Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Notch and interacting signalling pathways in cardiac development, disease, and regeneration

Abstract

Cardiogenesis is a complex developmental process involving multiple overlapping stages of cell fate specification, proliferation, differentiation, and morphogenesis. Precise spatiotemporal coordination between the different cardiogenic processes is ensured by intercellular signalling crosstalk and tissue–tissue interactions. Notch is an intercellular signalling pathway crucial for cell fate decisions during multicellular organismal development and is aptly positioned to coordinate the complex signalling crosstalk required for progressive cell lineage restriction during cardiogenesis. In this Review, we describe the role of Notch signalling and the crosstalk with other signalling pathways during the differentiation and patterning of the different cardiac tissues and in cardiac valve and ventricular chamber development. We examine how perturbation of Notch signalling activity is linked to congenital heart diseases affecting the neonate and adult, and discuss studies that shed light on the role of Notch signalling in heart regeneration and repair after injury.

Key points

  • Vertebrate heart development is a complex multistep process that relies on the contribution of several cellular lineages in a spatiotemporally regulated manner.

  • Notch is a highly conserved, local cell–cell signalling pathway required for proliferation, differentiation, and tissue patterning in a variety of tissues, including the heart.

  • Notch signalling in the endocardium regulates cardiac specification, progenitor cell differentiation, valve primordium formation and morphogenesis, ventricular trabeculation and compaction, and coronary vessel development.

  • Notch coordinates cellular interactions during heart development by cross talking with other fundamental signalling pathways, including WNT, bone morphogenetic protein, and neuregulin 1–ERBB.

  • Defective Notch signalling during heart development causes congenital heart disease affecting neonates and adults.

  • Notch regulates cardiac regenerative processes in zebrafish, providing an incentive for evaluating Notch-based cell therapies in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Notch signalling is required for cardiac patterning, EMT, and valve morphogenesis.
Fig. 2: Endocardial Notch signalling is required for valve development and homeostasis.
Fig. 3: Ventricular chamber development: trabeculation and compaction.
Fig. 4: Endocardial Notch activity is required for ventricular chamber development.

Immunofluorescence images adapted from ref.38, Springer Nature Limited.

Fig. 5: Notch signalling activation in the injured zebrafish heart.

Similar content being viewed by others

References

  1. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Luxan, G. et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19, 193–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet. 16, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat. Genet. 16, 235–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Abu-Issa, R. & Kirby, M. L. Heart field: from mesoderm to heart tube. Annu. Rev. Cell Dev. Biol. 23, 45–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Evans, S. M., Yelon, D., Conlon, F. L. & Kirby, M. L. Myocardial lineage development. Circ. Res. 107, 1428–1444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noseda, M., Peterkin, T., Simoes, F. C., Patient, R. & Schneider, M. D. Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ. Res. 108, 129–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Vincent, S. D. & Buckingham, M. E. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr. Top. Dev. Biol. 90, 1–41 (2010).

    Article  PubMed  Google Scholar 

  9. Saga, Y. et al. MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122, 2769–2778 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Lescroart, F. et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 359, 1177–1181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rones, M. S., McLaughlin, K. A., Raffin, M. & Mercola, M. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis. Development 127, 3865–3876 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Contakos, S. P., Gaydos, C. M., Pfeil, E. C. & McLaughlin, K. A. Subdividing the embryo: a role for Notch signaling during germ layer patterning in Xenopus laevis. Dev. Biol. 288, 294–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Miazga, C. M. & McLaughlin, K. A. Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling. Dev. Biol. 333, 285–296 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Schroeder, T. et al. Recombination signal sequence-binding protein Jkappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc. Natl Acad. Sci. USA 100, 4018–4023 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nemir, M., Croquelois, A., Pedrazzini, T. & Radtke, F. Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ. Res. 98, 1471–1478 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Schroeder, T. et al. Activated Notch1 alters differentiation of embryonic stem cells into mesodermal cell lineages at multiple stages of development. Mech. Dev. 123, 570–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Lowell, S., Benchoua, A., Heavey, B. & Smith, A. G. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLOS Biol. 4, e121 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chen, V. C., Stull, R., Joo, D., Cheng, X. & Keller, G. Notch signaling respecifies the hemangioblast to a cardiac fate. Nat. Biotechnol. 26, 1169–1178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bray, S. J. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Oka, C. et al. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121, 3291–3301 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Souilhol, C., Cormier, S., Tanigaki, K., Babinet, C. & Cohen-Tannoudji, M. RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development. Mol. Cell. Biol. 26, 4769–4774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munger, T. M. et al. A population study of the natural history of Wolff-Parkinson-White syndrome in Olmsted County, Minnesota, 1953–1989. Circulation 87, 866–873 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. de la Pompa, J. L. & Epstein, J. A. Coordinating tissue interactions: notch signaling in cardiac development and disease. Dev. Cell. 22, 244–254 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Munshi, N. V. Gene regulatory networks in cardiac conduction system development. Circ. Res. 110, 1525–1537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamada, M., Revelli, J. P., Eichele, G., Barron, M. & Schwartz, R. J. Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev. Biol. 228, 95–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Christoffels, V. M. et al. T-Box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev. Dyn. 229, 763–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Singh, M. K. et al. Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132, 2697–2707 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Stennard, F. A. et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132, 2451–2462 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Kokubo, H., Tomita-Miyagawa, S., Hamada, Y. & Saga, Y. Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development 134, 747–755 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Rutenberg, J. B. et al. Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors. Development 133, 4381–4390 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Ma, L., Lu, M. F., Schwartz, R. J. & Martin, J. F. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132, 5601–5611 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Aanhaanen, W. T. et al. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ. Res. 104, 1267–1274 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Harrelson, Z. et al. Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 131, 5041–5052 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Rivera-Feliciano, J. & Tabin, C. J. Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field. Dev. Biol. 295, 580–588 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Papoutsi, T., Luna-Zurita, L., Prados, B., Zaffran, S. & de la Pompa, J. L. Bmp2 and Notch cooperate to pattern the embryonic endocardium. Development 145, dev163378 (2018).

    Article  PubMed  CAS  Google Scholar 

  37. Luna-Zurita, L. et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J. Clin. Invest. 120, 3493–3507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D’Amato, G. et al. Sequential Notch activation regulates ventricular chamber development. Nat. Cell Biol. 18, 7–20 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Del Monte, G., Grego-Bessa, J., Gonzalez-Rajal, A., Bolos, V. & De La Pompa, J. L. Monitoring Notch1 activity in development: evidence for a feedback regulatory loop. Dev. Dyn. 236, 2594–2614 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Grego-Bessa, J. et al. Notch signaling is essential for ventricular chamber development. Dev. Cell. 12, 415–429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fischer, A. et al. Combined loss of Hey1 and HeyL causes congenital heart defects because of impaired epithelial to mesenchymal transition. Circ. Res. 100, 856–863 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe, Y. et al. Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse. Development 133, 1625–1634 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Kisanuki, Y. Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Rentschler, S. et al. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J. Clin. Invest. 121, 525–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gillers, B. S. et al. Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties. Circ. Res. 116, 398–406 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Dyer, L. A. & Kirby, M. L. The role of secondary heart field in cardiac development. Dev. Biol. 336, 137–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelly, R. G. The second heart field. Curr. Top. Dev. Biol. 100, 33–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Meilhac, S. M., Lescroart, F., Blanpain, C. & Buckingham, M. E. Cardiac cell lineages that form the heart. Cold Spring Harb Perspect Med. 4, a013888 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ma, Q., Zhou, B. & Pu, W. T. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev. Biol. 323, 98–104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E. & Black, B. L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev. Biol. 287, 134–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Zaffran, S., Kelly, R. G., Meilhac, S. M., Buckingham, M. E. & Brown, N. A. Right ventricular myocardium derives from the anterior heart field. Circ. Res. 95, 261–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Rochais, F., Mesbah, K. & Kelly, R. G. Signaling pathways controlling second heart field development. Circ. Res. 104, 933–942 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Kwon, C. et al. A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat. Cell Biol. 11, 951–957 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klaus, A. et al. Wnt/beta-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc. Natl Acad. Sci. USA 109, 10921–10926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McDaniell, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McElhinney, D. B. et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 106, 2567–2574 (2002).

    Article  PubMed  Google Scholar 

  57. Eldadah, Z. A. et al. Familial tetralogy of Fallot caused by mutation in the jagged1 gene. Hum. Mol. Genet. 10, 163–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Greenway, S. C. et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat. Genet. 41, 931–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Neeb, Z., Lajiness, J. D., Bolanis, E. & Conway, S. J. Cardiac outflow tract anomalies. Wiley Interdiscip Rev. Dev. Biol. 2, 499–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakajima, M., Moriizumi, E., Koseki, H. & Shirasawa, T. Presenilin 1 is essential for cardiac morphogenesis. Dev. Dyn. 230, 795–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. McCright, B., Lozier, J. & Gridley, T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129, 1075–1082 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. High, F. A. et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J. Clin. Invest. 119, 1986–1996 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ilagan, R. et al. Fgf8 is required for anterior heart field development. Development 133, 2435–2445 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Rochais, F. et al. Hes1 is expressed in the second heart field and is required for outflow tract development. PLOS One. 4, e6267 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Donovan, J., Kordylewska, A., Jan, Y. N. & Utset, M. F. Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr. Biol. 12, 1605–1610 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18, 901–911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gessler, M. et al. Mouse gridlock: no aortic coarctation or deficiency, but fatal cardiac defects in Hey2 -/- mice. Curr. Biol. 12, 1601–1604 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Kokubo, H., Miyagawa-Tomita, S., Nakazawa, M., Saga, Y. & Johnson, R. L. Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev. Biol. 278, 301–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Sakata, Y. et al. Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proc. Natl Acad. Sci. USA 99, 16197–16202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sakata, Y. et al. The spectrum of cardiovascular anomalies in CHF1/Hey2 deficient mice reveals roles in endocardial cushion, myocardial and vascular maturation. J. Mol. Cell Cardiol. 40, 267–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Shirai, M., Imanaka-Yoshida, K., Schneider, M. D., Schwartz, R. J. & Morisaki, T. T-Box 2, a mediator of Bmp-Smad signaling, induced hyaluronan synthase 2 and Tgfbeta2 expression and endocardial cushion formation. Proc. Natl Acad. Sci. USA 106, 18604–18609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shelton, E. L. & Yutzey, K. E. Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev. Biol. 302, 376–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Armstrong, E. J. & Bischoff, J. Heart valve development: endothelial cell signaling and differentiation. Circ. Res. 95, 459–470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. MacGrogan, D. et al. Sequential ligand-dependent notch signaling activation regulates valve primordium formation and morphogenesis. Circ. Res. 118, 1480–1497 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Niessen, K. et al. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J. Cell Biol. 182, 315–325 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Y. et al. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development. PLOS One. 8, e60244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Samsa, L. A. et al. Cardiac contraction activates endocardial Notch signaling to modulate chamber maturation in zebrafish. Development 142, 4080–4091 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Walsh, E. C. & Stainier, D. Y. UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Heidersbach, A. et al. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife 2, e01323 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Vermot, J. et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLOS Biol. 7, e1000246 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Steed, E. et al. klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis. Nat. Commun. 7, 11646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Donat, S. et al. Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis. Elife 7, e28939 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pestel, J. et al. Real-time 3D visualization of cellular rearrangements during cardiac valve formation. Development 143, 2217–2227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beis, D. et al. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132, 4193–4204 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Gridley, T. Notch signaling in the vasculature. Curr. Top. Dev. Biol. 92, 277–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hurlstone, A. F. et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Verhoeven, M. C., Haase, C., Christoffels, V. M., Weidinger, G. & Bakkers, J. Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. Birth Defects Res. A Clin. Mol. Teratol. 91, 435–440 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Goddard, L. M. et al. Hemodynamic forces sculpt developing heart valves through a KLF2-WNT9B paracrine signaling axis. Dev. Cell. 43, 274–289.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Plein, A., Fantin, A. & Ruhrberg, C. Neural crest cells in cardiovascular development. Curr. Top. Dev. Biol. 111, 183–200 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Phillips, H. M. et al. Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc. Res. 99, 452–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. High, F. & Epstein, J. A. Signalling pathways regulating cardiac neural crest migration and differentiation. Novartis Found. Symp. 283, 152–161; discussion 161–154, 238–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. MacGrogan, D. et al. How to make a heart valve: from embryonic development to bioengineering of living valve substitutes. Cold Spring Harb Perspect Med. 4, a013912 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lin, C. Y. et al. The secondary heart field is a new site of calcineurin/Nfatc1 signaling for semilunar valve development. J. Mol. Cell Cardiol. 52, 1096–1102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jain, R. et al. Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J. Clin. Invest. 121, 422–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, Y. et al. Notch-Tnf signalling is required for development and homeostasis of arterial valves. Eur. Heart J. 38, 675–686 (2017).

    PubMed  Google Scholar 

  96. Foffa, I. et al. Sequencing of NOTCH1, GATA5, TGFBR1 and TGFBR2 genes in familial cases of bicuspid aortic valve. BMC Med. Genet. 14, 44 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McBride, K. L. et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum. Mol. Genet. 17, 2886–2893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McKellar, S. H. et al. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J. Thorac Cardiovasc. Surg. 134, 290–296 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Mohamed, S. A. et al. Novel missense mutations (p. T596M and p. P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem. Biophys. Res. Commun. 345, 1460–1465 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Kerstjens-Frederikse, W. S. et al. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet. Med. 18, 914–923 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Nigam, V. & Srivastava, D. Notch1 represses osteogenic pathways in aortic valve cells. J. Mol. Cell Cardiol. 47, 828–834 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nus, M. et al. Diet-induced aortic valve disease in mice haploinsufficient for the notch pathway effector RBPJK/CSL. Arterioscler Thromb. Vasc. Biol. 31, 1580–1588 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Theodoris, C. V. et al. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 160, 1072–1086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Prakash, S. K. et al. A roadmap to investigate the genetic basis of bicuspid aortic valve and its complications: insights from the International BAVCon (Bicuspid Aortic Valve Consortium). J. Am. Coll. Cardiol. 64, 832–839 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sedmera, D., Pexieder, T., Hu, N. & Clark, E. B. Developmental changes in the myocardial architecture of the chick. Anat. Rec. 248, 421–432 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Sedmera, D., Pexieder, T., Vuillemin, M., Thompson, R. P. & Anderson, R. H. Developmental patterning of the myocardium. Anat. Rec. 258, 319–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Hu, N., Sedmera, D., Yost, H. J. & Clark, E. B. Structure and function of the developing zebrafish heart. Anat. Rec. 260, 148–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Sedmera, D. et al. Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 274, 773–777 (2003).

    Article  PubMed  Google Scholar 

  109. Park, D. S. et al. Pocket proteins critically regulate cell cycle exit of the trabecular myocardium and the ventricular conduction system. Biol. Open. 2, 968–978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rentschler, S. et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development 128, 1785–1792 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Moorman, A. F. & Christoffels, V. M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 83, 1223–1267 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Christoffels, V. M. & Moorman, A. F. Development of the cardiac conduction system: why are some regions of the heart more arrhythmogenic than others? Circ. Arrhythm Electrophysiol. 2, 195–207 (2009).

    Article  PubMed  Google Scholar 

  113. Jimenez-Amilburu, V. et al. In vivo visualization of cardiomyocyte apicobasal polarity reveals epithelial to mesenchymal-like transition during cardiac trabeculation. Cell Rep. 17, 2687–2699 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Li, J. et al. Single-cell lineage tracing reveals that oriented cell division contributes to trabecular morphogenesis and regional specification. Cell Rep. 15, 158–170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Passer, D., van de Vrugt, A., Atmanli, A. & Domian, I. J. Atypical protein kinase C-dependent polarized cell division is required for myocardial trabeculation. Cell Rep. 14, 1662–1672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Le Garrec, J. F. et al. Quantitative analysis of polarity in 3D reveals local cell coordination in the embryonic mouse heart. Development 140, 395–404 (2013).

    Article  PubMed  CAS  Google Scholar 

  117. Staudt, D. W. et al. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development 141, 585–593 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. de Luxan, G., D’Amato, G., MacGrogan, D. & de la Pompa, J. L. Endocardial Notch signaling in cardiac development and disease. Circ. Res. 118, e1–e18 (2015).

    PubMed  Google Scholar 

  119. Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131, 2219–2231 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Gerety, S. S. & Anderson, D. J. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129, 1397–1410 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. VanDusen, N. J. et al. Hand2 is an essential regulator for two Notch-dependent functions within the embryonic endocardium. Cell Rep. 9, 2071–2083 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bjarnadottir, T. K., Fredriksson, R. & Schioth, H. B. The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell. Mol. Life Sci. 64, 2104–2119 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Waller-Evans, H. et al. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLOS One. 5, e14047 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Patra, C. et al. Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent. Proc. Natl Acad. Sci. USA 110, 16898–16903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Del Monte-Nieto, G. et al. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557, 439–445 (2018).

    Article  PubMed  CAS  Google Scholar 

  127. Tian, X. et al. Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat. Commun. 8, 87 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Tian, X. et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345, 90–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Del Monte, G. et al. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ. Res. 108, 824–836 (2011).

    Article  PubMed  CAS  Google Scholar 

  130. Jenni, R., Oechslin, E., Schneider, J., Attenhofer Jost, C. & Kaufmann, P. A. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86, 666–671 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Red-Horse, K., Ueno, H., Weissman, I. L. & Krasnow, M. A. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Perez-Pomares, J. M. et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 46, 1005–1013 (2002).

    CAS  PubMed  Google Scholar 

  133. Tian, X. et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23, 1075–1090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wu, B. et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151, 1083–1096 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, H. et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 48, 537–543 (2016).

    Article  PubMed  CAS  Google Scholar 

  136. Sharma, B. et al. Alternative progenitor cells compensate to rebuild the coronary vasculature in Elabela- and Apj-deficient hearts. Dev. Cell. 42, 655–666.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cano, E. et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc. Natl Acad. Sci. USA 113, 656–661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Katz, T. C. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell. 22, 639–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou, B. & Pu, W. T. Genetic Cre-loxP assessment of epicardial cell fate using Wt1-driven Cre alleles. Circ. Res. 111, e276–e280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Riley, P. R. An epicardial floor plan for building and rebuilding the mammalian heart. Curr. Top. Dev. Biol. 100, 233–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Grieskamp, T., Rudat, C., Ludtke, T. H., Norden, J. & Kispert, A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ. Res. 108, 813–823 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Munch, J., Gonzalez-Rajal, A. & de la Pompa, J. L. Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration. Development 140, 1402–1411 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. de Oliveira-Carlos, V., Ganz, J., Hans, S., Kaslin, J. & Brand, M. Notch receptor expression in neurogenic regions of the adult zebrafish brain. PLOS One. 8, e73384 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Grotek, B., Wehner, D. & Weidinger, G. Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration. Development 140, 1412–1423 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Beck, C. W., Christen, B. & Slack, J. M. Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev. Cell. 5, 429–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Dias, T. B., Yang, Y. J., Ogai, K., Becker, T. & Becker, C. G. Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J. Neurosci. 32, 3245–3252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wan, J., Ramachandran, R. & Goldman, D. HB-EGF is necessary and sufficient for Muller glia dedifferentiation and retina regeneration. Dev. Cell. 22, 334–347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, R. et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Gonzalez-Rosa, J. M., Martin, V., Peralta, M., Torres, M. & Mercader, N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138, 1663–1674 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Schnabel, K., Wu, C. C., Kurth, T. & Weidinger, G. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLOS One. 6, e18503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chablais, F., Veit, J., Rainer, G. & Jazwinska, A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev. Biol. 11, 21 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Raya, A. et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc. Natl Acad. Sci. USA 100 (Suppl. 1), 11889–11895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Munch, J., Grivas, D., Gonzalez-Rajal, A., Torregrosa-Carrion, R. & de la Pompa, J. L. Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 144, 1425–1440 (2017).

    CAS  PubMed  Google Scholar 

  157. Zhao, L. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 111, 1403–1408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  CAS  Google Scholar 

  159. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Darehzereshki, A. et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev. Biol. 399, 91–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Adler, E. D. et al. The cardiomyocyte lineage is critical for optimization of stem cell therapy in a mouse model of myocardial infarction. FASEB J. 24, 1073–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464, 601–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Collesi, C., Zentilin, L., Sinagra, G. & Giacca, M. Notch1 signaling stimulates proliferation of immature cardiomyocytes. J. Cell Biol. 183, 117–128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Campa, V. M. et al. Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J. Cell Biol. 183, 129–141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gude, N. A. et al. Activation of Notch-mediated protective signaling in the myocardium. Circ. Res. 102, 1025–1035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kratsios, P. et al. Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ. Res. 106, 559–572 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Blaumueller, C. M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  170. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rand, M. D. et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol. Cell. Biol. 20, 1825–1835 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J. L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    Article  CAS  PubMed  Google Scholar 

  173. Dunwoodie, S. L., Henrique, D., Harrison, S. M. & Beddington, R. S. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065–3076 (1997).

    Article  CAS  PubMed  Google Scholar 

  174. Shutter, J. R. et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 14, 1313–1318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lindsell, C. E., Shawber, C. J., Boulter, J. & Weinmaster, G. Jagged: a mammalian ligand that activates Notch1. Cell 80, 909–917 (1995).

    Article  CAS  PubMed  Google Scholar 

  176. Shawber, C., Boulter, J., Lindsell, C. E. & Weinmaster, G. Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev. Biol. 180, 370–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Chillakuri, C. R. et al. Structural analysis uncovers lipid-binding properties of Notch ligands. Cell Rep. 5, 861–867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Yang, L. T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell. 16, 927–942 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell. 4, 67–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Musse, A. A., Meloty-Kapella, L. & Weinmaster, G. Notch ligand endocytosis: mechanistic basis of signaling activity. Semin. Cell Dev. Biol. 23, 429–436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature. 377, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  183. Borggrefe, T. & Oswald, F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631–1646 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Kovall, R. A. & Blacklow, S. C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol. 92, 31–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Fischer, A. & Gessler, M. Delta-Notch — and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 35, 4583–4596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Guruharsha, K. G., Kankel, M. W. & Artavanis-Tsakonas, S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 13, 654–666 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Siu, S. C. & Silversides, C. K. Bicuspid aortic valve disease. J. Am. Coll. Cardiol. 55, 2789–2800 (2010).

    Article  PubMed  Google Scholar 

  188. Fernandez, B. et al. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J. Am. Coll. Cardiol. 54, 2312–2318 (2009).

    Article  PubMed  Google Scholar 

  189. Aboulhosn, J. & Child, J. S. Left ventricular outflow obstruction: subaortic stenosis, bicuspid aortic valve, supravalvar aortic stenosis, and coarctation of the aorta. Circulation 114, 2412–2422 (2006).

    Article  PubMed  Google Scholar 

  190. Michelena, H. I. et al. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation. 129, 2691–2704 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Tadros, T. M., Klein, M. D. & Shapira, O. M. Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation 119, 880–890 (2009).

    Article  PubMed  Google Scholar 

  192. Cripe, L., Andelfinger, G., Martin, L. J., Shooner, K. & Benson, D. W. Bicuspid aortic valve is heritable. J. Am. Coll. Cardiol. 44, 138–143 (2004).

    Article  PubMed  Google Scholar 

  193. Hinton, R. B. et al. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J. Am. Coll. Cardiol. 53, 1065–1071 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Martin, L. J. et al. Evidence in favor of linkage to human chromosomal regions 18q, 5q and 13q for bicuspid aortic valve and associated cardiovascular malformations. Hum. Genet. 121, 275–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Jenni, R., Oechslin, E. N. & van der Loo, B. Isolated ventricular non-compaction of the myocardium in adults. Heart 93, 11–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Oechslin, E. & Jenni, R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur. Heart J. 32, 1446–1456 (2011).

    Article  PubMed  Google Scholar 

  197. Chin, T. K., Perloff, J. K., Williams, R. G., Jue, K. & Mohrmann, R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82, 507–513 (1990).

    Article  CAS  PubMed  Google Scholar 

  198. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  199. Towbin, J. A., Lorts, A. & Jefferies, J. L. Left ventricular non-compaction cardiomyopathy. Lancet 386, 813–825 (2015).

    Article  PubMed  Google Scholar 

  200. Ritter, M. et al. Isolated noncompaction of the myocardium in adults. Mayo Clin. Proc. 72, 26–31 (1997).

    Article  CAS  PubMed  Google Scholar 

  201. Oechslin, E. N., Attenhofer Jost, C. H., Rojas, J. R., Kaufmann, P. A. & Jenni, R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J. Am. Coll. Cardiol. 36, 493–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Stollberger, C. & Finsterer, J. Value of cardiac magnetic resonance imaging in the diagnosis of left ventricular hypertrabeculation/noncompaction. J. Cardiovasc. Magn. Reson. 6, 959–960; author reply 961–962 (2004).

    Article  PubMed  Google Scholar 

  203. Petersen, S. E. et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 46, 101–105 (2005).

    Article  PubMed  Google Scholar 

  204. Captur, G. & Nihoyannopoulos, P. Left ventricular non-compaction: genetic heterogeneity, diagnosis and clinical course. Int. J. Cardiol. 140, 145–153 (2010).

    Article  PubMed  Google Scholar 

  205. Klaassen, S. et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117, 2893–2901 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Postma, A. V. et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ. Cardiovasc. Genet. 4, 43–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  207. Ichida, F. et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103, 1256–1263 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. Shan, L. et al. SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia. Mol. Genet. Metab. 93, 468–474 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Hermida-Prieto, M. et al. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am. J. Cardiol. 94, 50–54 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank present and past members of the laboratory for their contribution to this Review and apologize for the omission of studies not discussed or cited because of space limitations. J.L.d.l.P. is funded by grants SAF2016-78370-R, CB16/11/00399 (CIBER CV), and RD16/0011/0021 (TERCEL) from the Ministerio de Ciencia, Innovación y Universidades and grants from the Fundación BBVA (Ref. BIO14_298) and Fundación La Marató (Ref. 20153431). J.L.d.l.P.'s work was supported in part with funds from the ERDF. CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).

Author information

Authors and Affiliations

Authors

Contributions

D.M. and J.M. researched data for the article. D.M and J.L.d.l.P. provided substantial contribution to the discussion of the content. All the authors wrote the article, and J.L.d.l.P. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to José Luis de la Pompa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacGrogan, D., Münch, J. & de la Pompa, J.L. Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol 15, 685–704 (2018). https://doi.org/10.1038/s41569-018-0100-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0100-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing