fatty Acids 132, 34–40 (2018).

    CAS  PubMed  Google Scholar 

  266. Kronmal, R. A. Spurious correlation and the fallacy of the ratio standard revisited. J. R. Stat. Soc. A 156, 379–392 (1993).

    Google Scholar 

  267. United Nations Food and Agricultural Organization. Fats and fatty acids in human nutrition: report of an expert consultation (WHO, 2008).

  268. Sifferlin, A. The 10 best and worst oils for your health. Time http://time.com/5342337/best-worst-cooking-oils-for-your-health/ (2018).

  269. O’Connor, A. A decades-old study, rediscovered, challenges advice on saturated fat. Well https://well.blogs.nytimes.com/2016/04/13/a-decades-old-study-rediscovered-challenges-advice-on-saturated-fat/ (2016).

  270. PaleoLeap. What’s wrong with industrial oils? PaleoLeap https://paleoleap.com/whats-wrong-industrial-oils/ (2019).

  271. Konie, R. The ugly truth about vegetable oils (and why they should be avoided). Thank Your Body https://www.thankyourbody.com/vegetable-oils/ (2019).

  272. Kreps, F., Vrbikova, L. & Schmidt, S. Influence of industrial physical refining on tocopherol, chlorophyll and beta-carotene content in sunflower and rapeseed oil. Eur. J. Lipid Sci. Technol. 116, 1572–1582 (2014).

    CAS  Google Scholar 

  273. Verleyen, T. et al. Influence of the vegetable oil refining process on free and esterified sterols. J. Am. Oil Chem. Soc. 79, 947–953 (2002).

    CAS  Google Scholar 

  274. Kraljic, K. et al. Changes in 4-vinylsyringol and other phenolics during rapeseed oil refining. Food Chem. 187, 236–242 (2015).

    CAS  PubMed  Google Scholar 

  275. AbuMweis, S., Jew, S., Tayyem, R. & Agraib, L. Eicosapentaenoic acid and docosahexaenoic acid containing supplements modulate risk factors for cardiovascular disease: a meta-analysis of randomised placebo-control human clinical trials. J. Hum. Nutr. Diet. 31, 67–84 (2018).

    CAS  PubMed  Google Scholar 

  276. Macartney, M. J., Hingley, L., Brown, M. A., Peoples, G. E. & McLennan, P. L. Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br. J. Nutr. 112, 1984–1992 (2014).

    CAS  PubMed  Google Scholar 

  277. Peoples, G. E., McLennan, P. L., Howe, P. R. & Groeller, H. Fish oil reduces heart rate and oxygen consumption during exercise. J. Cardiovasc. Pharmacol. 52, 540–547 (2008).

    CAS  PubMed  Google Scholar 

  278. Wu, J. H., Cahill, L. E. & Mozaffarian, D. Effect of fish oil on circulating adiponectin: a systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 98, 2451–2459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Xin, W., Wei, W. & Li, X. Y. Short-term effects of fish-oil supplementation on heart rate variability in humans: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 97, 926–935 (2013).

    CAS  PubMed  Google Scholar 

  280. Akinkuolie, A. O., Ngwa, J. S., Meigs, J. B. & Djousse, L. Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clin. Nutr. 30, 702–707 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Abbott, K. A., Burrows, T. L., Thota, R. N., Acharya, S. & Garg, M. L. Do omega-3 PUFAs affect insulin resistance in a sex-specific manner? A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 104, 1470–1484 (2016).

    CAS  PubMed  Google Scholar 

  282. Pan, A., Yu, D., Demark-Wahnefried, W., Franco, O. H. & Lin, X. Meta-analysis of the effects of flaxseed interventions on blood lipids. Am. J. Clin. Nutr. 90, 288–297 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Neale, E. P., Tapsell, L. C., Guan, V. & Batterham, M. J. The effect of nut consumption on markers of inflammation and endothelial function: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 7, e016863 (2017).

    PubMed  PubMed Central  Google Scholar 

  284. Mozaffarian, D. & Rimm, E. B. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296, 1885–1899 (2006).

    CAS  PubMed  Google Scholar 

  285. Zheng, J. et al. Fish consumption and CHD mortality: an updated meta-analysis of seventeen cohort studies. Public Health Nutr. 15, 725–737 (2012).

    PubMed  Google Scholar 

  286. Chowdhury, R. et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ 345, e6698 (2012).

    PubMed  PubMed Central  Google Scholar 

  287. Larsson, S. C., Orsini, N. & Wolk, A. Long-chain omega-3 polyunsaturated fatty acids and risk of stroke: a meta-analysis. Eur. J. Epidemiol. 27, 895–901 (2012).

    CAS  PubMed  Google Scholar 

  288. Wu, J. H. et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br. J. Nutr. 107 (Suppl. 2), 214–227 (2012).

    Google Scholar 

  289. Pan, A. et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am. J. Clin. Nutr. 96, 1262–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Del Gobbo, L. C. et al. ω-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern. Med. 176, 1155–1166 (2016).

    PubMed  PubMed Central  Google Scholar 

  291. Forouhi, N. G. et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: the EPIC-InterAct Case-Cohort Study. PLOS Med. 13, e1002094 (2016).

    PubMed  PubMed Central  Google Scholar 

  292. Wu, J. H. & Mozaffarian, D. ω-3 fatty acids, atherosclerosis progression and cardiovascular outcomes in recent trials: new pieces in a complex puzzle. Heart 100, 530–533 (2014).

    CAS  PubMed  Google Scholar 

  293. Manson, J. E. et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N. Engl. J. Med. 380, 23–32 (2018).

    PubMed  PubMed Central  Google Scholar 

  294. Kromhout, D., Giltay, E. J. & Geleijnse, J. M. n-3 fatty acids and cardiovascular events after myocardial infarction. N. Engl. J. Med. 363, 2015–2026 (2010).

    CAS  PubMed  Google Scholar 

  295. Abdelhamid, A. S. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 7, CD003177 (2018).

    PubMed  Google Scholar 

  296. Aung, T. et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77917 individuals. JAMA Cardiol. 3, 225–234 (2018).

    PubMed  Google Scholar 

  297. Rizos, E. C., Ntzani, E. E., Bika, E., Kostapanos, M. S. & Elisaf, M. S. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA 308, 1024–1033 (2012).

    CAS  PubMed  Google Scholar 

  298. Siscovick, D. S. et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association. Circulation 135, e867–e884 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Bowen, K. J., Harris, W. S. & Kris-Etherton, P. M. Omega-3 fatty acids and cardiovascular disease: are there benefits? Curr. Treat. Opt. Cardiovasc. Med. 18, 69 (2016).

    Google Scholar 

  300. Mozaffarian, D. et al. Circulating long-chain omega-3 fatty acids and incidence of congestive heart failure in older adults: the cardiovascular health study: a cohort study. Ann. Intern. Med. 155, 160–170 (2011).

    PubMed  PubMed Central  Google Scholar 

  301. Saber, H. et al. Omega-3 fatty acids and incident ischemic stroke and its atherothrombotic and cardioembolic subtypes in 3 US cohorts. Stroke 48, 2678–2685 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Virtanen, J. K., Mursu, J., Voutilainen, S. & Tuomainen, T. P. Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation 120, 2315–2321 (2009).

    CAS  PubMed  Google Scholar 

  303. Wu, J. H. et al. Association of plasma phospholipid long-chain omega-3 fatty acids with incident atrial fibrillation in older adults: the cardiovascular health study. Circulation 125, 1084–1093 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Djousse, L., Akinkuolie, A. O., Wu, J. H., Ding, E. L. & Gaziano, J. M. Fish consumption, omega-3 fatty acids and risk of heart failure: a meta-analysis. Clin. Nutr. 31, 846–853 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Mozaffarian, D. & Wu, J. H. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J. Nutr. 142, 614s–625s (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Mensink, R. P., Zock, P. L., Kester, A. D. & Katan, M. B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77, 1146–1155 (2003).

    CAS  PubMed  Google Scholar 

  307. Lewington, S. et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370, 1829–1839 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

J.H.Y.W. received support from a Scientia Fellowship from the University of New South Wales, Australia. R.M. and D.M. received funding from the US National Institutes of Health (NIH) and the US National Heart, Lung and Blood Institute (NHLBI) (R01HL130735 and R01HL115189).

Reviewer information

Nature Reviews Cardiology thanks G. Riccardi and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.H.Y.W. and D.M. researched data for the article, and J.H.Y.W. wrote the manuscript. All authors provided substantial contribution to the discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jason H. Y. Wu.

Ethics declarations

Competing interests

J.H.Y.W. and R.M. received research support from Unilever for projects on fatty acid biomarkers not related to the present article. D.M. received research funding from the US National Institutes of Health (NIH) and the Gates Foundation; received personal fees from Acasti Pharma, Amarin, America’s Test Kitchen, Bunge, DSM, GOED, Indigo Agriculture, Nutrition Impact and Pollock Communications; is on the scientific advisory board of DayTwo, Elysium Health and Omada Health; and received chapter royalties from UpToDate; none of these is related to the present article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J.H., Micha, R. & Mozaffarian, D. Dietary fats and cardiometabolic disease: mechanisms and effects on risk factors and outcomes. Nat Rev Cardiol 16, 581–601 (2019). https://doi.org/10.1038/s41569-019-0206-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0206-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing